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Abstract 

This research aims to develop a computational framework for shallow water bathymetry reconstruction using 

machine learning-based Satellite-derived bathymetry (SDB) running on cloud computing. The RF and LR 

algorithms were tested for performance by considering the influence of seasonal variations. Both algorithms 

were trained using bathymetric data from hydrographic surveys, converted to the number of test and validation 

samples which determine the number independently. The accuracy test considering quantitative aspects through 

RMSE, MAE and R2, as well as qualitative aspects using cross-sectional transects of underwater topography 

and 1:1 plot. The complex bottom topography and supported by various benthic varieties causes differences in 

the water reflectance of in each season, it is necessary to analyze their influence on the machine learning 

algorithm in SDB. Overall, the best RMSE, MAE, and R2 were produced by the RF algorithm in transition 

season II with values of 0.34 m, 0.21 m, 0.944 respectively. For the LR algorithm, the best performance is shown 

in the east season with respective accuracies of 0.60 m, 0.46 m, 0.83. Through cross-sections of underwater 

topography, SDB algorithm can represent accurately in various geomorphological bottom variations, such as 

lagoons and reef flats. The LR algorithm is not yet able to optimally reconstruct shallow water bathymetry 

because outlier values in the accuracy test by 1:1 plot. In general, the RF and LR algorithms show high accuracy 

results at depths of up to 2 meters, and accuracy tends to decrease at depths > 3 meters. Through this study we 

found a relationship between the low reflectance of waters in the west season, which is correlated with the low 

performance of the SDB RF and LR algorithms. This study provides a cloud computing framework for the SDB 

reconstruction, efficiently in time and storage facilities without leaving any residue. The impressive archive 

facilities also enable multi-season analysis. 
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1. Introduction 

Remote sensing-based computing technology makes 

it possible to carry out monitoring activities in remote 

areas and shallow waters effectively and efficiently 

[1][2] and [3]. This technique makes it possible to 

obtain estimates of shallow water bathymetry in 

certain areas using the Satellite-derived bathymetry 

(SDB) method [4] by utilizing optical multispectral 

remote sensing images [5] and [6], as well as radar 

images, which can be real aperture radar (RAR) or 

synthetic aperture radar (SAR) [7]. SDB is a series of 

techniques for reconstructing depth based on remote 

sensing sensors [8]. Nowadays, multispectral optical 

remote sensing imagery has become the most popular 

alternative for use in rapid mapping of shallow water 

bathymetry [9] and [10] with the main consideration 

being the low cost aspect [3], fast processing time [2], 

and the flexibility of algorithm modification and 

optimization available [11] and [12]. Multispectral 

imagery is able to describe depth estimates through 

reflectance schemes from shallow waters [6] which 

reflects electromagnetic energy radiation in the 

visible spectrum and is recorded by sensors [13].   
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However, this energy reflection has limitations due to 

a gradual decrease in energy intensity due to Inherent 

Optical Properties (IOP) and turbidity in the water 

column [13] and [14]. So, when reconstructing depth 

models, the optical properties of water are generally 

taken into account, which are described by [12], 

including the spectral characteristics of suspended 

solids and dissolved substances as well as basic 

reflectance, such as the concentration of chlorophyll-

a (Chl-a), the diffuse attenuation coefficient of the 

water body, detritus concentration, spectral shape, 

absorption, and backscatter coefficients. 

Common approaches known for reconstructing 

water depth using the SDB method on optical 

multispectral images include statistical and physics-

based ones. Statistical-based approaches are 

classified into empirical methods, while Physics-

Based Approaches are classified into semi-empirical 

and analytical methods (semi-analytical and quasi-

analytical) [13]. The main difference in these two 

approaches lies in the role of the presence of depth 

samples [1]. The statistical approach requires in-situ 

data as a variable to carry out "training" [15], while 

the Physics-Based Approach is concerned with and 

emphasizes the passage of electromagnetic waves 

and their attenuation in the atmosphere and water 

[16]. A consideration that needs to be noted is the 

precision aspect, and the accuracy is relatively lower 

than traditional survey methods (Echo-Sounder or 

Side scan sonar) with depth coverage that only 

reaches optically shallow waters that require clear 

visibility [3]. However, SDB-based water depth 

reconstruction allows researchers to obtain depth data 

quickly, cheaply, and efficiently over large areas 

[3][17] and [18]. 

