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Abstract

Monitoring urban sprawl is a vital component of assessing landscape changes as it directly affects the quality
of life of any populace. Remote sensing technology has the potential for acquiring detailed and accurate land-
use information for management and planning of urban regions. This study focused on the use af remotely
sensed data to investigate the spatial extent of urban landscape transition in Eti-Osa LGA, taking into
consideration the nature and dynamics. For the two fime periods investigated in this study (1984 - 2000 and
2000 - 2006), urban land-cover increased by 4.7% (929 hectares) and 5.4% (1250 hectares) respectively.
Furthermore, results of analysis carried out in the study showed that the highest confribution to urban
landscape change was from the sand (bare} class (559 hectares from 1984 — 2000 and 758 hectares from
2000 — 2006 respectively). Results of landscape metrics analysis revealed high levels of fragmentation in the
urban landscape for the fime periods evaluated. Based on the current landscape trends and patterns, a 10
year forward simulation from 2006 to 2016 was performed using IDRISI Land Change Modeller algorithm.
The forward prediction analysis revealed that by 2016 urban class would increase by 2,220 hectares (466
hectares from water, 1,192 from sand (bare} and 562 from vegetation). Based on these results it’s
recommended that the Lagos State Government take drastic sieps towards ensuring that mitigative or
preventive measures are put in place via effective policy implementation thereby combating the devastating

threat of urban sprawl in the area.

1. Introduction

Although an accurate definition of urban sprawl is
widely debated by a number of researchers (Galster
et al., 2001 and Johnson, 2001}, a general consensus
of this phenomenon is that it’s characterised by
unplanned and uneven pattern of growth driven by
multitude of processes that result in inefficient
resource utilization (Bhatta, 2010). Sudhira and
Ramachandra (2007) noted that the direct
implication of sprawl is change in land-use and
land-cover of the region as sprawl induces the
increase in built-up and paved area. Urban sprawl is
often uncoordinated and extends along the fringes of
metropolitan  areas with  incredible  speed.
Commonly, sprawl invades upon prime agricultural
and resource land in the process. Land is often
developed in a fragmented and piecemeal fashion,
with much of the intervening space left vacant or in
uses with little functionality (Torrens and Alberti,
2002). Jat et al, (2008) noted the importance of
remote sensing and geographic information system
(GIS) as tools for monitoting and planning
purposes. Unlike conventional surveying and
mapping techniques, remote sensing has proven to
be a cost effective and technologically sound
method of analysing urban sprawl (Haack and
Rafter, 2006, Jat et al, 2008, Ji et al, 2006,
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Martinuzzi et al., 2007 and Yang and Liu, 2005).
Environmental remote sensing has demonstrated to
be an effective method of obtaining information
regarding the nature and properties of objects on the
earth surface and in the atmosphere through use of
data from sensors which record electromagnetic
radiation reflected or emitted from those objects
(Danson et al, 1995). Remote sensing data are
especially important in the areas of rapid land-use
changes where the updating of information is
tedious and time-consuming. The monitoring of
urban development is mainly to find out the type,
amount, and location of land conversion that has
occurred (Yeh and Li, 1999). Lin et al, (2007)
noted that monitoring and simulating urban sprawl
and its effects on land-use patterns and hydrological
processes in urbanised watersheds are essential in
land-use and water resource planning and
management. The study area, Fti-Osa local
government arca (LGA) is surrounded by water
bodies, which have resulted in the occurrence of
make shift houses along the beaches, the lagoon, the
natural water drainage channels, sometimes
extending as far as 50 — 100 meters beyond the
shore into the water bodies. Most of these structures
built beyond the shore would only be obvious on
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high resolution imagery or pan sharpened medium
resolution imagery. The amount and location of
changes can assist in prioritising infrastructure
improvements such as schools, health facilities,
roads and other infrastructure (Haack and Rafter,
2006). One of the prerequisite for understanding
urban sprawl is successful land-use change detection
(Jain, 2009), a process that can be achieved using
remotely sensed data. With a wide range of
techniques used for land-use change detection to
study urban sprawl, it’s only a matter of choosing
the right technique based on the available data.
According to Lin et al, (2007), composition,
configuration and connectivity are primary
descriptions of landscape or land-use pattern, when
land-use change resulting in land-use/ cover pattern
changes is being assessed. The use of spatial metrics
in quantifying the extent and nature of urban
landscape changes is vital in having a proper
understanding of landscape dynamics. McGarigal
and Marks (1995) define spatial metrics as numeric
measurements that quantify spatial patteming of
land-cover patches, land-cover classes, or entire
landscape mosaics of a geographic arca. A number
of studies have noted the importance of utilising
spatial metrics in quantifying urban growth, sprawl
and fragmentation (Hargis et al., 1998, Hardin et al.,
2007 and Herold et al, 2002). In the study
conducted by Herold et al., (2002), the analysis
showed the importance of spatial metrics
measurement in  providing an  accurate
characterisation of spatial urban growth pattern in
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the study area. Through the use of computed patch
metrics computed for every patch in the landscape,
deductions could be made as to the fragmentation
and nature of spatial changes existing in the area.
The aim of this study was to investigate the spatial
extent of urban landscape transition in Eti Osa LGA,
taking into consideration the nature and dynamics of
land-cover changes using remotely sensed data. The
key objectives were as follows:

