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Abstract 

This study is motivated in response to persistent seasonal burning of rice crop-residues in various parts of 

Thailand. The major aims are to assess dry above ground biomass (dry-AGB) and estimate carbon stock in the 

rice-crop area of Buak Kang and Chae Chang subdistricts, San Kamphaeng district, Chiang Mai using Google 

Earth Engine (GEE), as well as develop a web platform for visualization and monitoring. The methodology 

includes satellite imagery and field-data acquisition, factor identification, model development, accuracy 

assessment, and launching an open-access web platform. The dry weight and carbon content of the sample rice 

plants collected during fieldwork were analyzed in a science laboratory. The study establishes a robust model 

for estimating dry-AGB by correlating the results from the laboratory with the backscatter coefficients of 

various parameters derived from Sentinel-1 imagery captured on 24.09.2023 (Ascending). The best fit model 

has R² value of 0.852, which estimated total 16019.13 Tons dry-AGB and 3524.21 Tons carbon stock in the 

total identified rice-crop area of 34.61 km². The GEE apps based web platform facilitates calculation and 

visualization of dry-AGB and carbon stock supporting effective monitoring and management of rice-crop in the 

study area. 
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1. Introduction 

The large scale burning of crop residue in agricultural 

fields is a perpetual practice in many countries, 

including Thailand, which causes seasonal increase 

of air pollution to dangerous levels. Such activities 

not only pause serious threats to several aspects of 

human health but also infuse enormous amount of 

greenhouse house gases into the atmosphere and add 

to the factors of climate change significantly [1] and 

[2]. Rice is a vital staple food in Thailand and a key 

agricultural product not only for domestic 

consumption but also for export purposes. Depending 

on the availability of sufficient water either from 

rains or from various irrigation facilities, it is 

cultivated during two different phases of time in a 

year known as ‘main-season’ and ‘off-season’ 

cropping. The main-season coincides with the rainy 

season and this crop takes about 120-140 days to 

mature from planting to harvesting stage. Usually, 

the planting time spreads from late May till late 

August and the harvest time lasts from late 

September till late December. The whole process of 

the off-season cropping takes about 90-100 days 

mostly from January till April. The countrywide 

gross rice cultivation area in 2022 was nearly 11.6 

million hectares i.e. about 49% of the gross cropped 

area. Close to 80% of the gross rice crop area is sown 

during the main season and this provides 

approximately 82% of the country's total annual rice 

production weighing about 33 million tons [3] and 

[4]. Besides, it produces nearly 42 million tons of 

aboveground biomass (AGB) annually, and about 

70% of this is burned in the fields after harvest [5]. 

The open air burning of rice-crop residue in the 

fields is widespread in northern Thailand, especially 

in Chiang Mai province, and this is the primary driver 

of dangerously high levels of seasonal air pollution 

in the region as well as in the adjacent parts of the 

neighboring countries [6].  
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This combustion not only releases smoke and 

harmful gases in the air but also infuses fine particles 

of carbon and other types of solid matter. Such air 

pollutants cause potential health risks of various 

types and degrees which include respiratory diseases, 

allergies, hypertension, and lung cancer etc. The 

worsening situation prompts various international 

agencies and local governments to prioritize air 

quality monitoring and improvement [7] and [8] and 

this requires precise estimation of AGB for planning 

and implementing appropriate measures. As 

mentioned previously, the rice cultivation activities 

occur intermittently at many places located in 

different parts and spread over several months so 

employing geospatial approach seems most 

appropriate for spatial-temporal analysis for affective 

decision making. 