Optimization of empirical methods in statistical 

approaches has increased rapidly with the 

development of machine learning-based computing. 

The SDB method in reconstructing depth utilizes 

linearity between reflectance values and in-situ depth 

samples [3], but there are conditions where this 

linearity cannot be met, so statistical approaches such 

as machine learning (ML) or Neural Network (NN) 

are used to reduce the sampling error rate to 

overcome the non-linear relationship between 

reflectance and in-situ depth data [3][19][20][21] and 

[22]. ML algorithms such as convolutional neural 

networks (CNN) have been used to reconstruct 

bathymetry on coasts and reservoirs using different 

bands simultaneously [21] and [23]. Other 

approaches such as random forest (RF) are also 

compatible with high resolution imagery to obtain 

detailed results in coastal areas [24] and [25]. 

In coastal and near-shore areas, reflectance values 

can show different intensities even in the same area 

due to differences in seasons (for example: wet or dry 

season) [26] and [27]. According to [28] in the 

southwest monsoon (SWM) period which is 

synonymous with rain and wetness, it brings material 

content from upstream to estuaries and areas near the 

coast and influences colored dissolved organic matter 

(CDOM), but in other seasons the influence mainly 

influenced by microbial activity, anthropogenic 

sources, high temperature and radiation. We believe 

that there is a need for an in-depth study of the 

influence of season on the quality of the reflectance 

value produced by each recorded image, and its 

correlation with the resulting SDB. 

The ML approach was chosen to reconstruct SDB 

for seasonal variations in shallow waters to deal with 

water complexity due to coral reef cover and benthic 

variations resulting in differences in energy 

reflectance [3] and [29]. This study aims to evaluate 

the effect of seasonal variations on the quality of 

image reflectance for optically reconstructing 

bathymetry in shallow waters using machine learning 

techniques with complex topographic variations. 

This evaluation plays an important role in selecting 

multispectral optical images that are adapted to the 

current season, so that this research can complement 

previous research [1][3][19][20][25] and [30]. ML 

algorithms applied in current SDB studies include 

random forest (RF), convolutional neural networks 

(CNN), and support vector machine (SVM), which 

are optically capable of providing good accuracy 

[3][19] and [30]. Through studies [3] RF is able to 

produce products with better accuracy than SVR and 

linear regression. 

 

2. Material and Methods 

2.1 Study Area 

This study was conducted in the waters of Pari Island, 

which is part of the Thousand Islands chain, DK 

Jakarta Province. Based on absolute location, this 

inhabited island is located at 106˚34′4.28′′ E – 

106˚38′33.87′′ and 5˚50′36.69′′ S – 5˚52′32.5′′ S. This 

island has a land area of around 41.32 Ha [31], which 

is administratively part of the Seribu Islands 

Regency, Special Region of Jakarta Province (see 

Figure 1). The shallow waters on Pari Island consist 

of various types of coral reefs that are in healthy 

condition [32]. Coastal geomorphology in shallow 

waters tends to show high complexity, where the 

shallow water area of Pari Island is divided into two 

significant areas. In the eastern part the 

geomorphological zone is dominated by inner reef 

flat, outer reef flat, reef crest and reef slope, while in 

the eastern part it is dominated by inner reef flat, deep 

lagoon, shallow lagoon, reef crest and reef slope, and 

in general the reef crest completely surrounds 

shallow water zone on Pari Island [33].  
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Figure 1: Location of Pari Island as a study area 

 

Benthic habitat classes discovered by [33] and [34] 

are live coral, live coral + rubble, rare seagrass + 

sand, dense seagrass, sand + rubble, sand, sand + rare 

seagrass, pavement/rock, and rubble. Live coral 

dominates 17% of all benthic classes, and sand 

dominates 36% of all classes. 