i. to determine the spatial extent of urban
change in Eti-Osa LGA using remotely
sensed imagery,

ii. to investigate the effects of urban transition
on the spatial structure of urban landscapes
in the study area, and

iii. to predict the likely extent of urban sprawl
in Eti-Osa LGA

2. Methods

2.1 Study Area

Although Lagos state is the smallest state in Nigeria,
with an area of 356,861 hectares of which 75,755
hectares are wetlands, it has the highest population,
which is over five percent of the national estimate
(Olujimi, 2009). Lagos state is situated on a coastal
plain along Nigeria’s south-western Atlantic
seaboard. The study area, Fti-Osa L.GA, is located
within the southern area of Lagos state (6°26' 34''N,
3°28' 29"E), just below the Lagos lagoon. Figure 1
shows the study area.

C
© Eli-Osa

Lagos State

Figure 1 Map of study area showing: (a) location of Nigeria in Africa, (b) Lagos state in Nigeria, and (c) Eti-

Osa LGA in Lagos state (Source: www.fews.net)
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Table 1: Table showing details of LandSat image datasets used for the study

Date of image acquisition Sensor Path(s) Row(s)
December 1984 LandSat 5 191 55756
February 2000 LandSat 7 191 55/56
December 2006 LandSat 7 191 55/56

Table 2: Table showing the intended classes and their definitions

Urban All built up structures including residential and commercial, roads, shanties, make shift
buildings, freight containers and all other structures containing Aluminium, zinc or
asbestos

‘Water All water bodies including the ocean, lagoon, lakes crecks and rivers

Sand (bare) All Sandy surfaces and deposits, Bare/ undeveloped surfaces which appear to be lightly
vegetated

Vegetation All forms of vegetation including those growing on land, in between urban structures and
on water

2.2 Data Acquisition are measured over time using different sensors

For this study LandSat images were downloaded
from the GLCF (Global Land-cover Facility) and
USGS (United States Geological Surveys) websites
respectively. Table 1 presents the image datasets
used for the study. The image datasets used in this
study were acquired during the dry season as to
avoid problems of seasonality variation. The image
datasets were processed to level 1G for 1984 and
level 1T for the 2000 and 2006 respectively,
implying the images were radiometrically and
geometrically corrected. The topographic sheet
covering parts of Eti-Osa LGA was acquired as a
scarmed map and digitized giving rise to
undershoot/ overshoot, misplaced points and dangle.
These errors where corrected by careful post editing
of the digitised map by comparing this with the
satellite image and aerial photographs. All datasets
were acquired in or georeferenced to the Universal
Transverse Mercator (UTM) Zone 31 coordinate
system with World Geodetic System (WGS) 84
datum. Other secondary sourced datasets used for
the study were included the following: digital
administrative maps of Nigeria, Lagos state and Eti-
Osa LGA sourced from the FEWS Net (Famine
Early Warning Systems Network) as shapefiles and
a digital elevation model (DEM) raster derived from
a SRTM (Shuttle Radar Topography Mission) image
over the study area downloaded from USGS website
using the Earth explorer (Figure 1).

