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Abstract 

The present investigation examines the modelling and prediction of Land Use and Land Cover (LULC) changes 

in Thailand's Samut Songkhram province using three LULC prediction models: Markov Chain (LCM), Cellular 

Automata with Artificial Neural Network (CA-ANN), and Patch-Generating Land Use Simulation (PLUS) and 

using Sentinel-2 data and the proposed technique. By comparing models, this study identifies land conversion 

patterns effectively in each land use character. This study is a helpful strategy for acquiring land use information 

quickly. The proposed approach is practical in two significant aspects: first, it accurately identifies land use 

variations, and second, it simulates future land use change distributions. The analysis demonstrates that land 

use patterns have changed in a balanced manner between 2019 and 2021. The results reveal that patterns' 

quality in types of artificial surfaces and water bodies are efficient classifications, with more than 80% with 

LCM and CA-ANN. Furthermore, researchers performed a comparative analysis of the proposed approaches 

against well-known models such as Markov Chain, CA-ANN, and PLUS in the research area for 2023. The 

comparison disclosed that the proposed approaches are predictable, and LULC change identification in the 

dynamics area is more realistic, especially when using initial variable inputs. Classified LULC for 2023 

confirmed the recent trends, with increased artificial surfaces, tree-covered regions, water bodies, and other 

land covers, while herbaceous crops, woody crops, mangroves, and salt fields decreased. Even though the study 

focuses primarily on short-term LULC changes, it highlights the significance of expanding the analysis to 

include long-term forecasts for a more straightforward overview. These long-term predictions provide essential 

information for policymakers and planners, assisting them in developing long-term management strategies to 

navigate the study area's transfer environment. 
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1. Introduction 

For sustainable resource management and informed 

decision-making, it is now critical to comprehend and 

forecast changes in land use and land cover (LULC) 

in the rapidly changing Samut Songkhram province, 

Thailand. In order to evaluate the performance of 

three well-known LULC change models—Markov 

Chain, Cellular Automata with Artificial Neural 

Network (CA-ANN), and the Patch-Generating Land 

Use Simulation (PLUS) model-this study offers an 

extensive investigation. The present paper offers a 

comprehensive investigation of the PLUS model, 

CA-ANN, and Markov chain. Examining changes in 

land use has major benefits using these three models. 

Through the efficient integration of remote sensing 

(RS) and geographic information systems (GIS) 

technologies, they are able to robustly represent the 

spatial and temporal dynamics of land use changes, 

which is their greatest strength. 
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For the purpose of prediction and optimal control 

theory, the Markov model is a theory based on the 

generation of Markov random process systems [1]. 

The Markov model enables the measurement of 

conversion states between different forms of land use 

and provides information on the rates of transfer 

between them. It has become a crucial technique in 

geographic research since it is frequently used to 

forecast geographic features in the absence of 

unforeseen events. The Markov chain forecasts the 

next state and all subsequent states based on the 

current state by using transition probabilities, acting 

as an autonomous random process. With the 

exception of events that have aftereffects, this 

technique can accurately forecast regional 

characteristics. The significance of Markov chains is 

highlighted by their frequent applicability in land use 

change instances. 

System spatiotemporal changes are well 

simulated through the Cellular Automata (CA) 

model, which is renowned for its strong spatial 

computing capabilities. Simulating self-replicating 

events within living systems, this discrete dynamic 

model accurately explains complex natural 

occurrences. Simple, accurate, and thorough 

representation of natural occurrences is made 

possible by CA, which is made up of rule-based 

processes and provides the rationality and viability 

needed to mimic complicated systems. Finite states, 

nearby interactions, discrete cells, and rule-based 

operations define a typical CA model. The present 

state and its surrounding environment, which are 

determined by a given transformation function, are 

what determine the next state cell [2].  

The PLUS model consists of two sub-models: one 

uses a cellular automata model using multi-type 

random patch seeds (CARS), and the other uses a rule 

mining technique based on the Land Expansion 

Analysis Strategy (LEAS). This integrated model 

uses the random forest technique to detect changes in 

land use between two periods and investigate the 

relationship between these changes and driving 

factors. For every type of land use in the research 

area, LEAS computes growth probabilities. To model 

future land use patterns using CARS, these 

probabilities are then merged with pixel numbers of 

various land kinds, conversion matrices, and 

neighborhood weights for each land-use type. Within 

a framework of growth probabilities, CARS, which 

is characterized by spatiotemporal dynamics and 

temporal consistency, permits the unplanned 

development of new land use patches [3].  