 

2.2 Image Data Collection and Correction 

The image data used in this research is Sentinel-2 

L2A which has been scaled to the Bottom of 

Atmosphere (BOA), and has been geometrically 

corrected with 12 multispectral image channels. The 

spatial resolution of images varies, from 10 meters 

(channels B2, B3, B4 and B8) to 20 meters (channels 

B5, B6, B7, B11 and B12), and 30 meters (channels 

B1, B9 and B10) [35]. The channels used are B2 

(blue, 490 nm), B3 (green, 560 nm), B4 (red, 665 nm) 

and B5 (VNIR, 705 nm). The sentinel-2 L2A image 

used is filtered based on the season in Indonesian 

waters. These seasons are winter monsoon or 

Northwest monsoon (NWM) in the range of 

December – February, southeast monsoon (SEM) in 

June – August, and between the two main seasons 

there is transition season I (March – May)), and 

transition season II (September – November) [36]. 

Images are cloud computed using Google Earth 

Engine (GEE) platform. 

The selected image is a collection of Sentinel-2 

L2A image data on the GEE database with minimum 

cloud cover and turbidity. The image is then 

subjected to a process of reducing the number of 

images by calculating the "mean" of all pixel values 

in the entire image collection in the same season. We 

also present and analyze the spectral signature on 

sentinel-2 L2A images in each season with similar 

water bottom material objects, using Semi Automatic 

Classification Plugin in QGIS. Separation of land, 

deep water and shallow water objects is carried out 

using the normalized difference water index (NDWI) 

transformation approach (see Equation 1). Only 

positive NDWI values are identified as shallow water 

[17] and used as input to perform cropping on the 

image. The equation of NDWI is defined in equation 

1. 

 

( ) ( )

( ) ( )

Green NIR
NDWI

Green NIR

 

 

−
=

+
 

 

Equation 1 

 

Where ρ(green) is the green band spectral channel 

(B3 in the Sentinel 2 L2A image), ρ(NIR) is the Near 

Infrared band spectral channel (NIR/B4). Figure 2 is 

a sentinel-2 L2A image that has been cropped to 

obtain only shallow water objects. However, work 

domain adjustments are still made to obtain 

maximum shallow water objects. 
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Figure 2: (a) Multispectral Sentinel 2 L2A image data in visible spectrum display, (b) NDWI transformation 

results and (c) Image that has been masked based on NDWI transformation 

 

 
 

Figure 3: Spatial distribution of bathymetry data for training and validation during the computing process 

 

2.3 Data Collection using Hydrographic Survey 

The distribution of sample depth data used in 

machine learning operations in this research can be 

seen in Figure 3. Depth data was obtained through a 

hydrographic survey using a Teledyne CV 100 single 

beam echosounder device equipped with a Trimble 

(   ) 

(   ) 

(   ) 
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R8S GNSS system. The survey was carried out on 

October 15 2023 with clear weather conditions and 

solar radiation was visually visible penetrating the 

shallow water column to the maximum (see Figure 

4). 

The depth data from the hydrographic survey is 

then carried out in a division process to select data 

that will become samples for training needs and 

validation depth data to assess the accuracy of the 

regression results. The division of the depth data into 

sample data and validation are completely automated 

in the GEE software. The program code is set to 

divide ± 465 total depth data into sample data and 

training data with portions of 80:20 and iterates in the 

computing process 100 times. In general, bathymetric 

data from hydrographic survey measurements is in 

the data range from 0.5 to 7 meters above sea level. 

The depth data is then converted into a raster to be 

uploaded to GEE and used as a sample for the 

regression model. 