2.3 Image Pre-Processing

To effectively utilize the information contained in
all the bands filters were applied to remove the
effects of atmospheric particles cause by absorption
and scattering of radiation from the earth surface
during acquisition (Lu et al., 2002). Conversion of
digital numbers 1o absolute radiance is important in
data processing activity involving qualitative
applications especially when reflectance of objects

(Lillesand et al., 2008). This was done using the
IDRISI RADIANCE function. Bands 1,2, 3, 4, 5
and 7 were used in the classification process. Since
the satellite images covering the study area
contained geometric distortions it passed through
the process of rectification and restoration. The
images were geometrically corrected using the
AFFINE and RESAMPLE commands in IDRISI.

2.4 Image Classification

For this study, maximum likelihood classification
(MLC) was used. It is preferred by most researchers
as it’s a robust classifier that has been shown to be
superior to other algorithms using medium and high
resolution multispectral imagery (Baatuuwie and
Leeuwen, 2011 and Onojeghuo and Blackburn,
2011). Based on statistics {mean;
variance/covariance), a (Bayesian) Probability
Function is calculated from the inputs for classes
established from training sites. Each pixel is then
judged as to the class to which it most probably
belongs (Eastman, 2006). The classes used and their
definitions are shown in table 2.

2.5 Accuracy Assessment

Accuracy assessment was conducted by selecting a
sample of reference locations, and comparing the
classifications at these reference locations to the
classifications provided by the land-cover map. The
reference sample was selected independently of data
used for fraining and /for developing the
classification procedure (Stchman, 1997), Acrial
photographs, topographic shects and existing
Landsat images acquired in 1984 and 2000 were
used to assess the accuracy of the land-cover
classification maps for 1984 and 2000 respectively.
For the 2006 land-cover classification map, a high
resolution IKONOS satellite imagery of the study
area acquired in 2005 was used for accuracy

International Journal of Geoinformatics, Vol. 11, No. 1, March, 2015

23

Spatial Dynamics of Urban Transition using Remote Sensing  21-32




assessment. The data used for training and testing
image classifications were complemented with
DGPS field surveys of selected locations across the
study area.

2.6 Change Detection

In order to determine the spatial extent of urban
transition the classified images were recoded to
define the urban landscape as one class and all other
land-covers types were combined into a non-urban
class. A post-classification comparison was adopted
to determine the changes in urban class using
IDRISI. The urban transition maps showing urban
expansion, urban loss, other land-cover classes and
unchanged urban landscape were based on the
difference between the urban land-cover in the
baseline (1984) and assessment (2000 and 2006)
maps for the study area.

2.7 Urban Landscape Spatial Structure

The changes in urban land-cover and spatial
characteristics were determined using FRAGSTATS
software, a computer software program designed to
compute a wide variety of landscape metrics for
categorical map patterns (McGarigal et al., 2002).
The metrics used in this study included: total class
area (CA), number of patches (NFP), largest patch
index (LPI), edge density (ED), Euclidian mean
nearest neighbour distance (ENN_MN), area
weighted mean patch fractal dimension
(FRAC_AM) and contagion (CONTAG). These
metrics were selected based on their effectiveness
and simplicity as demonstrated in a number of
similar studies (Herold et al., 2002, Onojeghuo and
Blackburn, 2011 and Araya and Cabral, 2010).