Currently, various types of technologies 

providing tools for accessing and analyzing the data 

required for understanding and tackling the 

environmental issues are available to government 

agencies, private organizations as well as the general 

public. Cloud computing is one such service offered 

by several vendors facilitating online data storage, 

retrieval, processing and analyzing capabilities. This 

type of infrastructure reduces the complexity of 

establishing and maintaining in-house facilities, 

lowers budgetary costs significantly, and saves time 

immensely. The users can utilize relevant cloud 

services from any location and access the open data 

they want to process according to their needs. The 

Google Earth Engine (GEE) platform facilitates 

access to various types of open geospatial datasets, 

including a wide range of satellite images of fine to 

coarse resolutions. It channelizes the capabilities of 

Google Cloud Machine Learning Engine enabling the 

processing and analysis of geospatial datasets for 

various spatial and temporal applications on the 

Earth's surface from global to local scales [9]. The 

GEE also provides access to the C-Band Synthetic 

Aperture Radar (SAR) images captured by Sentinel-

1 satellite in all weather conditions during both day 

and night times. The 10 meter spatial resolution SAR 

images of VH and VV polarization contain 

backscatter signals of both surface and volume of the 

observed objects. This capability, combined with 

field based observations, enhances the accuracy in 

assessing AGB and can be effectively utilized for 

various practical applications [10][11][12] and [13]. 

The integrated modeling capabilities of GEE can be 

leveraged for developing statistical models 

establishing correlations between SAR backscatter 

coefficients (BC) values and field based observations 

for estimating rice crop height and AGB [14]. 

However, these methods have remained 

underutilized, and validation across more diverse 

field observation sites could enhance their reliability. 

Further research addressing these gaps would help 

develop more robust and transferable models for rice 

crop monitoring and estimation [15]. Therefore, this 

research aims to achieve the two main objectives i.e. 

(i) assessment of post-harvest rice-crop Above 

Ground Biomass (AGB) and estimation of its carbon 

stock, and (ii) launch a web platform for online 

calculation, visualization and monitoring of rice-crop 

AGB and carbon stock. By leveraging the 

applications of Sentinel-1 datasets and GEE based 

processing, this study aims to devise a low cost 

alternative approach to assess and monitor rice-crop 

AGB efficiently for effective management strategies. 

 

2. Study Area 

The study area includes two sub-districts of San 

Kamphaeng district, namely Buak Kang and Chae 

Chang, situated in Chiang Mai province of Thailand 

and these extend from 99°04′3′′E to 99°10′54′′E 

longitudes and 18°40′07′′N to 18°44′30′′N latitudes 

(Figure 1). The combined geographical area of the 

two sub-districts is around 47 km² i.e. Buak Kang 

around 30 km² and Chae Chang nearly 17 km². The 

topography is predominantly flat, intersected by two 

irrigation canals that derive substantial water for 

agricultural activities from Mae Kuang and Mae On 

reservoirs. Agriculture is the primary occupation of 

the local population and about 73% of the total area, 

i.e. 34.61 km², is devoted to rice cultivation. 

Depending on the cropping season and market prices, 

the farmers cultivate four varieties of rice in the study 

area namely San-Pah-Tawng-1, RD-MAEJO2, 

CPRICE888, and Riceberry. 

Also, Buak Kang and Chae Chang sub-districts 

are included in a large-scale agricultural initiative of 

the Government for promoting collaborative efforts 

among the local farmers in production, management, 

and marketing of rice. This program aims to reduce 

production costs, enhance production efficiency, and 

improve competitiveness with support from relevant 

governmental agencies and other organizations. 

Considering the factors of rice cultivation 

management, these two subdistricts make an optimal 

case for the assessment of dry-AGB and carbon stock 

in the rice-crop area. 

 

3. Data Acquisition and Pre-Processing  

The study is based on two sources of data i.e. images 

obtained from 2 different satellites and the data 

collected through an intensive field Survey and 

extending over several months. 
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Figure 1: Buak Kang and Chae Chang sub-sistricts, San Kamphaeng district, Chiangmai 

 

Table 1: Details of satellite imagery used in the study 
 

Date Satellite Scene ID Band 

21-09- 2023 Sentinel-1 COPERNICUS/S1_GRD/S1A_IW_GRDH_1SDV_20230

921T231630_20230921T231655_050432_0612B3_053E 

VV and VH 

24-09- 2023 Sentinel-1 COPERNICUS/S1_GRD/S1A_IW_GRDH_1SDV_20230

924T113046_20230924T113111_050469_0613F7_A797 

VV and VH 

20-11- 2023 Sentinel-2 COPERNICUS/S2_SR_HARMONIZED/20231120T0350

39_20231120T040107_T47QNA 

R, G, B, VNIR 

Sentinel-1 dataset contains GRD scenes processed to remove the thermal noise, radiometrically 

calibrated, and terrain corrected using the ASTER DEM. Further details can be accessed at: 

https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S1_GRD#bands. 

