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Abstract

Plant invasive species are one of the most important threats fo the ecological stability of the Galapagos
Islands and Psidium guajava is one of the most aggressive invasive plants: it currently occupies large areas
in the middle and upper zones of some of the islands. This study measures the future spread of Psidium
guajava in the south-east area of Isabela Island, Galapagos. Sateilite image processing was used to calculate
the area of occupation in the vears 1980, 2001 and 2009. Then, a Cellular Automata-Markov chains-
GEOMOD (CA Markov_ GEOMOD) model was made in order to represent a possible area of future
occupancy of Psidium guajava. Results show a continuous invasion of this species in the entire study area and
the model of future spread predicts a greater extension of occupation areas in 2030: a spreading rate of 108,
64 Ha / year between 2009 and 2030 was calculated. These results provide a better understanding of the
spreading situation of this invasive species, which would support decision making processes to control the

invasion.

1. Introduction

Human activity has intensified processes of exotic
plant and animal dispersion (Vitousck et al., 1997)
which change ccological processes in  new
ccosystems while adapting to the new habitats
(Strayer et al, 2006). These species could generate
posilive or negative environmental impacts (Brown
and Sax, 2004 and Callaway and Maron, 2006).
When introduced species reach critical levels in
terms of high population development, they become
a threat to the native biodiversity by monopolizing
nutrient sources that were previously available only
for native species (Thomas and Reid, 2007) and
cause disruption of normal flows of matter and
energy (Forman and Godron, 1986). The arrival of
exotic species to the Galapagos Islands is directly
and proportionally related to the arrival of the
human being (Chiriboga and Maignan, 2006) that
brought exotic species from the continent, for
example the Psidium guajava. On Isabela Island,
land use dynamics have historically been related to
the establishment of a farming zone in the south-east
of the Island, and later to the migration of people
from the farming zone to the coastal town of Port
Villamil in the lowlands. This migration is mainly
due to the increase of tourism and economic fishing

activities. Migration leads to the abandonment of
agriculture and cattle ranching, leaving the ficlds
vulnerable for the invasion of Psidium guajava
(Eckhardt, 1972). Mapping and o¢valuating land
cover changes allows us to know the extension of
exolic plant invasion andidentify priority areas for
conservation and mitigation management. We can
also support the evaluation of land cover changes
with the understanding and prediction of dynamics
that require temporary projections of land cover
future change analysis (Lambin et al, 2003). A
Markov chains model is a useful technique for
estimating scenarios in landscapes (Poska et al.,
2007) and is based on land cover changes by means
of transition probabilities (Pontius and Malanson,
2005). A Cellular Automata (CA) is a discrete
approach that models the change of a place from
one state to another depending on the values of
neighboring variables (Poska et al., 2008), and in
raster images, the state of each pixels at any given
time is a function of the state of the surrounding
pixels (Vazquez and Oliver, 2008, Wolfram, 1984).
In this study, the component of transitions
probabilities uses Markov chains, and the Cellular
component considers the change of a spatial unit or
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pixel as a function of its neighborhoods. GEOMOD
is a land-use/land-cover (LULC) change model that
simulates the change between two classes in a
LULC map (Pontius, 2006). In this study, the model
GEOMOD is also linked to the CA Markov model
to create a Cellular Automata-Markov chains-
GEOMOD model (CA_Markov GEOMOD) in
order to produce a final two classes prediction map
of the spread of Psidium guajavaand also to validate
this map compared to a Markov chains prediction
map. The aim of this study is to generate a spatio-
temporal evaluation of the Psidium guajava
invasion by pgenerating land cover maps and
identifying a future spread scenario of this invasive

plant, which could support decision makers in
analyzing logistical feasibility for the control or
reduction of the invasion. To achieve this aim,
remote sensing information was used and the
CA_ Markov GEOMOD was applied.

