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Abstract 

This paper presents a new method for evaluating vulnerability in several dimensions by combining Catastrophe 

Theory with Geographic Information Systems (GIS). This research investigates vulnerability in three districts 

in Selangor, Malaysia: Hulu Langat, Sepang, and Kuala Langat. The study analyzes vulnerability across six 

dimensions, namely social, economic, physical, institutional, environmental, and cultural. The evaluation 

utilizes ArcGIS 10.8 and a data-driven Multi-Criteria Decision Analysis (MCDA) methodology to generate 

geographical vulnerability maps. The methodology utilizes Catastrophe Theory, a mathematical framework 

proficient in understanding abrupt changes in intricate systems, and GIS, a potent tool for studying and 

visualizing geographic data. These tools work together to help identify important thresholds and tipping points 

in systems that are prone to disasters, which improves our understanding of how vulnerability changes over 

time. The studied area contains a historical record of many disasters, encompassing floods, landslides, storms, 

and forest fires. The 2021 flood, which was the most severe in the area's history, emphasized the necessity for 

a comprehensive risk assessment. The study's findings demonstrate the heterogeneity in vulnerability across the 

six categories, offering crucial insights for the management of disaster risk. The results illustrate the efficacy 

of this integrated approach in comprehending the multifaceted essence of vulnerability. The created 

multidimensional vulnerability maps provide valuable information for policymakers, planners, and emergency 

responders. These maps enable focused interventions and enhance resilience. The study emphasizes the 

significance of improving institutional capacities, economic robustness, and community readiness in order to 

minimize the effects of disasters. This research makes a substantial contribution to the field of disaster risk 

management by offering an innovative methodology for assessing vulnerability. This methodology has wide-

ranging applications in the areas of disaster prevention and mitigation. 
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1. Introduction 

Today's disaster risk management environment 

makes it critical to create strong procedures for 

vulnerability assessment. Vulnerability is 

characterized by conditions shaped by physical, 

social, economic, and environmental factors, along 

with processes that increase the susceptibility of 

individuals, society, institutions, and systems to the 

effects of hazards [1] and [2]. One important 

technique that shows promise is spatial multi-

dimensional vulnerability mapping, which provides 

an advanced method for identifying and measuring 

vulnerabilities in several dimensions.  

Research on vulnerability assessment is typically 

categorized into two perspectives: social researchers 

view vulnerability as a combination of socio-

economic factors, while other researchers define 

vulnerability as the extent of potential harm to a 

specific element at risk [3]. The concept of 

multidimensional vulnerability assessment (MDVA) 

aims to address the shortcomings and integrate many 

aspects of vulnerability assessment into a 

comprehensive framework [4]. Vulnerability is 

present in all four key phases of the cycle, namely 

reaction, recovery, mitigation, and preparedness.  
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In the context of mitigation, the vulnerability 

assessment can offer valuable insights into specific 

areas that require additional research. This 

knowledge can then be used to develop effective 

methods for mitigating the impact of future 

catastrophic events. During another step of the 

disaster cycle, doing a vulnerability assessment is 

crucial for obtaining accurate maps and information 

that can be used for emergency and evacuation 

planning, rescue operations, and the reinforcing or 

relocation of buildings. Therefore, the use of MDVA 

may effectively identify and evaluate the level of 

susceptibility to disasters. This assessment provides 

a solid basis for the development and implementation 

of scientifically informed policies for disaster 

prevention and mitigation [5]. 

The MDVA is an integrated approach that would 

be highly beneficial, suitable and helpful in the 

disaster risk reduction field [6] and [7]. In this 

context, the combination of Geographic Information 

Systems (GIS) and Catastrophe Theory offers a fresh 

viewpoint that improves the accuracy and 

comprehensiveness of vulnerability assessments. 

GIS provides an effective tool for comprehending the 

spatial attributes of certain features and providing 

information for decision-making [8]. GIS techniques 

are essential for developing flood vulnerability maps, 

which aid in identifying areas that are vulnerable to 

hazards by integrating diverse data sources such as 

satellite pictures, soil data, and rainfall data. GIS 

enables the examination and display of both 

geographical and attribute data, allowing for efficient 

decision-making and planning to reduce the impact 

of floods by identifying areas with varying levels of 

risk [9]. This article explores the creative use of 

various technologies with the goal of providing a 

thorough framework that helps planners, emergency 

responders, and policymakers lessen the effects of 

disasters.  

Catastrophe Theory, a branch of bifurcation 

theory in mathematics, provides a valuable lens 

through which sudden and discontinuous changes 

can be analyzed. This theoretical framework is 

particularly suited to understanding complex systems 

where small changes in parameters can lead to abrupt 

shifts in system states—a common characteristic in 

environmental and societal systems affected by 

disasters. By applying Catastrophe Theory, this study 

identifies critical thresholds and tipping points in 

disaster-prone systems, facilitating a deeper 

understanding of vulnerability dynamics. 