Sentinel-2 dataset contains harmonized surface reflectance products, processed to Level-2A with 

atmospheric correction applied. Further details can be accessed at: https://developers.google.com/earth-

engine/datasets/catalog/COPERNICUS_S2_SR_HARMONIZED. 

VV = Single co-polarization, vertical transmit/ vertical receive; VH = Dual-band cross-polarization, 

vertical transmit/ horizontal receive; R = Red; G = Green; B = Blue; VNIR = Visible Near Infra-Red. 

 

3.1 Satellite Image Selection and Pre-Processing 

This includes the images acquired by Sentinel-1 

and Sentinel-2 satellites (Table 1). Sentinel-1 is 

equipped with a SAR instrument operating at a 

frequency of 5.405 GHz providing spatial 

resolution of 10-meter [16]. This dataset includes 

Ground Range Detected (GRD) images and 

incorporates Sentinel-2 imagery to aid the land use-

land cover classification process [17]. The 

‘Sentinel-1 Toolbox’ within the GEE platform was 

used to process the GRD images for thermal noise 

removal, radiometric calibration, and terrain 

correction. The Advanced Spaceborne Thermal 

Emission and Reflection Radiometer Digital 

Elevation Model (ASTER DEM) data was used for 

terrain correction. Finally, the terrain-corrected 

values were converted to decibels through 

logarithmic scaling 10log10X [18]. Within GEE, the 

Sentinel-1 imageries captured during the harvest 

stage of rice-crop were filtered according to the 

boundaries of the study area. The filtering utilized 

ascending and descending orbits of Santinel-1 for 

pre-harvest and post-harvest periods in September 

2023. The spatial filtering techniques such as 

boxcar or median filters were applied to reduce 

speckle noise in Sentinel-1 and Sentinel-2 

imageries.  

https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S1_GRD#bands
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S1_GRD#bands
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR_HARMONIZED
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR_HARMONIZED
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Additionally, analysis of the difference between VV 

and VH polarizations of the two Sentinel-1 images 

was conducted to generate images with consistent 

‘smooth (sm)’ values across each image. The 

Sentinel-2 bands were combined with Sentinel-1 

GRD images for enhancing the accuracy of non-rice 

and rice-crop area classification. 

 

3.2 Field Data Collection and Pre-Processing 

The research team conducted several rounds of 

intensive field surveys in the study area from 

September to November 2023 for collecting sample 

rice plants and other relevant details, in order to 

assess the biomass and carbon stock. Following a 

multi-stage stratified sampling scheme, 30 ready-to-

harvest rice fields were selected in the two sub-

districts (Figure 1). The number of selected fields 

were proportionate to the area under rice cultivation 

in each sub-district i.e. 20 fields in the Buak Kang 

with 22.54 km² of rice-crop area and 10 fields in Chae 

Chang having about 12.1 km². Also, the prevalence 

of rice varieties cultivated in each sub-district was 

taken into consideration while selecting the rice crop 

fields. Thereafter, 5 sample plots of 1 by 1 meter, i.e. 

1 m², were marked in various parts of each selected 

field for collecting relevant details from the total of 

150 sample plots (Figures 2(a) and 2(b)). The 

parameters recorded included total number of rice 

plants in each sample plot, height of the whole above 

ground part of the plant and height of the stubble after 

harvesting. Further, certain number of whole rice 

plants were collected from each sample plot based on 

their height i.e. four plants per plot for the plants 

taller than 130 cms, five plants for height between 

120 cms and 130 cms and six plants for shorter than 

120 cms. The data of all the five sample plots in each 

of the 30 selected fields were averaged to represent 

the overall parameters of the corresponding sample 

fields. Also, the relevant spatial information was 

recorded for the 150 sample plots as well as for 

another set of 200 spots for capturing the various 

stages of rice plant growth above ground to be used 

as the ‘Region of Interest (ROI)’ in the object bases 

image classification process. 

The sample rice plants, as and when collected 

during the field work, were sent to the science 

laboratory at the Faculty of Agriculture, Chiang Mai 

University, Thailand for analyzing their dry-AGB 

weight and Carbon Content. For dry-AGB weight, 

the sample plants were placed in a hot air oven at 105 

degrees Celsius for 48 hours [19]. For determining 

Carbon Content, the dry-AGB of each of the 30 

sample fields was finely ground and analyzed 

separately using combustion method in multi EA 

4000 instrument [20]. 