2. Methods

The Galapagos Islands are part of the Republic of
Ecuador and are located around 1000 km from its
coasts. They are well-known as a living laboratory
of evolution, with late human settlement and a high
species endemism, Qur study arca is the south-
castern part of Isabela Island in the Galapagos

Islands (Figure 1).
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Figure 1: Study area location map
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The climate varies according to the altitude above
sea level: warm-dry (up to 320 m), warm humid (up
to about 550 m) and temperate humid (upper 550 m)
(McMullen, 1999). Before human presence on the
island, vast native grasslands covered the landscape
(Schofield 1989 and McMullen, 1999), and
nowadays, this landscape is covered with Psidium
guafava trees (Chiriboga and Maignan, 2006). A set
of satellite images was used to characterize the land
cover change: a SPOT 4 image of 2001, provided by
San Francisco de Quito University in Ecuador, a
Landsat MSS image of 1980 and a Landsat 7 ETM+
image of 2009, both obtained from the USGS web
service. The SPOT 4 image already had radiometric
and atmospheric corrections but the other two did
not. In this case, a modified Chavez equation for
radiometric and atmespheric corrections was
applied (Chuvieco, 2002):

Daa 4 (vp-np )

Pr =
EO,k cos ai’k,z'

Equation 1

Where I is the Sun-Earth distance correction
factor, and this factor is a function of the Julian day
when the image was obtained, 4, , is the calibration

parameter of the image, ND is the image to be
corrected, NI, . is the minimum digital number of
this image, E, ; is the solar irradiance at the top of

the atmosphere, 9,. is the zenith angle of the Sun the

day the image was taken (calculated from the solar
elevation angle obtained from the image metadata)

and 7, ; is the transmissivity value for each band of

the image. Parameters @, , £, and 7, are pre-

established parameters for Landsat images
(Chuvieco, 2002). For the LandsatETM+ and Spot
images a visual interpretation was applied using
spectral combinations of 432 for the Landsat image
and 321 for the Spot image. Psidium guajava zones
are shown in red color and uniformed texture, as
well as irregular borders when located inside or
bordering with the National Park, and regular
borders when bordering farms. For these images, a
Normalized Difference Vegetation Index (NDVI)
analysis was also applied, and as was expected, the
highest values matched with Psidium guajava
zones, because Psidium guajava plants have very
dense-green foliage, in contrast to native plants,
which in general are permanent deciduous. Finally,
an unsupervised classification was performed.

With all these criteria (visual interpretation, NDVI,
unsupervised  classification), a  supervised

classification was applied using the minimum
distance method. For the 1980 Landsat MSS image
the same steps were applied, with the difference that
a Principal Component Analysis (PCA) was also
applied to this image in order to extract the best
information from it. The reason for applying PCA in
the case of the Landsat MSS image was that this
image has lower spectral discrimination and lower
spatial resolution compared with the Landsat ETM+
and Spot images. Four components were produced.
The two first components were used because these
components contain 98.7 % of variance from the
original image. The variance of each component is
obtained by dividing the auto value of the
component by the sum of all auto values. All the
corrections and image processing were done using
the software ERDAS Imagine 9.2. Then, the
classifications were validated with the following
supplementary and historical information: a high-
resolution Quickbird image from 2006 provided by
San Francisco de Quito University, GPS points
taken during a recognition of the study area in
August and December of 2009, a 1:50000 land
cover map of the study area (TNC-CLIRSEN,
2006), and secondary bibliographic information
(Delgado, 1997, INGALA, 1987 and DeVries and
Tupiza, 1979). The supervised classifications were
converted to vector files and edited in order to
correct classification mistakes (also taking into
account the supplementary information), and these
vector files were converted to raster files, all at 60
meters of resolution, to finally produce and cover
maps of 1980, 2001 and 2009. Using the land cover
maps produced, our Cellular Automata-Markov
chains-GEOMOD (CA Markov GEOMOD) model
was applied. The first step was to apply the Markov
chains technique. Markov chains result in a
transition probability matrix, where the probability
of change of a place i dependent on the status of
that place in previous stages (Tsc and Mather,
2001). If a variable X at a given time (t+1) has a
value of V1, in a previous time (t) it has a value Vo
(Tso and Mather, 2001 and Paegelow et al., 2003).
In this study, the transition probabilities were based
on land cover data from 1980 to 2001. Using these
probabilities and the 2009 land cover, new transition
probabilities of land cover change from 2009 to
2030 were calculated (Table 1). This step was
calculated using the software Idrisi Andes.