Catastrophe Theory is a MCDA technique that 

enhances the understanding and analysis of complex 

systems where small changes can lead to significant 

effect [10].  

However, geographic information system (GIS) is a 

powerful tool for geographical data analysis and 

representation. A multi-dimensional examination of 

vulnerability is made possible by GIS's ability to 

combine several data layers, including those related 

to social-economic, environmental, infrastructure, 

and demographic issues. This capacity is essential for 

identifying and displaying spatial patterns and trends 

that increase susceptibility and provide decision-

making processes with a strong factual basis.  

A revolutionary method of vulnerability mapping 

is made possible by the combination of GIS and 

Catastrophe Theory. This article provides a 

multidimensional vulnerability analysis by 

presenting a methodological framework that 

synthesizes these technologies. The study 

demonstrates, via case studies and actual data, how 

this integrated approach may be used to create 

comprehensive, dynamic, spatially explicit 

vulnerability maps that capture the complex and 

ever-changing nature of disaster risks. Previous 

studies primarily employed traditional normalization 

calculations based on knowledge-driven approaches 

to generate vulnerability assessments, whether for 

spatial or non-spatial vulnerability [6][7] and [11]. 

The need for enhanced analytical tools in disaster risk 

management is growing as the globe struggles with 

an increase in the frequency and intensity of 

catastrophic occurrences caused by urbanization and 

climate change. In order to improve resilience and 

lessen the negative effects of disasters on vulnerable 

populations, this work makes a significant 

contribution to this important topic by providing a 

cutting-edge approach for vulnerability assessment. 

The present section will delineate the theoretical 

underpinnings, methodology, case studies, and 

implications of the findings in a wider context. The 

emphasis will be on the findings' relevance and use 

in global catastrophe risk management techniques. 

 

2. Study Area 

The study area encompasses three districts in 

Selangor, namely Hulu Langat, Sepang, and Kuala 

Langat. These districts are situated within the Langat 

River Catchment and consist of multiple subdistricts, 

known locally as mukims. The study area, as depicted 

in Figure 1, includes a total of 17 mukims, with Hulu 

Langat and Kuala Langat each containing seven 

mukims, while Sepang comprises three mukims. In 

Hulu Langat, the mukims are Ampang, Kajang, Hulu 

Langat, Cheras, Beranang, Hulu Semenyih, and 

Semenyih. In Kuala Langat, the mukims include 

Bandar, Batu, Jugra, Kelanang, Morib, Tanjung Dua 

Belas, and Telok Panglima Garang.  
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The three mukims in Sepang are Dengkil, Labu, and 

Sepang. Historically, this region has experienced 

various disasters, such as floods, landslides, storms, 

and forest fires. In 2021, this area faced the worst 

flooding in its recorded history, affecting 62 

locations, with 22 in Hulu Langat, 26 in Sepang, and 

14 in Kuala Langat. Between 2014 and 2019, there 

were 176 flood events, predominantly impacting 

Hulu Langat (98 occasions), Sepang (51 occasions), 

and Kuala Langat (27 occasions). In 2011, a major 

landslide in Mukim Hulu Langat resulted in 16 

fatalities. [12]  Additionally, several areas within the 

region, such as Ampang, Cheras, Kajang, Dengkil, 

Labu, and Sepang, are particularly susceptible to 

landslides [11] and [13]. 

The flooding resulted in eight fatalities, with three 

deaths in Hulu Langat, four in Sepang, and one in 

Kuala Langat. The estimated total losses from the 

2021 floods in Malaysia were approximately USD 

1.3 billion. In the study area, the losses were around 

USD 170.9 million, accounting for 13% of the total 

losses in Malaysia. In Selangor, the total losses 

amounted to USD 668 million, with Hulu Langat, 

Sepang, and Kuala Langat contributing 14%, 5%, and 

6%, respectively, to this total [14].  

Overall, 11 states and 60 districts were impacted by 

the floods, with 22 locations affected in Hulu Langat 

District, 26 in Sepang, and 14 in Kuala Langat. 

 

3. Methods 

3.1 Vulnerability Framework 

A multidimensional vulnerability assessment that 

was developed from the MOVE framework by [2] 

served as the foundation for this study. The 

conceptual framework for vulnerability used in this 

study is displayed in Figure 1 along with weighted 

coefficient values. Six aspects of multidimensional 

vulnerability—social, economic, physical, 

institutional, environmental, and cultural—were 

quantitatively assessed using a variety of 

subdimensions and indicators. The multivulnerability 

component was based on multidimensional 

vulnerability, which considered six dimensions of the 

vulnerability-based MOVE framework. Each 

vulnerability dimension had their own indicators. 

The selection of each indicator was based on expert 

judgement and analysed using PCA. Overall, 

multidimensional vulnerability consisted of six 

dimensions, 16 subdimensions and 54 indicators. 