2.8 Urban Landscape Forward Prediction Analysis

For this study, urban sprawl was investigated using
the IDRISI Land Change Modeller (LCM). This
integrated software is used for analyzing land-cover
change, projecting its course into the future, and
assessing its implications for habitat and
biodiversity change. LCM uses either a Multi-Layer
Perceptron (MLP) neural network or Logistic
regression while change detection is based on a
series of empirically evaluated sub-models. A few
site and driver variables were tested and those with
the highest values used for predicting urban sprawl.
Lower values could also be used if they are likely to
influence final results. Using GIS operations buffers
were created to the urban and sand (bare)
reclassified maps for the years being assessed. A
buffer was also created for the roads layer. The road
basis layer was extracted as input for the prediction
model and results from distance operations tested.
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Some of these were selected as static/ dynamic
variables in the prediction model. Two land change
models where created: 1984 to 2000 and 2000 to
2006. The distance map is a vital component of the
land-use prediction. The distance maps were created
for urban and sand (bare) reclassed maps for 2006.
The normalised entropy for the urban class was
generated using a 5x5 neighbourhood matrix in the
LCM Landscape pattern and change analysis tab. It
was calculated to evaluate what areas are prone to
change after 2006. Two prediction methods were
used, each yielding a hard and soft prediction. The
first included all the transition sub models while the
second included none of the sub models. The
predictions performed assumed that urban growth
trend between 2000 and 2006 continued and there
were no external forces driving change.

3. Results

3.1 Image Classification

Figure 2 shows the Landsat images (1986, 2000, and
2006) classified using MLC technique. The error
matrix for the accuracy assessment was gencrated
using the classificd maps and a sccond signature
map to produce kappa values. An IKONOS image
and Google earth imageries were used as surrogate
data to create a second training data set. The Google
Earth imageries were dated 11/13/2000 (for the
2000 assessment) and 12/10/2006 (for the 2006
assessment). A second training data set was created
to assess the accuracy of 1984 Landsat classified
image. Details of the accuracy assessment are
presented in the following section.

3.2 Accuracy Assessment

Table 3 presents the error matrix and accuracy
assessment results for land-cover classifications for
1984, 2000 and 2006 respectively. The accuracy
assessment also displayed the Kappa values. The
overall Kappa (k) coefficient was 0.9744 for the
1984 classification, 0.9514 for the 2000
classification and 0.9101 for the 2006 classification.
The overall classification accuracies for the maps of
1984, 2000 and 2006 were 98.9%, 97.7%, and
96.3% respectively. Given the accuracy values were
sufficiently accurate; the maps were used for change
detection and subsequent analysis.

3.3 Landcover Change Detection

The results of analysis show that urban class had no
net loss between 1984 and 2006. The urban area
expanded by 929 hectares between 1984 and 2000
and 1250 hectares between 2000 and 2006, a shorter
time interval.




Figure 2: Results of Land-cover Classification of Eti-Osa LGA for (&) 1986, (b) 2000, and {(c) 2006

= 1884 - 2000
160,000 00

= 2000 - 2006

14000000 -

120.000.00 -

100,000.00 -

Area {hectares)
g
2
g

8
2
2

5
g
g

3
g
g

Other landcover classes

Urban loss Unchanged urban
landscape

Figure 3 Graph showing transition patterns of urban landscape for 1984 — 2000 and 2000 — 2006 respectively

The highest net loss between 1984 and 2000 was in
the Sand (bare) class (653 hectares), while it was the
Vegetation class between 2000 and 2006 (706
hectares) (see figure 3). The urban class was used as
an indication of the extent of urban sprawl. From the
analysis, the highest contribution to the changes in
the Urban class was from the Sand (bare) class with

559 hectares from 1984 — 2000 and 758 hectares
from 2000 - 2006. Figure 3 shows the change
detection map of urban image recoded from the
land-use cover maps for the three separate years
(1984, 2000 and 2006). As shown in figure 4,
distinct physical patterns of urban sprawl were
identified.
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Table 3:

Error matrix and accuracy results for land-cover classifications

(a) 1984 image classification
Reference map
Water Bare Vegetation | Urban Total User's
(sand) Accuracy (%)
Water 10899 0 0 0 10899 | 100
B, Bare (sand) 105 894 0 29 1028 87.0
E Vegetation 0 14 1115 0 1129 98.8
m | Urban 0 0 0 1331 1331 100
& [ Total 11004 908 1115 1360 14387
E Producer's accuracy (%) 99 98.5 100 97.9
O | Overall accuracy (%) 98.97
(b) 2000 image classification
Reference map
Bare User's
‘Water (sand) Vegetation Urban Total Accuracy (%) |
Water 3179 0 0 0 3179 | 100
- Bare (sand) 0 451 0 17 468 96.4
'E‘ | Vegetation 0 86 388 0 474 81.9
ng | Urban ] 3 0 417 420 99.3
ﬁ Total 3179 540 388 434 4541
@ | Producer's accuracy (%) 100 835 100 96.1
O | Overall accuracy (%) 97.67
(c) 2006 image classification
Reference map
Bare User's
Water (sand) Vegetation Urban Total | Accuracy (%) |
Water 4197 0 0 0 4197 100
& Bare (sand) 0 452 44 34 530 85.3
E | Vegetation 5 29 115 0 149 77.2
ny | Urban 66 31 1 681 779 87.4
ﬁ Total 4268 512 160 715 5655
@ | Producer's accuracy (%) 983 88.3 71.9 85.2
O | Overall accuracy (%) 96.29

Table 4: Results of Landscape metrics analysis performed for urban landscape

Year

Metrics 1984 2000 2006
CA (Hectares) 2,147.04 3,075.75 4,325.58
NP 893 1281 1938
LPI 4.4147 9.28 14.13
ED 30.40 41.55 68.74
FRAC AM 1.24 1.22 1.27
ENN MN 63.3292 66.22 57.38
CONTAG (%) 43.58 42.19 39.61

The pattern of urban development for 1984 — 2000
and 2000 — 2006 were [eapfrogging and
polynucleated respectively. Galster (2001) describes
the patterns of sprawl as either compact, scattered,
linear, polynucleated or leapfrogging development,
The polynucleated pattern of urban sprawl between
2000 and 2006 indicates some degree of planning,
such as building of new estates, had occurred over
time.
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3.4 Changes in Urban Landscape and
Spatial Structure

Table 4 presents the results of landscape metrics
analysis conducted in the study. Araya and Cabral
(2010) noted that NP indicates the aggregation or
disaggregation in the landscape, while LPI measures
the proportion of total landscape area comprised by
the largest urban patch. The results showed that NP
(i.e. urban blocks) increased by 43.5% and 51.3%
for time periods 1984-2000 and 2000-2006
respectively.




Urban transition

| Other land cover classes
B Urban expansion

B Urban loss

| Unchanged urban landscape

N

Figure 4: Change detection maps showing transition patterns of urban landscape for 1984 — 2000
and 2000 — 2006 respectively

This suggests that urbanisation within the two time
periods were characterised by dispersion and the
development of isolated, fragmented or
discontinuous built-up areas. The rise in NP and CA
indicates urban expansion over the 22 year interval.
For the two time periods investigated in this study
(ie. 1984 to 2000 and 2000 to 2006), the urban
landcover class increased by 4.7% (929 hectares)
and 54% (1250 hectares) respectively. LPI
increased by 110.2% and 52.3% for the two time
periods 1984-2000 and 2000-2006 respectively,
indicating considerable growth within the urban
core area particularly for the first time period. The
ED index increased by 36.7% and 65.4% for the
time periods 1984-2000 and 2000-2006, this