4. Methods of Data Processing and Analysis 

This study combines remote sensing data with 

fieldwork observations for identifying the total rice-

crop area as well as for comprehensive assessment of 

dry-AGB and carbon stock in the rice fields. The 

complete workflow of methodology from acquiring 

the required data till obtaining the final results 

involved several steps (Figure 3). The image 

processing and analysis steps were carried out on 

cloud-based computing system through GEE 

platform. 

 

4.1 Classification of Non-Rice Area and Rice-Crop  

     Area 

Identification of rice-crop area is the basic 

requirement for assessing total above rice-crop AGB 

and carbon stock in the study area. It has been found 

that the reflectance coefficient of rice-crop in the 

optical satellite images generally increases as the 

crop matures over time which suggest a positive 

correlation between the two [21]. Also, the SAR 

imageries are highly reliable for identifying rice-crop 

area and capturing various stages of crop growth 

(Figure 2(a)) by analyzing the BC values of VV and 

VH bands, in relation to various crop parameters 

[22]. In this study, both SAR and optical images have 

been used (Table 1). The selected optical image of 

Sentinel-2 had less than 5% cloud cover which were 

masked with the help of QA60 band for avoiding the 

potential errors. The image classification was 

performed through Object Based Image Analysis 

(OBIA) approach [23]. This process requires 

segmentation of the selected images and 

identification of the segments representing various 

Land Use Land Cover (LULC) classes to be used as 

‘Region of Interest (ROI)’ for classification and 

validation process. The images were segmented with 

the help of simple non-iterative clustering (SNIC) 

algorithm by defining five parameters which are (i) 

compactness = 0.1, (ii) connectivity = 8, (iii) 

neighborhood size = 10, (iv) size = 5, and (v) seeds = 

null. Each parameter serves a specific purpose i.e. 

‘Compactness’ affects the shape of the clusters, with 

higher values resulting in more compact, square-

shaped clusters; ‘Connectivity’ defines the type of 

connection among adjacent objects; ‘Neighborhood 

Size’ helps avoiding tile boundary artifacts and 

determines the size of adjacent objects; and ‘Size’ 

determines the spacing of the superpixel seed 

locations. The ‘Random Forest Classifier’ algorithm 

was used for grouping the image segments into 2 

broad LULC classes i.e. (i) non-rice area, and (ii) 

rice-crop area. 
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(a)        (b) 

Figure 2: (a) growth stage of rice plant (b) rice sampling in the rice field 

 

 
 

Figure 3: Flow-diagram of methodology 

 

Total 200 segments representing 2 broad LULC 

classes were identified as ROI, out of which 140 

(70%) were used as training samples for 

classification and 60 (30%) for validation. Also, 

confusion matrix and error matrix were calculated for 

assessing the accuracy of the classification. Finally, 

‘rice-crop area’ was extracted and ‘morphological 

reducer filter’ was applied to clean-up the size and 

boundaries of the obtained segments. 

 

4.2 Zonal Statistics Analysis 

This is a type of spatial analytical technique for 

performing several statistical calculations on the 

attributes of a spatial dataset according to the 

predefined boundaries of smaller areas or zones 

within a larger study area. This approach facilitates 

comparison of spatial variations in the selected 

parameters within a study area minimizing the 

potential errors in generalization emanating from the 

variations due to other influencing factors [24]. As 

stated, the study aims at assessing dry-AGB and 

carbon stock in the rice-crop area using Sentinel-1 

images. This requires analysis of relationship 

between dry-AGB and carbon stock on one side and 

various BC values obtained from Sentinel-1 images 

on the other side. Since carbon stock is a certain 

proportion of the dry-AGB so the dry-AGB weight of 

the sample rice plants analyzed in the laboratory 

serves as dependent variable and ‘Zonal Statistics’ of 

various BC values of Sentinel-1 images extracted 

according to the boundaries of the 30 sample rice 

fields serve as independent variables.  
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Total 48 independent variables were used for 

developing the regression model and Table 2 shows 

the 6 types of ‘Zonal Statistics’ calculated from the 

raw and smoothed (sm) BC values of 2 bands (VV & 

VH) of the selected Sentinel-1 images for two 

different dates. 