 

2.4 Random Forest Regression 

This study involves a random forest (RF) algorithm 

from machine learning to reconstruct bathymetric 

information in shallow waters in the study area. RF is 

an algorithm that involves decision trees in carrying 

out ensemble classification or regression methods [3] 

and [37]. RF which carries the concept of ensemble 

decision trees is suitable for use on various types of 

data, where irrelevant predictors can be ignored, and 

linear and non-linear mechanisms can be handled 

well for easy interpretation [38] and [39]. RF was 

chosen to be run in this study by considering its 

ability to select an optimal decision tree, so that high 

accuracy can be obtained by dealing with outliers and 

noise data [3]. RF's unique capabilities are capable of 

handling data in large quantities and dimensions, 

effectively handling multicollinearity, and normally 

distributed data is not a necessity. This method does 

not depend on the assumption of linearity between 

predictor variables and response variables, so it is 

relatively strong against collinearity compared to 

other regression methods, such as linear regression 

[38]. In general, in GEE the arguments that must be 

met to run RF regression are numberOfTrees, 

variablesPerSplit, minLeafPopulation, bagFraction, 

maxNodes, and seed. 

 

2.5 Linear Regression 

Linear regression/transformation is based on the 

concept of attenuation of light radiation which occurs 

exponentially with a positive correlation with depth 

[14]. The use of multiple channels in the imagery is 

recommended as the use of a single band in the LR is 

not feasible because variations in benthic cover 

reflectance can lead to inaccurate depth predictions. 

For example, at the same depth, pixels with bright 

sand will appear shallower than pixels with seagrass 

which has lower reflectance, thereby causing errors 

in depth estimation [3]. GEE can apply linear 

regression through the functions: a) linearFit(), b) 

linearRegression(), c) robustLinearRegression(), 

and d) ridgeRegression(). 

 

2.6 Accuracy Assessment 

Accuracy tests were carried out to measure the ability 

of the machine learning algorithm applied to 

reconstruct the bathymetry of shallow waters around 

Pari Island. The accuracy test is related to the quality 

of shallow water bathymetric maps produced using 

validation data which is proportionally determined 

along with training data in the GEE program code.
 

 
 

Figure 4: (a) Weather conditions on the day the bathymetry data was announced, and (b) Visual conditions at 

the bottom of shallow water which shows maximum solar radiation penetrating the water column 

(  ) (  ) 
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Accuracy tests were systematically applied to 

shallow water bathymetric reconstruction results 

representing each season (four bathymetric 

reconstruction maps). This study uses a mathematical 

and visual approach in interpreting the accuracy of 

SDB results, namely a) RMSE and b) MAE which 

represent mathematical methods and c) comparison 

of topographic profiles with reference depth, and d) 

R2 includes a 1:1 plot between validation data 

measured through hydrographic survey with shallow 

water bathymetric reconstruction results via SDB 

using machine learning methods. RMSE and MAE 

are able to provide absolute quantification of results 

regarding the difference between real values in the 

field and SDB data, thus producing a range of 

instability which is denoted in ±. Further qualitative 

analysis is needed to spatially describe the 

distribution of shallow water bathymetry 

reconstruction results using a comparison approach 

of topographic profiles with reference depths. 

Comparative analysis of topographic profiles can 

provide a clear picture of the capacity of the 

bathymetry model against validation data in each 

season. R2 include Plot 1:1 is useful as a tool for 

detecting inaccurate depth estimates, either too low 

or too high [3]. The RMSE and MAE are defined in 

equations 2 and 3, respectively. 