indicating an increase in the total length of the edge
of whan patches resulting from land-use
fragmentation. The fractal dimension (FRAC AM),
which ranges between 1 and 2, describes the
complexity and fragmentation of patches using a
perimeter-area proportion. Results of landscape
metrics analysis shows that for the three years the
patches are complex and fragmented. Overall, the
FRAC_AM spatial index was slightly higher than 1
indicating a moderate shape complexity (Araya and
Cabral, 2010). This demonsirates the complex
nature of urban transitional changes experienced in
the study area as against the occurrence of compact
rectangular patches with relatively smaller areas.
The decreasing CONTAG and increasing ED values
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indicate a higher fragmentation of the area in 2000
and 2006 respectively. This validates the results of
urban and non urban classified images for 1984,
2000 and 2006 (figure 3). Non-urban landscape of
1984 and 2000 were converted to urban classes
which were spatially more heterogencous and
fragmented. Between 1984 and 2000 ENN_MN
increased by 4.6%, indicating an increase in the
distance between urban patches. For the time period,
2000 — 2006, ENN MN decreased by 13.3%
indicating a reduction in the distance between built-
up patches thence suggesting coalescence. The
contagion spatial index measures to what extent
landscapes are aggregated or clumped (Martinuzzi
et al., 2007). Results of landscape metrics analysis
showed that in 1984 the urban landscape of the
study area was dominated by relatively greater
number of highly fragmented patches. However,
there was a decline in the contagion index between
1984 and 2006 (decline of 1.4% and 2.6% for 1984 -
2000 and 2000 - 2006 respectively) indicative of a
less fragmented urban land-cover. The use of
landscape metrics have proven to be useful
indicators for understanding general trends of
landscape dynamics (Araya and Cabral, 2010).
Remmel and Csillag (2003) noted that it is
extremely difficult to statistically compare results of
spatial indices.

(a)

3.5 Forward Prediction Simulation of Urban
Landscape

A forward prediction for urban sprawl in 2016 (10
years after the latest satellite scene acquired) was
performed to visualize how the land-cover classes
would be given its current trends. Hence, these
predictions were performed assuming the urban
growth trend between 2000 and 2006 continued and
there are no external forces driving change. This
however is never the case as there could be natural
disaster or changes in land-use policies that could
alter the trend of sprawl. The Eti-Osa area is flood
prone due its proximity to the Atlantic Ocean and
low elevation. Results of the forward prediction
analysis shows that by 2016 urban class would
increase by 2,220 hectares, most of it as a result of
intense loss mainly from sand (bare) class (1,192
hectares). Figure 5 shows the net change between
the land-cover classes between 2006 and 2016 and
contributions to the net change in the urban class
during the predicted 10 year period. Results of the
Markov chain analysis showing the transition
probability and transition area matrix values for the
study area are presented in table 5. Results of the
forward prediction showed that by 2016 urban class
would increase by 2,220 hectares (466 hectares from
water, 1,192 from sand (bare) and 562 from
vegetation).

Net Change between 2006 and 2016

Urban -

Vegetation

Water
-1200 -800 -400 0 400 800 1200 1600 2000
Hectares

(b) Contributions to Net Change in Urban

Urban \
Vegetation - ;
Sand (bare): 1‘

Water - :

T T T T T T T T T T
0 100 200 300 400 500 600 700 800 900 1000 11
Hectares

00 1200

Figure 5 Results of forward simulation for all land-cover classes showing (a) net change between 2006 and
(b) contributions of other land-cover classes to the net change in urban class
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Figure 6: Forward simulation results showing: {a) Map of possible land-cover classes and (b) transition
probability maps of Eti-Osa LGA in 2016
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Figure 7: A section of Eti-Osa LGA showing transitions from water to sand (bare) and then urban through
1984, 2000 and 2006
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Table 5: Results of the Markov chain analysis: transition probability and transition area

matrix for Eti-Osa LGA

Transition probabilitieg Trangition area (hectares)

Water Sand Vegetation Urban Water Sand Vegetation | Urban
Land-cover {bare) (bare)
Water 0.50 0.03 0,01 0.06 7,208 - - 466
Sand (bare) 0.05 0.30 0.16 0.49 - 1,224 - 1,192
Vegetation 0.06 0.32 0.33 0.29 - - 1,353 562
Urban 0.03 0.13 0.09 0.76 - - - 4,325

The sand (bare) class which comprises of sandy
surfaces and deposits and lightly vegetated bare/
undeveloped surfaces would be the greatest
contributor to urban sprawl in 2016 given the
current trend of landscape transition in the study
area. Figure 6 shows the results of the forward
simulation performed in the study.