Multiple regression analysis is a widely used 

statistical method for modelling the relationship 

between a dependent variable and more than one 

independent variables [25]. The study used ‘Stepwise 

Multiple Regression Method’ (Equation 1) taking 21 

(70%) of the sampled 30 dry-AGB estimates for 

training the model and 9 (30%) for validation. 

 

Y = a + b1x1 + b2x2 + b3x3 + … + bnxn 

 

Equation 1 

 

Where: Y is dry-AGB, while x1, x2, x3, …, xn represent 

the n independent variables from Table 2. Multiple 

regression analysis calculates the weights, a, b1, b2, b3, 

…, bn to optimize the prediction of the dependent 

variable based on the independent variables. This 

optimization is typically achieved through least 

squares estimation. 

 

The correlation coefficient quantifies the strength and 

direction of a linear association between two 

variables, with coefficient values ranging from -1 

(perfect negative correlation) to +1 (a perfect positive 

correlation) and a coefficient of ‘Zero’ implies that 

there is no correlation between the variables. The 

categories of positive correlation are defined as 

follows: very strong positive (0.80 to 1.00), strong 

positive (0.60 to 0.79), moderate positive (0.40 to 

0.59), weak positive (0.20 to 0.39), and very weak 

positive (0.00 to 0.19) [26]. The same is represented 

for negative correlation with the ‘minus’ sign. The 

calculation of carbon stock was adapted using 

Module C-CS, which provides its estimation across 

various carbon pools. This module includes 

guidelines for calculating plot areas, applying 

statistical methods, and analyzing the data, all of 

which are essential for precise assessments of dry-

AGB and carbon stock [27]. Carbon stock per unit 

area is defined in equation 2. 

 

Cs = C× DryAGB 

Equation 2 

 

Where: Cs represents the carbon stock per unit area 

(kgC/m²), DryAGB denotes the weight of dry-AGB 

per unit area (kg/m²) derived from multiple linear 

regression, and C is the percentage of carbon content 

obtained through laboratory analysis of sampled rice 

plants. 

 

4. Results and Discussion 

4.1 Image Classification 

The research team tested various SNIC parameters 

for obtaining high accuracy of non-rice area and rice-

crop area classification. The best performing SNIC 

parameters were optimized for segmentation of the 

combined images from Sentinel-1 and Sentinel-2. 

The optimal parameters were identified to be: 

compactness (0.1), connectivity (8), neighborhood 

size (10), and size (5). The Random Forest Classifier 

identified the results show rice-crop area of 34.61 

km² in the total area of about 47 km². It achieved an 

overall accuracy of 96%, indicating that it correctly 

classified the majority of the superpixels. The Kappa 

value of 0.93 suggests a very high level of agreement 

between the observed and predicted 2 broad LULC 

classes, significantly exceeding what would be 

expected by chance. These metrics underscore the 

effectiveness of combining SNIC for image 

segmentation with Random Forest Classifier for 

identifying rice-crop area. 

 

Table 2: Variables used in the regression equation 
 

1 Dependent Variable  48 Independent Variables 

Dry Above Ground 

Biomass Weight 

(dry-AGB) 

2 Image Capture Dates: 0921 (September 21, 2023), and 0924 (September 24, 

2023) 

 

Total 48 independent variables: 2 * 4 * 6 = 48 

- 2 Image Capture Dates: 0921, 0924 

- 4 types of BC values: VV, VVsm, VH, VHsm 

- 6 types of Zonal Statistics values: Min, Max, Mean, Range, STD, 

Sum 
 

Example-1: VV0921Min; VVsm0921Min; VH0921Min; VHsm0921Min etc. 

Example-2: VV0924STD; VVsm0924STD; VH0924STD; VHsm0924STD 

etc. 
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4.2 Modelling of Dry-AGB based on Backscatter  

      Coefficients (BC) of Sentinel-1 Images 

As mentioned previously, the dry-AGB of the sample 

rice-crop plants collected from the 5 plots of one 

square meter in each of the 30 sample fields was 

analyzed in a science laboratory. Depending on the 

average height and species of the sample rice-crop 

plants, the average dry-AGB weight varied between 

141.7 to 522.75 g/m² giving an average of 330.6 g/m². 