 

 

( )
2

image fieldY Y
RMSE

N

−
=


 

 

Equation 2 

 

image fieldY Y
MAE

N

−
=


 

Equation 3 

 

Where Yimage is bathymetric data from SDB 

reconstruction, Yfield is bathymetric data from 

measurements as validation data, and N is the size of 

the dataset [12]. The research flow diagram can be 

seen in Figure 5.  Based on the flowchart in Figure 5, 

the entire process was carried out on GEE with the 

Sentinel-2 image dataset which was filtered based on 

season and cloud cover. Images that have undergone 

a filtering process are masked using NDWI which 

separates water and non-water objects. Then, we 

simultaneously uploaded the depth dataset as 

material for regression into the form of training and 

validation depth. Depth data that has been converted 

to raster via topo to raster processing, and has been 

uploaded via assets to GEE is then divided 

automatically in the code editor into training and 

validation data.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5: Research flow diagram 
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The training data is then operated into RF and LR 

regression to perform depth reconstruction. The 

results of the depth reconstruction via SDB are then 

tested for accuracy to carry out performance analysis. 

 

3. Results  

3.1 Results 

3.1.1 Spectral signature of coastal waters in different 

seasons 

This study was carried out from the end of 2022 to 

the end of 2023, or in detail divided into four seasons, 

namely: December 2022 – February 2023 (West 

Season), March 2023 - May 2023 (Transition Season 

I), June 2023 – August 2023 (Eastern Season), and 

September 2023 – November 2023 (Transitional 

Season II). We analyzed Spectral Signatures from a 

variety of geomorphological zones and possible 

benthic habitats. This analysis aims to describe the 

influence of seasonal variations on the spectral 

response emitted by waters. Spectral response 

samples were taken in the lagoon zone, sandy reef 

flats, and bottom waters with coral cover. We used 

the QGIS tool with the Semi-Automatic 

Classification (SCP) plugin [40] to extract the 

spectral reflectance values of the three dominant 

objects in the waters. Figure 6 is a spectral reflectance 

curve extracted from four images representing 

seasonal variations. 

The three objects observed showed a similar 

pattern, where the reflectance emitted by the lagoon 

object was significantly at the highest value in the 

blue wavelength channel (B2). The reflectance of 

bottom waters dominated by coral reefs and sand is 

significantly responded to by the green wavelength 

channel (B3). The spectral response of the three 

objects slopes gradually when entering the channel 

with the red wavelength (B4). Water bottom objects 

with sandy substrates have the highest spectral 

reflectance of all objects observed. We carried out 

detailed identification of the reflections from the 

three objects by narrowing the analyzed spectral 

channels (Figure 7). We found that the lowest 

reflectance signal from the three objects as a whole 

occurs in the west season. The lagoon and reef 

substratum get the highest reflectance in the 

transition season I (March – May 2023), while the 

sand substratum gets the highest reflectance in the 

east season (June – August 2023). This study found 

the influence of seasonal variations on the reflectance 

level of waters with different bottom substrates. 

Although the variations shown are not significant, 

this empirical evidence can be used as an important 

basis for filtering data used by other researchers in 

the future in coastal and shallow water applications. 

 

3.1.2 Bathymetry spatial distribution 

The results of shallow water bathymetry 

reconstruction can be seen in Figure 8 for the spatial 

distribution of bathymetry using the RF algorithm, 

and Figure 9 shows the results of bathymetry 

reconstruction using the LR algorithm, in various 

seasons. The depth values produced by RF in various 

seasonal variations do not show significant 

differences. In transition season 2, the model 

reconstructs the bathymetry slightly deeper than in 

other seasons. Deeper water areas such as lagoons are 

well reconstructed. Reef flat areas are the dominant 

geomorphological type surrounding islands and 

lagoons, and can be reconstructed well. The results of 

shallow water bathymetric reconstruction throughout 

the season consistently show a similar distribution, 

where in areas of water with fore reef geomorphology 

show a deeper sloping pattern than waters on the reef 

flat. 
 