4. Discussion

4.1 Causes and Impacts of Urban Sprawl

The change analysis reveals that a lot of reclamation
of swamps, vegetation and water bodies had taken
place over time. Some of the areas reclaimed to sand
(bare) in 2000 had urban infrastructure by 2006.
Figure 7 shows part of the study area as it
transitioned from water to urban. Adeaga (2009)
lists increasing encroachment of urban facilities on
urban planes, unprecedented land reclamation, and
inadequate drainage paths and blocking of existing
ones (some of the make shift drainage channels
created in these reclaimed areas tend to be blocked
due to poor refuse disposal attitudes) and poor
management as causes of heavy flooding in Lagos
in general. Poor urban planning or lack of planning
as urban development increases is evident in not
preventing new development on areas at risk of
flooding, leaving unprotected areas that should be
left undeveloped, for instance wetlands, because of
their role as buffers against flooding risks and also
not providing safer sites for the wrban poor
(Adelekan, 2009). Kolawole (2011) noted that when
torrential rainfall occurs in Eti-Osa, there is an
influx of alligators and crocodiles into the urban
area; putting residents at risk. These reptiles lived in
those swamps before they were forced away due to
urban encroachment. The study has demonstrates
the effects of urban sprawl on changes to the flora/
fauna and wildlife.

5. Conclusions

Communities worldwide need data to compensate
for and adapt to current growth while planning for
expected future change and its impacts on
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infrastructure, as well as the surrounding
environment (Goetz et al, 2003). This study has
demonstrated the potential of using remotely
sensing data to obtain accurate and detailed
information on urban landscape tramsition, the
dynamics of such changes through the use of spatial
metrics and forward simulation of how the entire
landscape would be in the future. The overall aim of
the study was to investigate the spatial extent of
urban landscape transition in Eti-Osa LGA, taking
into consideration the nature and dynamics. For the
two time periods investigated in this study (i.e. 1984
to 2000 and 2000 to 2006), urban land-cover
increased by 4.7% (929 hectares) and 5.4% (1250
hectares) respectively. Results of the analysis
showed that the highest contribution to the changes
in the urban landscape was from the sand (bare)
class (559 hectares from 1984 — 2000 and 758
hectares from 2000 — 2006 respectively). The
pattern of urban development for 1984 — 2000 and
2000 — 2006 were leapfrogging and polynucleated
respectively. The polynucleated pattern of urban
sprawl between 2000 and 2006 indicates some
degree of planning, such as building of new estates,
had occurred over time. Furthermore, landscape
metrics analysis revealed the presence of high
fragmentation in the urban landscape for the time
periods evaluated. The study has demonstrated that
landscape metrics are useful indicators for
understanding general trends of landscape dynamics
and transitions. Based on the current landscape
trends and patterns, a 10 year forward simulation
from 2006 to 2016 was done and the results
revealed that by 2016 urban class would increase by
2,220 hectares (466 hectares from water, 1,192 from
sand (bare) and 562 from vegetation). The sand
(bare) class which comprises of sandy surfaces and
deposits and lightly vegetated bare/ undeveloped
surfaces would be the greatest contributor to urban
sprawl in 2016 given the current trend of landscape
transition in the study area. In a similar study
Mohan (2010) used remote sensing and GIS
techniques to investigate the spatio-temporal land




use / land cover changes and the process of urban
sprawl in the adjoining areas of NOIDA city in
India. Results of the study were used by decision
makers and the local council to plan the city more
effectively. Consequently, urban expansions were
planned over the non-fertile agricultural land so as
to foster sustainable urban and environment
development in the new urban sprawling areas
adjoining to the NOIDA City at the threshold of the
21st Century. Overall, this study has shown that the
threat of urban sprawl is on the rise within Eti-Osa
LGA of Lagos state putting the lives of the
inhabitants at great risk and devastation of the
ecosystem. It is recommended that the Lagos State
Government take drastic steps in ensuring mitigative
or preventive measures are put in place via effective
policy implementation to combat the urban sprawl
in the study area.
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