With the world undergoing unprecedented 

changes brought on by urbanization, population 

movements, and environmental factors, efficient 

methods for estimating spatiotemporal patterns in 

land use are becoming more and more crucial. To 

forecast future changes in land area, modeling land 

use and cover (LULC) is a crucial tool [4]. This 

research provides an example of how GEE is a 

powerful tool for land use and land cover analysis, 

helping to make data-driven decisions about urban 

growth and environmental monitoring in the context 

of spatiotemporal dynamics [5]. The main objective 

of this study is to publicize the performance of well-

known LULC models. The debate is found in an 

aspect of the completeness, correctness, and quality 

assessment of these models. The advantages and their 

limitations are discussed in this study to convey to the 

future landscape of the province of Samut 

Songkhram. 

Through an exploration of the complexities of 

these predictive models, this study hopes to provide 

significant additional knowledge about how 

effectively they predict changes in mangroves, salt 

fields, artificial surfaces, tree-covered areas, and 

various land cover types. Furthermore, this paper 

hopes to learn more about how well these models 

predict the loss of herbaceous and woody crops, 

mangroves, and water bodies. The foundation for a 

more thorough understanding is established by this 

research, which encourages the extension of analysis 

to long-term projections in addition to addressing 

short-term LULC alterations. This research provides 

a comprehensive understanding of the possible 

effects of different land use scenarios, which has 

important implications for planners and 

policymakers in Samut Songkhram province. In an 

effort to offer an effective structure for long-term 

management plans and well-informed decision-

making in the face of changing spatiotemporal 

dynamics in the area, we evaluate and compare the 

predictive power of several models. 

 

2. Materials 

2.1 Study Area 

The research site is situated in Samut Songkhram 

province, depicted in Figure 1, located in the western 

region of Thailand (13.242° N to 13.520° N and 

99.852° E to 100.079° E) and encompassing an area 

of 420 km². The boundary data for Samut Songkhram 

Province, Thailand, in Shapefile format was sourced 

from the Geo-Informatics and Space Technology 

Development Agency (GISTDA). The boundary is 

shown in red in Figure 1. This province exhibits 

distinct land-use characteristics, with an agricultural 

area comprising 68.22%, built-up areas occupying 

15.24%, and forestry covering 6.79%. The total 

population of the province is 194,000 people, with a 

GPP of 20,400 million baht.  
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Figure 1: Study area located in Samut Songkhram province 

 

The primary economic sectors driving the local 

economy encompass agriculture, fishery, and 

tourism, contributing a total of 12,600 million baht. 

Samut Songkhram features a coastal expanse along a 

segment of the Gulf of Thailand, with the Mae Klong 

River serving as the primary watercourse in the 

province's central region [6]. The Mae Klong estuary 

marks the convergence point between the Mae Klong 

River and the Gulf of Thailand, covered urban and 

aquaculture zones, rendering this area significant for 

fishing activities and aquaculture [7]. 

 

2.2 Datasets and Processing 

2.2.1 Satellite data 

The Sentinel-2 time series data images for 2019 and 

2021 were used in this study to determine land use 

and land cover (LULC), spectrum covering visible 

bands, NIRs, and SWIRs with a spatial resolution of 

10 meters. The images were acquired through the 

year of investigation, with cloud mask processing via 

the Google Earth Engine data hub. Sentinel-2 data in 

Google Earth Engine (GEE) are accessible in two 

distinct products, distinguished by the correction 

level of the image: L1C for top-of-atmosphere (TOA) 

reflectance and L2A for bottom-of-atmosphere 

(BOA) reflectance [8]. We used the L2A product for 

the year of 2019 and 2021 in this study, covering the 

Samut Songkhram province. We separate the period 

of imagery into three periods of each year defined as 

a beginning period (January-April), a middle period 

(May-August), and the end period (September-

December). This dataset was made due to the 

product's capability to adequately represent the actual 

reflectance of land use and land cover. The image 

datasets had already been georeferenced, projected, 

and corrected for atmospheric conditions.   