 
Figure 6: Spectral response of Lagoon objects (blue), sandy substrate (red),  

and substrate with coral reefs (green) during seasonal variations: 

(a) West Season, (b) Transition Season I, (c) East Season and (d) Transition Season II 

(  ) 

(  ) (  ) 

(  ) 
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Figure 7: Detailed reflectance during seasonal variations 
 

 
Figure 8: Results of shallow water bathymetric reconstruction in various seasons using the RF algorithm 
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Figure 9: Results of shallow water bathymetric reconstruction in various seasons using the LR algorithm 
 

Table 1: Summary of model variables and accuracy test quantification of the RF algorithm  

in various seasonal variations 
 

Seasonal 

Input 

Depth Sample Variable 

Importance 

Accuracy Assessment 

Training Testing RMSE MAE R2 

West Season 346 96 B2 B3 B4 0.43 0.28 0.905 

1st Transition 

Season 

354 88 B2 B3 B4 0.39 0.22 0.928 

East season 358 84 B2 B3 B4 0.39 0.22 0.938 

2nd Transition 

Season 

353 89 B2 B3 B4 0.34 0.21 0.944 

 

This depth distribution significantly limits and 

surrounds the shallow water domain around Study 

Island. Different results are shown in shallow water 

bathymetric reconstruction using machine learning 

methods via the LR algorithm, where there are 

significant differences in depth results in each season. 

The resulting maximum depth difference reached 1.9 

meters. The LR algorithm produces water areas with 

"invalid" results, where the water areas are 

systematically reconstructed by the LR algorithm as 

land pixel values, and are outside the range of values 

provided by the sample/training data. 

 

 

 

3.1.3 RMSE and MAE evaluation 

RMSE and MAE and R2 are applied to all shallow 

water bathymetric reconstruction results in each 

seasonal variation. In the RF and LR algorithms, the 

portion of depth data used for training and testing 

(validation) is in the ratio range of 80:20 of the total 

depth data that is input to the model. The system 

created will automatically calculate sample 

requirements, so there will be differences in the 

number of samples for training and testing in each 

season. Tables 1 and 2 provide a summary of 

accuracy test results (RMSE, MAE, and R2) on 

machine learning methods using RF and LR 

algorithms.  
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The range of RMSE and MAE values in the 

reconstruction results using the RF algorithm does 

not show a significant difference, but in the RF 

algorithm the range of RMSE differences between 

seasons has a distance that needs to be considered. 

The difference between the highest and lowest 

RMSE - MAE values in the RF algorithm is 0.09 and 

0.07 respectively, while in the LR algorithm the 

resulting difference is 0.16 and 0.1 respectively for 

RMSE and MAE. The best performance was 

produced by the RF algorithm in the transition season 

II variation (September – November 2023). 

 

3.1.4 Depth analysis of 1:1 plot 

Figure 10 depicts a 1:1 plot of the algorithms with the 

highest and lowest performance. RF produces the 

highest and lowest performance in the transition 

season II and west season respectively, while in the 

LR algorithm the east season shows the highest 

performance, and the west season has the lowest 

performance. The overall plot shows that at depths < 

1 meter there is a strong relationship between the 

SDB results and the reference depth. Through R2 

calculations in the RF algorithm, the two seasons 

were able to show significant performance with R2 

values > 0.9, while in the LR algorithm, there was a 

difference of 0.12 between SDB with the highest and 

lowest performance, which were 0.83 and 0.71 

respectively. In general, depths below 2 meters 

contribute to significant accuracy, but accuracy tends 

to decrease after a depth of 3 m, and outlier data looks 

increasingly massive. Specifically, in the LR 

algorithm, there are reconstructions that are 

considered "invalid" because they produce data 

above normal figures (water level = 0 m), so they are 

interpreted as land. 
 