 

 
 

Figure 1: Study area in Selangor, Malaysia  
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3.2 GIS Analysis 

The analysis in this study used spatial data, so the 

process of obtaining the results used the geospatial 

data analysis approach. ArcGIS 10.8 software was 

used in this study for data processing and to produce 

the results in the form of maps. Previous studies, such 

as [15] and [16], have demonstrated the efficacy of 

these GIS tools in vulnerability mapping. By 

categorizing areas based on these five classes, we 

were able to make meaningful comparisons of 

vulnerability and risk levels, thereby enhancing our 

understanding of spatial patterns of vulnerability. 

Several ArcGIS tools were used in this study, such as 

the data editor, data conversion (rasterization), raster 

calculator and data classification tools. Data editor 

tools were used to input the indicator values in the 

vector data. Data conversion tools or rasterization 

analysis were used to convert the vector data into 

raster data for index calculations. Rasterization 

allows for uniform data processing, enabling spatial 

analysis across the study area [17]. Raster calculator 

tools were used for normalizing the data and 

calculating the multi-hazard index, multidimensional 

vulnerability index and risk index. Normalization 

standardizes data values, facilitating accurate 

comparison across different indicators [18]. Lastly, 

data classification tools were used to categories the 

data into five classes, using the natural breaks Jenks 

method. Therefore, all the areas in this study were 

categorized based on these five classes so that levels 

of vulnerability and risk could be compared. 

 

3.3 Catastrophe Theory  

In 1960, Rene Thom invented catastrophe theory as a 

mathematical discipline for studying discontinuity 

occurrences in a non-mechanical way [19] and [20]. 

Catastrophe theory is a multi-criteria decision-

making method (MCDM) that uses the analytics 

hierarchy, utility function and fuzzy evaluation to 

obtain the catastrophe fuzzy membership function by 

normalizing the bifurcation set. According to past 

research, this method has been used in various fields 

to define multiple subsystems, each of which could 

be evaluated using one or more criteria or indicators. 

There is previous study used this method to assess 

water model indicators [21], applied it for assessing 

urban water security [22], conducted groundwater 

assessment using the catastrophe method [23] and 

applied this method for flood risk mapping [24].  

Before standardizing the data, it was categorized 

into several classes, either two, three, four or five 

classes. The data standardization used two equations, 

the first for the susceptibility data and the second for 

the capacity data. With susceptibility data, the higher 

the value, the greater the vulnerability index.  

The following data standardization Equation 1 was 

used for the susceptibility data: 
 

𝑥𝑖 =
𝑥𝑖 − 𝑥𝑖(min)

𝑥𝑖(max) −  𝑥𝑖(𝑚𝑖𝑛)
 

Equation 1 

 

The Equation 2 was used for the capacity data, in 

which a higher value decreases the vulnerability 

index in the calculation. The following data 

standardization equation was used for the capacity 

data: 

𝑥𝑖 = 1 −
𝑥𝑖 −  𝑥𝑖(min)

𝑥𝑖(max) − 𝑥𝑖(𝑚𝑖𝑛)
 

Equation 2 

 

Where, i is the attribute, xi is the original value of i, 

and xi(max) and xi(min) are the maximum and 

minimum values, respectively. 

 

This study used susceptibility and capacity 

indicators. The former indicator is fragile or might 

strongly affect a disaster, while the latter indicator 

reduces the impact of a hazard on the community, 

organisation or system.  The next step was to 

normalize the indicator using the catastrophe model. 

In this study, four types of catastrophe models were 

used to calculate the indicator normalization. For the 

indicators classified based on two variables, the 

catastrophe model used was the Cusp model; for the 

indicators classified based on two variables, the 

model used was the Swallowtail model; the Butterfly 

model was used for indicators with three control 

variables; and, lastly, the Wigwam model was used 

to normalize the indicators with five control 

variables. The catastrophe models and formulas used 

in this study for the estimation of the sub indicator 

functions or the rating of each indicator are shown in 

Table 1. Here, a represents the state variable and u, v, 

w, x and y are the control variables. The state variable 

is related to control variables, based on different 

catastrophe models. ai represents the catastrophe 

fuzzy membership function of the control variable, i, 

where i can be u, v, w, x or y, depending on the model. 

 

3.3 Multidimensional Vulnerability Mapping 

In the multidimensional vulnerability index (MDVI) 

mapping, the vulnerability was classified into six 

dimensions, based on the proposed theoretical 

concept in the MOVE framework. The six 

dimensions were social, economic, physical, 

institutional, environmental, and cultural. Each 

dimension consisted of several subdimensions, 

which contained several indicators. Producing the 

MDVI mapping required six main steps, as depicted 

in Figure 2.  
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Figure 2: Multidimensional vulnerability index component [2] 

 

Table 1: Different formula based on number of variables [20]  
 

 

Catastrophe Model 
Control 

Variable 
Normalization Formula 

Cusp 2 au = u0.5 and av = v0.33 

Swallowtail 3 au = u0.5, av = v0.33 , and w0.25 

Butterfly 4 au = u0.5, av = v0.33, w0.25 , and ax = x0.20 

Wigwam 5 au = u0.5, av = v0.33, w0.25 , ax = x0.20, and ax = y0.17 

 

The first step started by inputting all the information 

into spatial data format based on the available scale. 