Using Idrisi Andes, a map of Psidium guajava
coverage in the year 2030 was also calculated using
the Markov chains technique. The second step was
obtaining the factors to been used in the model
calculation. We considered two factors: altitude and
humidity.
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Table 1: Markov chain transition probabilities

Native P. gugiava | Agriculture | Settlement Wilderness
vegetation
Nativevegetation 0.845 0.127 0.007 0.000 0.022
P. gugjava 0.173 0.608 0.211 0.000 0.008
Agriculture 0.004 0.438 0.524 0.001 0.000
Settlement 0.000 0.091 0.182 0.727 0.000
Wilderness 0.1253 0.016 0.000 0.000 0.858

Table 2: Results of ordinary minimal squared regressions related to factors of Psidium guajava

growth and spreading
Total abundance Canopy cover Trees height
R*= 0,49 R»= 0,48 R™= (0,19
Variable Cocfficient Stand. Error Coefficient Stand. Error Cocfficient Stand. Error
Constant 0,9789 0,6013 14325 5084.619 ¥ 1,6940 21,5465
pH 0,1221 0,0834 -30,1407 705,1309 2,7529 2,9880
Conductivity 0,0022 0,0019 -59,9114 15,6714 * 0,0868 0,0664
Humidity -0,0043 0,0345 * -784 5933 292,1985% -2,6889 1,2382%%
Aspect -0,0010 0,0004 ** 6,9887 3,9236 0,0207 0,0166
Elevation -0,0005 0,0002 ** -6,0531 1,7471* 0,0214 0,0074*
Slope -0,0279 0,0064 * -64,8181 53,9316 0,1163 0,2285
Dist. to GNP | -0,0001  7,0789¢-005 1,5019 0,5986* -0,0061 0,0025%*
Jarque-Bera 4,0378 4,5864 2,3686
Breusch-Pagan 10,9663 15,9219% 12,2123

26

Significance levels of every independent variables are shown: 1% (*), 5% (**), n=90

The decision to choose these two factors was based
on two criteria: 1. because these two variables are
directly and indirectly related with Psidium species
growth and spread in island habitats (Jacobi and
Warshauer, 1992) and 2. This first criterion was
confirmed by the results of three ordinary least
square regressions where the predictors considered
were: pH, conductivity, humidity, aspect, elevation
and slope and distance of sampling points to the
National Park boundaries, whereas the dependent
variables considered were Psidium guagjava
abundance, canopy cover and tree height. These last
tree variables were considered as a proxy of Psidium
gugjava spread and growth. The predictors of
altitude and humidity were highly significant for the
three regressions (Table 2). The variables of pH,
conductivity, abundance, canopy cover and trees
height were measured during fieldwork conducted
in December 2009 in the farming zone of the study
area (sampling size: 90 samples, stratified-cluster
sampling). Humidity, aspect, elevation and slope
variables were calculated using a digital elevation
model (DEM) with30 meter resolution, obtained
from the web service of ASTER satellite sensor.
These variables, as well as the variable of distance
to the National Park boundary were calculated in
ArcGIS 9. The case of calculating humidity using a
DEM is described thereupon: humidity was

represented as a wetness index. First, slope and
hydrological flow direction information was
calculated from the elevation data. The hydrological
flow direction was used to generate a flow
accumulation map. The flow direction indicates the
pattern of movement that water would take to drain
through a given area, while the flow accumulation is
an indicator of the amount of water accumulated
under the slopes. Then, a drainage area was
calculated, which is a function of flow accumulation
and represents the upslope area that drains through a
specific point (Moore et al., 1993, Martinez, 1999
and Serensen, et al., 2006). Finally, a map of the
humidity index was generated using the following

equation:
{5

Where, AD is the drainage arca and # is the slope in
degrees (Moore et al. 1993 and Martinez 1999), the
index values range from 0 to 15 (Suérez et al., 2006)
where values closer to 15 represent higher humidity.
The third step was the final calculation of the
CA_Markov GEOMOD model. The 2009 land
cover map was divided into two classes: Psidium
guajava cover and non-Psidium guajava cover, and

Equation 2
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then the total area of each class were calculated. The
total area of Psidium guajava cover and non-
Psidium guajava cover were also calculated for the
Markov chains 2030 Psidium guajava cover map.
The two driving factors (altitude and humidity) were
considered as suitability set of images using the
principle of the Cellular Automata concept. The
altitude and humidity factor maps were re-classified
t0 new maps with values from 0 to 255. The highest
values represent better conditions for the
development of this species. A constraint image was
also used. The constraint image is a Boolean image,
where null values represent areas that are excluded
from the model, In the model, the null values were
applied in the 2009 land cover image to all land
covers different from Psidium guajava. The
following information was entered into the
GEOMOD model: 1. the 2009 land cover map as the
image of the initial time, 2. the arcas of Psidium
guajava and non-Psidium guajava cover from the
years 2009 and 2030, 3. the two factor images and a
3. The constraint image. GEOMOD runs in Idrisi
Andes. The outcome of this model is a two class-
based cover map for Psidium guajavain 2030.
Finally, a cross tabulation was applied in order to
calculate the Kappa Index of Agreement between
the Markov chains 2030 Psidium guajava cover
map and the Psidium guajava cover map calculated
from the GEOMOD model.