Table 2: Summary of model variables and accuracy test quantification of the LR algorithm  

in various seasonal variations 
 

Seasonal Input Depth Sample Variable Importance Accuracy Assessment 

Training Testing RMSE MAE R2 

West season  

 

371 

 

 

94 

 

 

Band Ratio  

0.76 0.56 0.71 

1st Transition 

Season 

0.65 0.51 0.79 

East Season 0.60 0.46 0.83 

2nd Transition 

Season 

0.62 0.47 0.82 

 

 
Figure 10: 1:1 plot results of bathymetric reconstruction results using the SDB method with the best 

performance represented by the RF 2nd transition season and LR east season, while the lowest  

performance is represented by the RF west season and LR west season 
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3.1.5 Underwater topographic profile analysis 

We complete the process of analyzing the results of 

bathymetric reconstruction using SDB through 

machine learning (RF and LR) with analysis of the 

bottom topography of the waters. Our analysis was 

carried out using data from hydrographic 

measurements that were not used as sample data for 

SDB reconstruction. The comparison is carried out 

by comparing real measurement data in the field with 

the highest and lowest performance results from each 

RF and LR algorithm. The transect location can be 

seen in Figure 11. In transect 1, both the RF and LR 

algorithms with the best and lowest performance 

were able to show a pattern similar to the reference 

depth (measurements in the field), except for the 

SDB reconstruction results in the west monsoon LR 

algorithm which were not able to represent shallow 

areas (see Figure 12 red dash line). The lagoon to the 

north (start of the transect) is consistently described 

as a deeper area than the waters to the south which 

tend to be shallower (see Figure 13). West Monsoon 

shows the lowest performance for both RF and LR 

algorithms. Overall, a non-uniform pattern is shown 

by the SDB reconstruction results from the reference 

depth measurements, although the resulting depth 

differences tend to be small. The bathymetry 

resulting from reconstruction via SDB at illustration 

points 1 – 26 is random so it is difficult to capture 

depth variations and is unable to illustrate depth 

patterns well, but the results tend to be uniform 

starting to be shown by illustration points > 26 (see 

Figures 14 and 15). 

 

 
 

Figure 11: Location of transect 1 (green color) which is in the western part of Pari Island waters by cutting 

through the lagoon area, and location of transect 2 (red color) which is in a relatively uniform reef flat area 
 

 
 

Figure 12: Transect 1 which depicts the underwater profile of the SDB with the best performance, illustrated 

from the north (lagoon) to the south (reef flat) 
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Figure 13: Transect 1 which depicts the underwater profile of the SDB with the lowest performance, 

illustrated from the north (lagoon) to the south (reef flat) 

 

 
 

Figure 14: Transect 2 which depicts the underwater profile of the SDB with the best performance,  

illustrated from West to East which is in the reef flat zone 
 

 
 

Figure 15: Transect 2 which depicts the underwater profile of the SDB with the lowest performance, 

illustrated from West to East which is in the reef flat zone 
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3.2 Discussion 

This research aims to reconstruct shallow water 

bathymetry using the SDB method by considering the 

influence of seasonal variation, namely the west 

season, transition season I, east season and transition 

season II. Performance testing was carried out on the 

RF and LR algorithms on sentinel 2 images, the 

computation of which was carried out in the cloud on 

the GEE platform. Based on performance tests that 

are quantitatively based by looking at the RMSE, 

MAE and R2 values, the RF algorithm is able to 

provide significant results in each season by 

consistently producing minimal differences in 

accuracy between seasons. Qualitatively, the 

algorithm's ability to reconstruct bathymetry can be 

seen in the results of cross-sections of bottom water 

topography, in this case the model with the best 

performance is able to describe depth variations more 

accurately. The SDB model with the best 

performance is reflected in its ability to describe 

depth variations well to meet qualitative aspects, and 

is supported by adequate quantitative aspects. This is 

in accordance with the statement of [3] which states 

that accuracy analysis through cross-sectional 

identification is a more effective way to assess the 

accuracy of SDB results, because it provides an in-

depth evaluation of the algorithm's ability to replicate 

seabed morphology in the real world. 