Data was available at the mukim or district scale. The 

data was collected from government agencies, the 

community household vulnerability surveys, and the 

local authority surveys. At the same time, the 

indicator data classification is based on data range 

from government agencies and previous study. Next 

step, the data classification was analyzed using the 

Catastrophe Theory approach to determine indicator 

rating. Then data from each mukim was transformed 

according to the rating values identified from 

Catastrophe Theory approach. To transform the 

indicator based on the indicator rating into index 

values, there are two approaches based on the type of 

data. For data collected from community survey 

(fourteen indicators), the data is calculated based on 

Equation 3. For data from secondary data and local 

authority surveys, indicators be standardized directly 

according to the class of data in.  

So, each class in indicator data standardized into 

index values based on indicator rating values. 

 

𝐼𝑛𝑑𝑒𝑥 𝑉𝑎𝑙𝑢𝑒𝑠 =
𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 𝑅𝑎𝑡𝑖𝑛𝑔 × 𝐷𝑎𝑡𝑎

100
 

Equation 3 

 

Where the Indicator Rating represents the values for 

each class in the indicator as determined from the 

Catastrophe Theory. The data is the indicator data 

collected from the community surveys.  Next, the 

weightage was assigned to each indicator, 

subdimension and dimension using the values 

identified based on previous study shown in Figure 2. 

The data was classified into five groups: very low, 

low, medium, high and very high vulnerability. All 

the areas in this study were classified in this way to 

compare their levels of vulnerability. 
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4. Result and Discussion 

4.1 Indicator Rating 

The rating of the sub-indicator classes was 

determined using the catastrophe theory function. 

Every indicator was separated into two, three, four, 

or five classes, each having a distinct value. Three 

distinct catastrophe models were applied in this 

study: the Cusp model was applied to indicators with 

two classes, the Swallow model was applied to 

indicators with three classes, the Butterfly model was 

applied to indicators with four classes, and the 

Wigwam model was applied to indicators with five 

classes. Table 2 displays sample results for each 

class's rating in the social vulnerability indicators. 

For the social dimension indicator, the data range 

(column 4) was based on the data collected from the 

Department of Statistical Malaysia (DOSM) for the 

overall number of mukims or districts in Malaysia. 

Some of the indicator ranges are based on previous 

study. Although the assessment conducted in this 

study only applied to three districts in Selangor, for 

the indicator rating, the data range was based on the 

local conditions in Malaysia overall. The data range 

for each indicator was not restricted to the study area, 

except for the data required from the community 

questionnaires and local authority surveys.  

 

Table 2: Data standardization using Catastrophe theory 
 

Dimension Subdimension Indicator Range 
Normalize 

Value 
Rating 

Social 

Vulnerable 

Group 

Female Population 

8 - 7,992 0.00 0.00 

7,993 - 30,280 0.06 0.40 

30,281 - 87,911 0.23 0.69 

87,912 - 171,736 0.52 0.88 

171,737- 322,026 1.00 1.00 

Child Population 

(0 -15) 

4 - 6,459 0.00 0.00 

6,460 - 19,824 0.08 0.44 

19,825 - 48,570 0.25 0.71 

48,571 - 99,261 0.57 0.89 

99,262 - 155,034 1.00 1.00 

Older Population 

(> 60) 

1 - 2408 0.00 0.00 

2,409 - 7563 0.10 0.47 

7,564 - 17534 0.30 0.74 

17,535 - 34280 0.64 0.92 

34,281 - 78276 1.00 1.00 

Active Ageing 

Ageing Index 

2.2471 - 31.214 0.00 0.00 

31.2141 - 45.04 0.10 0.47 

45.041 - 60.32 0.17 0.64 

60.321 - 96.79 0.28 0.78 

96.791 - 370.73 1.00 1.00 

Youth Index 

53.95 - 317.38 1.00 1.00 

317.381 - 579.33 0.90 0.97 

579.331 - 1103.21 0.76 0.93 

1103.211 -1904.45 0.52 0.88 

1,904.451 - 4,000 0.00 0.00 

Population size 

Total population 

22 – 23,275 0.00 0.00 

23,276 - 73,411 0.08 0.43 

73,412 - 177,105 0.23 0.69 

177,106 - 360,642 0.53 0.88 

360,643 - 639,512 1.00 1.00 

Household size 

2.70 - 3.50 0.00 0.00 

3.51 - 4.00 0.22 0.60 

4.01 - 4.50 0.38 0.79 

4.51 - 5.40 0.62 0.91 

5.41 - 6.80 1.00 1.00 
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The data range in column four describes the class in 

the indicator, while the initial values were identified 

from the mean of the data from each class. The lowest 

initial value in the indicator was the minimum value 

and the highest was the maximum value. These were 

used to determine the normalized values, as presented 

in column 5. Then, the normalized values from each 

indicator class were calculated using the formula, 

depending on the catastrophe model used. The last 

column presents the ratings from each class of each 

indicator. Then, all the classified values were used to 

calculate each vulnerability dimension for the 

multidimensional vulnerability index. 