3. Results

Table 1 shows the Markov stransition probabilities
between various land covers. It is important to note
that by the year 2030 there is a probability of about
44% that agricultural areas will have become
covered by Psidium gugjava, while for natural
vegetation areas the probability is only about 13%.
Ordinary least square regressions accomplished
conditions of normality (Jarque-Bera test p value
bigger than 0.05) and homoscedasticity (Breusch-
Pagan test p value bigger than 0.05). Ina Psidium
guajava abundance regression, significant variables
were aspect, elevation above sea level, humidity,
slope and distance to the National Park. For the
Psidium guajava canopy cover regression,
significant variables were conductivity, humidity,

elevation above sea level and distance to the
National Park. For the Psidium guajava tree height
regression: humidity, elevation above sea level and
distance to the National Park were significant.
Humidity and elevation above sea level were the
only independent variables that were highly
significant (1% and 5%) in the three regressions
performed. The R-squared values for three
regressions were 49% for abundance, 48% for
canopy cover and only 19% for the squared tree
height variable. These values show that the
independent variables used are predictors of
Psidium guajava spread and growth. Regression
results are shown in Table 2. We obtained land
cover maps of the study area at 60 meters resolution
for the years 1980, 2001 and 2009. For every year of
the study, we found that the areas of Psidium
guajava arc those with the largest number of patches
compared with the other land cover types. However,
the cover type that has the largest area is the natural
vegetation. For the year 2001 and 2009 the sizes of
Psidium guajava patches vary widely from less than
one hectare to some thousands of hectares. The
outcome of the CA Markov GEOMOD model was
a two classes-based map that showed an
approximation of Psidium guajava spread in 2030.
The land covers maps of 1980, 2001 and 2009, as
well as the 2030 Psidivm guajava cover map are
shown in Figure 2. Table 3 shows the Psidium
gugjava areas (Ha) throughout the 4 years of
analysis: 4554.42 Ha in 1980, 9529.20 Ha in 2001,
11338.56 Ha in 2009 and 13620, 00 Ha in 2030.
This means a growth of Psidium guajava areas of
4974, 78 Ha between 1980 and 2001, and 1809, 36
Ha between 2001 and 2009, with an average rate of
advance of 231,515 Ha / year between 1980 and
2009, and a rate of advance of 108, 64 Ha / year
between 2009 and 2030. Three characteristics were
also noted in the three land cover maps and the
model: the size increase of patches of Psidium
guajava, the emergence of new, small patches of
less than 1 hectare, and the connection of large
patches that were previously isolated from each
other. Finally, the overall Kappa obtained from the
cross tabulation was 0, 9227,

Table 3: Area of Psidium guajava in years 1980, 2001, 2009 and 2030

Year

P. guajava (Ha)

1980

4554.42

2001

9529.20

2009

11338.56

2030

13620.00
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Figure 2: Land cover maps and CA Markov GEOMOD model

4, Discussion and Conclusion

The CA Markov GEOMOD model is a very useful
approach that joins outcomes from Markov chains
technique, driving factors following the logic of
Cellular Automata (CA) and process from the
GEOMOD model. From Markov chains transition
probabilities, areas as well maps of future land
covers can be calculated. These outcomes show a
first inkling of future scenarios; however, these
results are only based on the land cover change
through different vyears without considering
additional factors. The incorporation of the CA
approach is more useful, because we can evaluate
the change of a pixel not only based on previous
land cover conditions, but on the values of that pixel
and its neighborhoods, based on driving factors.
Driving factors can be considered as phenomena
that are presented in the study area that boost the
land cover change. We are aware that the driving
factors or explanatory variables used in this study
(elevation and humidity), cannot explain all the
complex processes and dynamics that could be