In areas with geomorphological and benthic 

complexity in transect 1, the RF algorithm shows 

significance in replicating the shape of the water bed 

and quantitatively shows good results through RMSE 

and MAE. Based on the results obtained, the RF 

algorithm produces RMSE and MAE ranges from 

0.34 – 0.43 m, and 0.28 – 0.21. The LR algorithm 

quantitatively produces RMSE and MAE ranges of 

0.76 – 0.60 m, and 0.46 – 0.56 m. In general, the 

performance produced in this study outperforms 

previous research by [41] with the best R2 of 0.84, 

and matches the latest study by [42] with R2 > 0.9 at 

the same study location. The significance provided 

by the RF algorithm is the ability to reconstruct the 

morphology of the bottom waters in the study area 

even though there is interference from benthic 

commodities in these waters, and become eminence 

of this study. Differences in interpretation of results 

still appear in the form of differences between 

reference depth and SDB results, but these 

differences tend to be insignificant. 

This research highlights seasonal variations and 

their influence on the reflectance ability of waters on 

different substratum. In the west season the three 

pilot samples (sand, reef and lagoon) were at the 

lowest reflectance levels, this corresponds to the 

accuracy produced in the west season being the 

lowest for both the RF and LR algorithms.  

In the western season, various outlier data appeared 

(see Figure 10) which resulted in low quantitative 

accuracy test results. The superiority of RF as stated 

by [3] is that it is able to overcome variations in 

benthic cover in carrying out bathymetric 

reconstruction with SDB. We believe the level of 

significance and accuracy of SDB results of various 

machine learning algorithms can be continuously 

improved by considering seasonal variations with 

optimal reflectance evenly distributed, as well as 

more samples covering different benthic varieties and 

geomorphologies. The emergence of SDB 

reconstruction results with the lowest performance in 

the west monsoon and in line with the low level of 

reflectance in various benthic and morphological 

variations makes it a research alternative that needs 

to be explored in the future. 

Additionally, our research is processed in cloud-

based computing devices (GEE), making it possible 

to cut processing time and save storage facilities 

without leaving residue during the processing 

process. The data archive facility in peta byte [43] 

allows for multi-season SDB analysis which may not 

be possible easily using desktop-based computing 

devices. However, the main limitation is the image 

data that can be used, which is limited to images with 

medium resolution (namely: Sentinel 2 and Landsat 

series). Bathymetric reconstruction of shallow waters 

through SDB is a rational alternative, considering the 

difficulty of conducting surveys in the field with 

complex instruments, and the expensive [1][3][8] and 

[44]. The consequence that must be accepted is the 

fact that there is a difference between the real depth 

in the field and the SDB reconstruction results [3] 

which are recorded in the form of RMSE, MAE and 

other accuracy test methods. 

 

4. Conclusion 

This study conducts performance tests for 

reconstructing shallow water bathymetry using the 

SDB method using machine learning on RF and LR 

algorithms, taking into account the influence of 

seasonal variations. In general, the RF algorithm 

shows significant results with impressive accuracy 

test results over all seasonal variations, whether seen 

through quantitative aspects in the form of RMSE, 

MAE and R2 tests or qualitatively demonstrated 

through the ability to replicate seabed morphology 

based on visualization of cross-sectional bottom 

topography. waters. Apart from that, the LR 

algorithm can still provide good results, even though 

in several seasons it still shows outlier results through 

quantitative-based accuracy tests. The RF algorithm 

has the advantage of reconstructing the bathymetry 

of shallow waters, by overcoming the influence of 

reflectance differences due to seasonal variations, as 
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well as the influence of benthic varieties and bottom 

water geomorphology. In addition, our research 

found that the west monsoon with minimal water 

reflectance produces SDB reconstruction with the 

weakest performance of all scenarios for RF and LR. 

The cloud-based computing facilities used make it 

possible to save time and storage capacity without 

leaving processing residue. Further research that can 

be carried out based on the advanced topic of this 

study is to consider the influence of turbidity, 

temperature and salinity of waters which have an 

influence on CDOM to see their influence on the 

resulting accuracy of the SDB. 
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