The ‘Zonal Statistics’ of various BC values falling 

within the 30 sample rice fields demonstrate varying 

degrees of correlation with dry-AGB. Figure 4(a) 

illustrates that VV0921Max has a weak positive 

correlation (0.31) with dry-AGB, indicating that 

higher maximum values of VV are not much 

associated with the higher dry-AGB. Conversely, 

VH0921Max shows a weak negative correlation (-

0.39) with dry-AGB, suggesting that higher 

maximum values of VH correspond to lower dry-

AGB. Figure 4(b) reveals that VV0924Max and 

VV0924Mean have strong positive correlation with 

dry-AGB having the ‘r value’ of 0.72 and 0.63 

respectively. However, VH0924Max shows a 

negative correlation of (-0.46) the correlation 

coefficient (r) between dry-AGB and BC values 

derived from the ascending pass on 24.09.2023 (r = 

0.923) is the highest (Table 3). The multiple 

regression models for estimating dry-AGB in the rice 

fields using Sentinel-1 images of 2 different dates are 

presented in Table 3. The model for ‘21.09.2023 

(Descending)’ image explains only 22.9% variance 

in dry-AGB, which shows a weak significance, so 

this has been discarded from further analysis. On the 

other side, the model for 24.09.2023 (Ascending) 

image, incorporating four independent variables (i.e. 

𝑉𝐻𝑀𝑎𝑥 , 𝑉𝐻𝑀𝑖𝑛 , 𝑉𝐻𝑠𝑚𝑀𝑎𝑥  and 𝑉𝑉𝑠𝑚𝑀𝑎𝑥 ), 

gave a highly reliable R² of 0.852. 

 

 
 

Figure 4: Cross-correlation coefficients between dry-AGB and Sentinel-1 BC parameters:  

(a) Descending pass on 21.09.2023 (Continue next page) 
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Figure 4: Cross-correlation coefficients between dry-AGB and Sentinel-1 BC parameters: 

(b) Ascending pass 24.09.2023 (Continue from previous page) 
 

Table 3: The regression equations derived for predicting dry-AGB 
 

Sentinel-1 

Image 
Regression model R R² 

Adjusted  

R² 
F-value Sig. 

21.09.2023 

(Descending) 

18.722VHsmSTD + 27.329 
0.479 0.229 0.189 5.659 0.028 

24.09.2023 

(Ascending) 

26.586 + 2.196VHMax + 2.032VHMin  

– 3.139VhsmMax + 5.166VvsmMax  
0.923 0.852 0.816 23.105 0.000 

 

Leaving aside 𝑉𝑉𝑠𝑚𝑀𝑎𝑥, the other three variables 

show a positive relationship of varying degrees with 

dry-AGB whereas 𝑉𝑉𝑠𝑚𝑀𝑎𝑥  shows a negative 

coefficient of -3.139. A positive relationship denotes 

that a rise in the BC value of an independent variable 

leads to a rise in the amount of dry-AGB by the 

modelled coefficient factor of that particular variable. 

For example, 𝑉𝐻𝑀𝑎𝑥  (maximum vertical height) 

has coefficient value of 2.196 and this means that 

one-unit rise in the BC value of 𝑉𝐻𝑀𝑎𝑥 shows a rise 

of 2.196 units in dry-AGB. The same applies to 

𝑉𝐻𝑀𝑖𝑛  and 𝑉𝑉𝑠𝑚𝑀𝑎𝑥  having corresponding 

positive coefficients of 2.032 and 5.166. The case of 

a negative relationship is opposite that a rise in the 

BC value of an independent variable leads to a 

decrease in the amount of dry-AGB by the modelled 

coefficient factor of that particular variable. The 

intercept of this regression models is 26.586 and this 

shows the expected value of dry-AGB when BC 

values of all independent variables are ‘Zero’. 
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This may happen if the crop is still in the early stage 

of growth or the crop has been harvested and only 

small stubble and some thrashed straw is remaining 

in the fields. These observations highlight the 

importance of using multi-temporal and multi-

polarization satellite data to reliably estimate dry-

AGB and corresponding carbon stock in the rice-crop 

area. 