present in the study area, and that neighborhood
filters applied in GEOMOD processes, can lead to
an incomplete reconstruction of scenarios (Poska et
al., 2008). Nevertheless, the results of the model do
not cease to be valid since they indicate a general
trend in land cover change in the study area, with
important implications in Psidium guajava invasion
analysis. GEOMOD works with two classes-based
maps, and requires the quantity of each class at the
ending time. In this study, the ending time
considered was the year 2030, and the quantity used
were the amount of Psidium guajava and non-
Psidium guajava land covers obtained from Markov
chains calculations. The quantities for the ending
time could have been simply considered as the
quantities in year 2001 (considering the time lag of
21 years from 1980), but the incorporation of the
Markov chain quantities in the year 2030
(considering the time lag of 21 years from 2009),
makes the model more practicable, due the use of a
predictive quantity of Psidium guajava cover.
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Considering factor images (driving factors) in the
model allow results based on specific suitability
values. In this case, higher values of humidity and
elevation above sea level (values closer to 255)
represent better conditions for Psidium guajava
growth that is to say, represent a better suitability
for this species. In our study area, smaller Psidium
guajava plants were found in lower altitude zones,
and these zones are dryer than zonmes located in
higher altitudes. This situation in the study area,
supported with the regressions analysis and the
results of experiences registered in the literature
(Jacobi and Warshauer, 1992), allow us to assign
higher suitability values to areas with higher
humidity and higher altitude. Another option could
have been applying multi criteria decision analysis
(MDA) based on expert’s opinions for suitability
analysis (Feizizadeh and Blaschke, 2012) which is
an interesting approach because cxpert-based
weights can be also applied. However, this approach
has a subjective component, and the approach
applied in this study is still interesting, because
statistical analysis (regressions) was applied to
conflirm the best explanatory variables or driving
factors. There are some limitations of the statistical
analysis due to the kind of variables used and the
sampling applied: only topographic, soil and
distance variables were used, and the sampling was
only performed in the farming zone due to logistical
limitations. Nevertheless, as mentioned above, we
consider that the parameters used in the model, as
well as the results, are valid and useful: the driving
factors chosen followed criteria obtained from field
work observations, statistical analysis and literature
review, and results can be considered as a very
useful source of information for Galapagos National
Park decision-makers. The results of the model
revealed that Psidium guajava has advanced in the
agricultural areas and National Park areas. In our
study area, it is estimated that in the year 2006,
compared to 1996, Psidium guajava had advanced
almost 25% more in the agricultural areas and the
National Park (Chiriboga et al., 2006). In 1997 it
was estimated that almost the entire surface of the
agricultural area was covered by forests of Psidium
guajava (Delgado, 1997). Considering the results of
this study, we can say that this situation remains
virtmally unchanged until the present and
furthermore, the results of the model show that
without control, Psidium guajava is going to spread
into further farming areas as well as in the National
Park zone. Results of this study also show that
Psidium guajava covered an area of 11338.56 Ha in
the year 2009 and that in the year in 2030it is going
to cover an estimated area of13620, 00 Ha, From an
invasion control perspective, this situation is very

complicated, due to logistic limitations: in general,
when an exotic plant occupies an area exceeding
1000 hectares, it becomes very difficult to eradicate
it due to time, effort and financial resources, and
often the only viable solution is to no longer attempt
the total eradication, but only invasion control
{Rejmanek and Pitcaim, 2002). The Overall Kappa
value showed a high match between the Markov
chains result and the model result. This Kappa
analysis shows that Markov chains is a practicable
and very easy way to create future scenarios, and
that complex models such as the
CA_Markov_GEOMOD  still require further
research in order to find improved techniques of
future land cover quantities assignment and
additional analysis of model results evaluation,

5. Conclusion

This paper showed a useful mixed model to
calculate future land cover scenarios, and applied
the model to evaluate the future spread of an
invasive plant in the Galapagos Islands. The method
used in this investigation can be considered as a
guideline for future studies that use remote sensing
data and LULC change analysis, and the resulis
obtained can be considered a contribution to the
current knowledge of the process of exotic plants
invasion in Galapagos, as well as a tool for present
and future invasion control planning. Future
research can consider other driving factors to enter
into the CA Markov GEOMOD: socioeconomic
factors (for example, human socioeconomic
behavior in the study area) and biotic factors (for
example, dissemination of Psidium guajava seeds
by birds or mammals in the study area). Future
studies can also consider advanced techniques for
evaluating sensitivity and uncertainty of the model
and compare different LULC change model
approaches.
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