 

4.2 Vulnerability Assessment 

Three subdimensions comprised social vulnerability: 

population size, the active ageing index, and 

vulnerable groups. Each of the three subdimensions 

of social vulnerability has its own set of indicators. 

Three indicators made up vulnerable groups: the 

proportion of women, children, and older people. 

While the population size included two indicators—

household size and total population—the active 

ageing index contained two indicators: youth and the 

aging index indicator. Utilizing these three 

subdimensions, the research area's vulnerability 

levels were examined. As can be seen in Figure 3, 

overall, the lowest index value was 0.140 and the 

largest index value was 0.772. The variance, 

divergence, and differences with regard to the social 

component of vulnerability in the research area were 

calculated using the ranges between the minimum 

and greatest values in the area. The mukims in Hulu 

Langat District showed higher index values than 

those in Sepang and Kuala Langat, as the map shows. 

The degree of social vulnerability for each of the 

three research area districts housing the 17 mukims is 

depicted in Figure 3(a). As a result, Figure 3(a) 

illustrates that Ampang, Cheras, Kajang, Semenyih, 

and Tanjung Dua Belas were the five mukims 

classified as having very high vulnerability; Hulu 

Langat, Beranang, Dengkil, and Telok Panglima 

Garang were the five mukims classified as having 

high vulnerability; and Batu was the only mukim in 

the medium vulnerability class. Two mukims, Hulu 

Semenyih and Jugra, were in the very low 

vulnerability class, while four mukims, Labu, 

Bandar, Kelanang, and Morib, were in the low 

vulnerability class. Due to their larger populations 

than those of the other mukims, these five mukims - 

Ampang, Cheras, Kajang, Semenyih, and Tanjung 

Dua Belas - were classified as having extremely high 

potential for vulnerability. Therefore, the social 

vulnerability dimension should be the primary 

emphasis of these five mukims when assessing the 

risk of disaster. These five mukims have indices 

ranging from 0.604 to 0.772. 

The term "economic vulnerability" describes 

the possibility of financial loss for a person or an 

organization. This dimension includes the financial 

resources available to local organizations to 

anticipate and address possible risks, as well as the 

preparation, financial capability, and protection of 

individuals and groups [23] and [24]. Three 

economic subdimensions were considered in this 

study's analysis of economic vulnerability. Financial 

services, emergency funds, personal insurance, and 

financial incentives for disaster risk reduction made 

up the first indicator, economic resilience. Three 

subdimensions make up the following subdimension, 

financial saving: income range, household savings, 

and financial reserves. Three variables make up the 

final subdimension, which is economic conditions: 

the number of wage workers in the home, poverty, 

and economic activity. The findings are displayed as 

an economic vulnerability map in Figure 3. Mukims 

Morib, Beranang and Batu were classified as having 

very high economic vulnerability. Compared to the 

other mukims, Hulu Semenyih and Beranang had 

very high vulnerability in two subdimensions, 

economic resilience and economic conditions, while 

Mukim Batu had two subdimensions of very high 

vulnerability, financial savings and economic 

conditions. This explains why these three Mukims 

were in the “very high” economic vulnerability class. 

All these three subdimensions have different index 

ranges in terms of their minimum to maximum 

values. The economic resilience subdimension index 

ranged from 0.86 to 0.93, the financial savings 

subdimension index ranged from 0.640 to 0.813 and 

the economic conditions subdimension had an index 

range of 0.280 to 0.506. 

The physical vulnerability analysis consisted of a 

specific and detailed household spatial data scale for 

the building condition subdimension. The other data 

indicators were based on the mukim or district spatial 

scale. Besides the building condition subdimension, 

two other subdimensions featured in physical 

vulnerability: communications and services. In total, 

there were nine indicators of physical vulnerability, 

with each subdimension having three indicators. 