The application of linear regression algorithms in 

machine learning, specifically multiple linear 

regression, has demonstrated considerable efficacy in 

predicting the AGB of rice-crop [28][29][30][31] and 

[32]. This study has identified significant positive 

relationships between dry-AGB of rice-crop and BC 

of selected parameters notably, VHMax, VHMin, 

VHsmMax, and VVSMax, and this demonstrates 

strong potential of SAR and other Remote Sensing 

data for assessing AGB. This aligns with the findings 

of various previous studies that show a positive 

correlation between AGB and the derived 

coefficients [33][34] and [35]. Also, some studies 

compared and developed different algorithms to find 

low computational costs and achieving high accuracy 

in predicting AGB using C-Band SAR channels. 

Besides, it is observed that a low correlation may 

result from BC values influenced by surface 

roughness, signal noise, and vegetation structure 

causing complex interactions between radar signals 

and surface characteristics [36] and [37]. 

 

4.3 Assessment of Dry-AGB and Carbon Stock in  

     the Rice-Crop Area 

The model developed for Sentinel-1 image of 

24.09.2023 (Ascending), demonstrated the highest 

correlation coefficient (R² = 0.852), thus, it was fitted 

in multiple linear regression equation for calculating 

dry-AGB of rice-crop. The distribution of assessed 

dry-AGB and carbon stock in various categories of 

rice-crop area are presented in Table 4 and Figures 

5(a) and 5(b). The total dry-AGB assessed for the 

entire rice-crop area, i.e. 34.61 km², is 16019.13 Tons 

and there are significant variations in its spatial 

pattern (Figure 5(a)).  

 

Table 4: Dry-AGB and carbon stock assessed from Sentinel-1 image of 24.09.2023 (Ascending) 
 

 

 
(a)       (b) 

 

Figure 5: (a) dry-AGB (b) carbon stock 

 

 

Dry-AGB 

(kg/100 m²) 

Area 

(km²) 

Area 

(Percent) 

Dry-AGB 

(Total Tons) 

Carbon Stock 

(kgC/100 m²) 

Area 

(km²) 

Area 

(Percent) 

Carbon Stock 

(Total Tons) 

> 90 0.03 0.08 28.82 > 25 0.00 0.00 0.05 

75 - 90 0.06 0.19 54.67 20 - 25 0.03 0.08 6.29 

60 - 75 1.40 4.03 953.95 15 - 20 0.26 0.76 45.52 

45 - 60 12.94 37.40 6978.78 10 - 15 13.50 39.01 1644.17 

30 - 45 17.93 51.81 7391.96 5 - 10 20.39 58.90 1809.12 

< 30 2.25 6.49 610.94 < 5 0.43 1.25 19.06 

Total 34.61 100.00 16019.13 Total 34.61 100.00 3524.21 
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(a)  

 
(b)  

 
(c)  

 

Figure 6: GEE app-based platform for visualization and monitoring of dry-AGB and carbon stock 

 (a) The overview of dry-AGB and carbon stock platform (b) dry-AGB chart in platform  

(c) carbon stock chart in platform 

(https://wpwn-gps.projects.earthengine.app/view/dry-agb-and-carbon-stock-monitoring-system) 

 

The quantity of dry-AGB in 17.93 km² (51.81%) 

rice-crop area varies between 30 to 45 kg/100m² and 

total dry-AGB in this part is 7391.96 Tons. Second to 

this, 12.94 km² (37.40%) area has variation of dry-

AGB between 45 to 60 kg/100m² and its total weight 

is 6978.78 Tons. The total amount of dry-AGB in the 

remaining 4 km² (11%) rice-crop area is 1648.38 

Tons. The spatial variations in the dry-AGB are 

caused mainly by the differences in the growth-stage 

plants in the rice-crop area which is affected by the 

timing of plantation stretching from May to August. 

The carbon stock in the total rice-crop area is 

estimated to be 3524.21 Tons. The prevalence of 

carbon stock corresponds to dry-AGB so the spatial 

patterns of the both are quite similar (Figure 5(b)). 

The carbon stock corresponding to the dry-AGB of 

the 30 sample fields analyzed in the laboratory 

ranged from 31.53 to 116.31 g/m² whereas the 

average value was 72.56 g/m². The carbon stock in 

34.32 km² (99.16%) of total rice-crop area varies 

between 5 and 15 kgC/100 m², and the total stock in 

this area is about 3472.40 (98.53%) Tons out of the 

total carbon stock in the entire rice-crop area. 