Figure 3(c) shows the physical vulnerability map 

with all three subdimensions in all 17 mukims in the 

study area. In this research area, the physical 

vulnerability index varied from 0 to 0.573. As a 

result, the index value fell outside of the range of 0 to 

1. This is because the area's communications and 

service index values were also low.  
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Figure 3: Vulnerability mapping: (a) Social vulnerability map, (b) Economic vulnerability map,  

(c) Physical vulnerability map (Continue next page) 

(a) 

(b) 

(c) 
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Figure 3: Vulnerability mapping: (d) Institutional vulnerability map, (e) Environmental vulnerability map and 

(f) Cultural vulnerability map (Continue from previous page) 

 

(d) 

(e) 

(f) 



 

International Journal of Geoinformatics, Vol. 20, No. 8, August, 2024 

ISSN: 1686-6576 (Printed)  |  ISSN  2673-0014 (Online) | © Geoinformatics International 

10 

The majority of mukims in this region are urban, and 

since Selangor is Malaysia's most developed state, it 

offers superior physical infrastructure for services 

and communications. Low index values were 

observed for the communications and services 

subdimensions, ranging from 0 to 0.465 and 0 to 

0.380, respectively. In contrast, a number of mukims 

in the research region were categorized as having 

extremely high physical vulnerability, including 

Ampang, Hulu Langat, Cheras, Kajang, Beranang, 

Semenyih, Tanjung Dua Belas, Jugra, Telok 

Panglima Garang, and Morib. The index ranges for 

each of these places with extremely high physical 

vulnerability were 0.455 to 0.573. Because of their 

higher population density, these subdimensions have 

an impact on the locations with extremely high 

physical vulnerability. There are a lot of buildings in 

populated regions, and some of them are very 

vulnerable due to their age, type, and material 

characteristics. Some locations, such plantations, 

open spaces, or forests, had very low and low 

physical vulnerability since they were devoid of 

buildings.  

In disaster risk assessments, institutional 

vulnerability is rarely considered or used as a 

vulnerability component. Institutional vulnerability 

is a function of how resilient and equipped local 

institutions, governance frameworks, and 

organizational structures are to withstand a future 

crisis [27]. Thirteen indicators of institutional 

vulnerability were used in this study and were 

divided into three subdimensions. The first, 

institutional planning, had five indicators: early 

warning infrastructure, disaster drill preparation, 

evacuation planning, emergency drill training for 

community leaders, and emergency drill preparation. 

Five variables were also included in the following 

subdimension, institutional capability: emergency 

supplies, early warning system dissemination, 

emergency shelter capacity, training and education 

programs, and community communications with the 

local government. Health capacity, which is 

comprised of three indicators: the number of 

physicians, nurses, and hospital beds, was the final 

subdimension of institutional vulnerability. The 

findings of the institutional vulnerability index map 

for this research area are displayed in Figure 3(d). 

The analysis's findings showed that there was an 

index range of 0.756 to 0.864 across the 17 mukims. 

Due to the three mukims (Bandar, Tanjung Dua 

Belas, and Telok Panglima Garang) classified as very 

high institutional vulnerability and the three 

classified as high institutional vulnerability (Jugra, 

Kelanang, and Batu) combined, there was extremely 

high institutional vulnerability in Kuala Langat 

District.  

Consequently, Kuala Langat's range index fell 

between 0.867 and 0.894. When comparing the three 

districts, Sepang had one mukim in the low 

vulnerability class and two in the very low 

vulnerability class (Dengkil and Sepang). In Sepang 

District, the index ranged from 0.756 to 0.78. 

Because Sepang District had a lower health capacity 

vulnerability index than the other two districts, it had 

a lower vulnerability index. In Hulu Langat, the final 

district, there was one mukim (Ampang) classified as 

extremely vulnerable, one mukim (Semenyih) 

classified as highly vulnerable, and five mukims 

(Beranang, Cheras, Hulu Langat, Kajang, and Hulu 

Semenyih) classified as mediumly vulnerable. 

The degree of ecosystem degradation is known as 

environmental vulnerability, and the impacted 

region's vulnerability may be influenced by 

environmental factors [25]. Two subdimensions—

environmental conditions and climate and 

urbanization—formed the basis of the discussion of 

environmental vulnerability in this study. There were 

five indicators for the climate and urbanization 

subdimension: land-use types, heat spots, rainfall 

intensity, river quality, and land-use change. Forest 

areas, water resources, and solid waste areas made up 

the environmental conditions subdimension. The 

results of the environmental vulnerability map are 

shown in detail in Figure 3(e). The entire 

environmental vulnerability index fell between 0.266 

and 0.866 in the index range. The more urbanized 

areas of Cheras, Kajang, Dengkil, Beranang, and 

Semenyih are typically included in the very high 

vulnerability index. The very high score of 

environmental vulnerability varied from 0.450 to 

0.566. Consequently, regions classified as very high 

or high susceptibility typically had higher population 

densities or had undergone significant land use 

changes. Nonetheless, the majority of the regions in 

the very low and low vulnerability classes were 

protected or forested, with some having little to no 

inhabitants. In addition, there are palm oil plantations 

in a few places in Mukims Jugra, Kelanang, Bandar, 

and Sepang, for example. These regions, which 

contained more plantations and forests, had 

extremely low index values, ranging from 0.252 to 

0.492. In the research area, urbanization seems to be 

a significant factor in the increase in the 

environmental vulnerability index. Cultural 

vulnerability was the study's final dimension. In 

comparison to the other dimensions, the cultural 

vulnerability component has received less attention 

from researchers, discussions, and analyses. The 

intangible aspects of the attitude and perception 

subdimensions were the main emphasis of this 

study's investigation of cultural vulnerability.  
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The attitude subdimension assessed household and 

community attitudes and responses to disasters using 

five indicators. The five indicators were as follows: 

(1) Do people know where the evacuation shelters are 

located in their community? (2) Do people react to 

the early warning system in the event of a disaster? 

(3) Do people know the routes to the safest location 

during an evacuation? (4) Do they know the name of 

the organization in charge during a disaster? and (5) 

Does the community cooperate in their area? Two 

factors comprised the second subdimension, 

perception: the degree of faith in government DDR 

programs and the preparedness of households to 

utilize the emergency shelters offered by local 

authorities. The results of the Cultural Vulnerability 

Index are displayed in Figure 3(f), which includes the 

attitude and perception subdimensions. The lowest 

vulnerability index value was 0.255, and the highest 

value was 0.593, according to the findings of the 

cultural vulnerability index map. The only mukim 

categorized as having extremely low cultural 

vulnerability was Mukim Jugra. Compared to other 

mukims in the research area, households in Mukim 

Jugra responded better to disasters and had greater 

faith in the government and local authority's disaster 

recovery efforts since this mukim had the lowest 

vulnerability in the attitude and perception 

subdimensions. Ampang, Cheras, and Labu were the 

three mukims categorized as having extremely high 

vulnerability, nevertheless. These three mukims' 

respective index ranges were 0.4901 and 0.5649. 

Overall, six mukims (Hulu Semenyih, Beranang, 

Sepang, Bandar, Morib, and Telok Panglima Garang) 

were in the medium vulnerability class, four were in 

the low vulnerability class, and three mukims 

(Semenyih, Kajang, and Dengkil) were in the high 

vulnerability class. 

 

4.3 Multidimensional Vulnerability Mapping 

This study examined and observed the six 

comprehensive dimensions of vulnerability in the 17 

mukims across three districts. Figure 4 displays the 

chart representing the average six-dimensional index 

for the study area, serving as a point of comparison. 

According to the chart, the majority of mukims in the 

study area exhibited greater vulnerability in the 

institutional component as compared to the other 

dimensions. In this study area, the first emphasis 

should be placed on addressing the institutional 

dimension in order to decrease the vulnerability of 

the area to disasters. Subsequently, attention should 

be directed towards the economic dimension. The 

government and local authorities continue to 

demonstrate insufficient commitment and capability 

in terms of disaster preparation and mitigating 

disaster risk. This study aligns with the conclusions 

given by [28], who highlighted that the effects of 

hurricanes Katrina and Rina on the United States 

were worsened by institutional factors, including 

insufficient reaction, communication, and 

coordination among the respective institutions. 

Previous study emphasized that the importance of 

institutional vulnerability was evident in a series of 

past disasters, such as Hurricane Katrina (2005), 

Nepal Earthquake (2015), and the more recent 

Cyclone Idai (2019) [29]. The local authorities 

should enhance their Disaster Risk Reduction (DDR) 

procedures and educate the public to enhance their 

attitudes, knowledge, and perceptions of disaster 

management. 

Despite the fact that this study area is urban and 

has the highest income population in Malaysia, it has 

a high economic vulnerability due to a lack of budget 

and funding for disaster risk mitigation initiatives. 

Even though the area is urban and its citizens have 

high salaries and assets, they cannot increase the 

economic capacity of a location if not enough funds 

has been set aside for disaster preparedness [30]. 

However, the result also shows that the areas, on 

average, had lower vulnerability in the physical 

dimension compared to the other five dimensions. 

This is because some areas feature better physical 

facilities in terms of communications and access to 

basic services like electricity and water. The 

economic dimension is a further cause for concern in 

this study area because, based on the results, many 

mukims displayed the highest vulnerability in this 

dimension. The economic dimension is important, 

especially in how it reflects the capacity of people, 

organisations, and the local authorities to recover 

after a disaster event. 