Although the values modelled for assessing dry-AGB 

and carbon stock are quite consistent with similar 

previous studies [38], however, some variations can 

be explained due to various varieties of rice [39] and 

resultant straw after threshing [40]. 

 

5. GEE Platform for Visualization and  

    Monitoring 

A web platform for visualization and monitoring of 

dry-AGB and carbon stock using GEE apps has been 

developed (Figure 6). It facilitates cloud-computing 

based semi-automatic processing and analysis of the 

selected satellite images combined with the relevant 

data modelling steps, significantly reducing the time 

and effort required for manual data handling, thus, 

enhances cost-effectiveness. The platform is enabled 

for calculations and displays of dry-AGB and carbon 

stock derived from Sentinel-1 images of September 

month in each year, beginning from 2023 onwards. 

Although, it is possible to display different layers 

integrated in the platform as a background but 

analysis of dry-AGB and carbon stock is based only 

on the parameters of Sentinel-1 image used in the 

model i.e. VHMax, VHMin, VHsmMax, and VVSMax 

(Figure 6(a)). Apart from displaying the spatial 

distribution maps of the two aspects, the platform 

also contains bar graphs showing the total amount of 
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dry-AGB (Figure 6(b)) and carbon stock (Figure 

6(c)) within various categories. This user-friendly 

platform not only supports the monitoring and 

decision-making processes of various government, 

non-government and marketing agencies but also 

helps informing the state of their rice crop to the local 

farmers as well as sensitizing them about their role in 

generating the harmful effects of on-field burning of 

crop residues. 

It has been demonstrated that integrating satellite 

imagery and statistical analysis techniques for 

predictive modeling can effectively assess and 

monitor agricultural crop production, which is crucial 

for agricultural management and production planning 

[41]. The development of online applications 

facilitates resource managers and stakeholders' 

access to and use of up-to-date information, 

indicating that combining satellite data with cloud-

based processing platforms like GEE can 

significantly enhance resource monitoring and 

management [42][43] and [44]. However, there is a 

need to update the model periodically for keeping the 

accuracy of assessment at higher levels. 

 

6. Summary 

Rice is a widely cultivated crop in Thailand and many 

other parts of the world. Along with edible grains, the 

crop also produces huge amounts of post-harvest 

crop-residues, and the farmers usually burn a very 

large part of it in the fields themselves. The open-air 

crop-residue burning has a range of direct and 

indirect harmful effects on human health, 

atmosphere, environment and climate change. Thus, 

a system for assessing and monitoring the spatial and 

temporal patterns of rice-crop AGB and its carbon 

stock is needed for affective management. This study 

provides methodology for assessing dry-AGB and 

carbon stock in rice-crop area using SAR images. A 

multiple regression model was developed by 

integrating 48 BC parameters derived from 2 

Sentinel-1 images but the most accurate predictor of 

dry-AGB was associated with the image of 

24.09.2023 (Ascending). Its R² value was 0.852 and 

it incorporated only 4 BC parameters (i.e. VHMax, 

VHMin, VHsmMax, and VVSMax), 3 of which has a 

positive relationship and one, 𝑉𝐻𝑠𝑚𝑀𝑎𝑥 , has 

negative relationship.  

The total dry-AGB in the whole rice-crop area of 

34.61 km2 was assessed to be 16019.13 Tons 

showing significant spatial variations, the dry-AGB 

on 89% of the total rice-crop area varies between 30 

and 60 kg/100 m². Corresponding to this, the carbon 

stock in the total rice-crop area is estimated to be 

3524.21 Tons and this varies between 5 and 15 

kgC/100 m² on 99.16% of total rice-crop area. A 

cloud-computing based user-friendly GEE app 

platform has been developed for calculating pre-

modelled dry-AGB and carbon stock of rice-crop 

from Sentinel-1 imagery of the study area. In 

conclusion, this study makes significant 

methodological and technological contributions to 

the field of agricultural monitoring and provides a 

scalable, efficient open-access platform assessing 

AGB and carbon stock for informed policy 

formulation and affective management planning. 
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