The results from the combination of six 

dimensions show that the index range for MDVI was 

between 0.450 and 0.690. For the very low MDVI, 

the classes are between 0.450 and 0.515, with most 

very low vulnerability areas being in the Dengkil, 

Labu, Sepang and Jugra Mukims. However, in three 

mukims - Ampang, Cheras and Kajang - most of the 

areas were classified as very high or high. The index 

range for the very high class was between 0.622 and 

0.690, while the high-class index values ranged from 

0.584 to 0.621. Several other mukims contained areas 

classified as very high vulnerability, but these areas 

were small. For example, Mukim Tanjung Dua Belas 

fitted into all five classes, but most areas were in the 

medium vulnerability class. The detailed results are 

presented in the MDVI map shown in Figure 5. 
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Figure 4: Multidimensional vulnerability index chart 

 

 
 

Figure 5:  Multidimensional vulnerability index map 

 

4.4 Comparison of MDVI Map 

After completing producing the map using the 

Catastrophe Theory and GIS, the map produced was 

compared with the MDVI map produced using the 

Standard Normalization approach. Each map was 

overlay with the affected flood location based on the 

occurrences in 2021 as shown in Figure 6. Overall, 

there were 61 locations identified based on the 

information provided by DOSM. Based on Figure 

6(a) and Figure 6(b) shown that both maps have 

different class range of vulnerability. As shown in 

Figure 6, the MDVI produce by using the 

Catastrophe Theory and GIS are higher compared to 

the MDVI map produced using the standard 

normalization approach.  The flood occurrences 

within each MDVI class for both Catastrophe Theory 

and Standard Normalisation approaches are 

summarised in Table 3 for the purpose of comparison.  
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Figure 6: MDVI map: 

(a) Produced using the Catastrophe theory and (b) Produced using the standard normalisation 

 

Table 3: Comparison MDVI using Catastrophe theory and standard normalization 
 

MDVI Class 

Flood 

Occurrences 

(Catastrophe 

Theory) 

Flood 

Occurrences 

(Standard 

Normalization) 

Total Flood 

Occurrences 

Percentage % 

(Catastrophe 

Theory) 

Percentage % 

(Standard 

Normalization) 

Very High 6 4 10 60.0 40.0 

High 8 5 13 61.5 38.5 

Medium 28 13 41 68.3 31.7 

Low 9 12 21 42.9 57.1 

Very Low 10 27 37 27.0 63.0 

 

 

 

(a) 

(b) 
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The Catastrophe Theory method identifies a greater 

percentage of flood events in the categories of very 

high and high vulnerability, compared to the Standard 

Normalisation method. This suggests that the 

Catastrophe Theory approach would be more 

efficient in identifying the most vulnerable areas. In 

contrast, the Standard Normalisation approach 

identifies a considerably larger proportion of flood 

events in the categories of very low and low 

vulnerability. This implies that it can incorrectly 

categorise safer areas as vulnerable, resulting in a 

decrease in its accuracy. In general, the Catastrophe 

Theory method seems to be more efficient in 

identifying areas with high and medium 

vulnerability. It captures a higher proportion of real 

flood events in these zones compared to the Standard 

Normalisation method. 

 

5. Conclusion  

This study proposed the development of 

multidimensional vulnerability mapping assessment 

at the local level in Malaysia by considering six 

different dimension social, economic, physical, 

institutional, environmental and cultural using 

Catastrophe Theory and GIS. As a pilot study area, 

three districts in Selangor (Hulu Langat, Sepang and 

Kuala Langat) were selected as the study area in 

which to conduct the multidimensional vulnerability 

index assessment based on the proposed index model. 

This study’s main contribution is to conduct an 

assessment multidimensional vulnerability mapping 

assessment at the local level based on new MCDA 

approach with GIS. This study is an improvement 

from the previous approach used for a 

multidimensional vulnerability index. This new 

approach incorporates GIS, the new data driven 

MCDA approach and six different vulnerability 

dimensions.  The findings prove Catastrophe 

Theory's applicability as a tool for categorizing 

vulnerability indicators in the context of 

multidimensional vulnerability assessment using 

index approach. However, this approach has 

advantages if indicators have larger dataset, so 

indicator index values are balanced in each range. In 

this study, some of indicators have greater margin 

between one class to another class. The generated 

multidimensional vulnerability map proposed in the 

study area (Hulu Langat, Sepang and Kuala Langat) 

shows that the proposed model can present 

vulnerability at the local level. The map was 

generated by using the six vulnerability dimensions 

to map and classify the areas from very low to very 

high vulnerability. 

In conclusion, this research contributes 

significantly to the field of disaster risk management 

by providing a sophisticated approach to 

vulnerability assessment. The Catastrophe Theory 

method is more suitable for identifying and 

prioritizing high-risk areas for immediate 

intervention and resource allocation. Further studies 

could explore hybrid models that incorporate 

strengths from both methods to enhance overall 

predictive performance. The findings underscore the 

need for targeted interventions based on specific 

vulnerability dimensions, offering a solid foundation 

for scientifically informed policies and strategies for 

disaster prevention and mitigation. The study's 

integrated approach is highly beneficial for disaster 

risk reduction, emphasizing the importance of 

enhancing institutional capabilities, economic 

resilience, and community preparedness to improve 

overall resilience and reduce the impacts of future 

catastrophic events on vulnerable populations. The 

study's methodological framework, combining GIS 

and Catastrophe Theory, offers a valuable tool for 

developing dynamic, spatially explicit vulnerability 

maps that capture the evolving nature of disaster 

risks. 
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