 

2.2.2 Elevation and slope 

The Shuttle Radar Topography Mission (SRTM), 

which provides the digital elevation model (DEM) 

with a spatial resolution of 30-meter, was used to 

utilize the elevation and slope dataset in this study, 

depicted in Figure 2. This dataset resulted from 

international cooperation between the National 

Aeronautics and Space Administration (NASA), the 

National Geospatial-Intelligence Agency (NGA), 

and German and Italian space agencies. SRTM 

generated a near-global Digital Elevation Model 

(DEM) over a span of 11 days in February 2000, 

encompassing latitudes between 60°N and 56°S [9]. 

In addition, the SRTM Digital Elevation Data 

Version 4 is available on Google Earth Engine. 

 

2.2.3 Distance from river and road 

OpenStreetMap (OSM) is an international 

collaborative project for volunteer data founded in 

2004 that aims to create an open-access world map. 

In this study, we integrated various OSM data based 

on 2023 as factors. 
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Figure 2: Explanatory variables (a) Elevation (b) Slope (c) Distance from streams  

(d) Distance from roads and (e) Distance from villages 

 

Various topographic features, including houses, 

streets, waterways, railways, landmarks, and forests, 

are meticulously mapped by volunteers globally [10]. 

This study applied the OSM dataset and extracted 

specific information related to waterways and streets. 

Additionally, we digitized the road and stream details 

more through visual interpretation with satellite 

imagery of the completed dataset. Both datasets were 

then used in spatial analysis of Euclidean distance 

from polyline to find out the closest cells depicted in 

Figure 2.  

 

2.2.4 Distance from village 

The village locations in Samut Songkhram province 

were digitized using the topographic map from the 

Royal Thai Survey Department (RTSD), specifically 

the sheet series L7018. This map is accessible 

through the GISTDA Portal (https://gistdaportal. 

gistda.or.th/). Additionally, the dataset underwent 

analysis using the Euclidean distance method to 

assess the distances from multiple village points. This 

analysis was conducted to address the proximity of 

these points to traditional living areas shown in 

Figure 2.  

 

3. Methodology 

The methodology employed in this study is 

structured into four distinct sections. These include 

(i) the mapping of driving force variables for relative 

factors, (ii) Land Use and Land Cover (LULC) image 

classification, (iii) the implementation of three LULC 

prediction models: Markov Chain, CA-ANN, and 

PLUS, utilizing various software and plugins, and 

(iv) the subsequent evaluation and validation of these 

models for assessment. The overall workflow is 

illustrated in Figure 3. 

 

3.1 Image Processing 

Sentinel-2 time-series imagery acquired in 2019 and 

2021 was sourced from the Google Earth Engine 

(GEE) platform for utilization in this research. The 

Level 2A product, known for its capacity to rectify 

geometric, radiometric, and atmospheric errors, was 

employed. Concurrently, measures were 

implemented to mitigate the impact of cloud cover in 

the imagery, ensuring an accurate representation of 

real reflectance conditions.  
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The random forest machine learning procedure was 

used to classify land use and land cover (LULC) 

throughout various time periods. This method is one 

of the most extensively used classifiers for image 

classification with remotely sensed data. The 

Random Forest method is a cutting-edge machine 

learning technique, particularly for LULC 

classification using multispectral and hyperspectral 

satellite sensor images. Random Forest, an extension 

of classification and regression trees, uses an 

ensemble learning approach to generate several 

decision trees by randomly bootstrapping training 

dataset samples. This method entails creating random 

binary trees that generate subsets of the training data, 

with out-of-bag data acting as the validation set. The 

number of trees (ntree) and the number of variables 

(mtry) are two critical Random Forest parameters 

that must be tuned. This classification process was 

facilitated through the application of a systematically 

curated training dataset. The delineation of LULC 

classes involved the identification of eight distinct 

categories: (1) Artificial surfaces, this class includes 

artificial surfaces such as urban buildings, concrete 

parks, industrial zones, and trash dump deposits. (2) 

Herbaceous crops, this land cover category includes 

cultivated herbaceous plants, such as non-perennial 

crops that do not survive more than two growing 

seasons. This class also includes cultivated 

herbaceous plants, such as non-perennial crops with 

a life cycle of two growing seasons or less.  

These crops are normally picked for their upper 

sections, but the root systems can last for years. 

Sugarcane, paddy, and maize are some of these crops. 

(3) Woody crops, this class includes permanent 

crops, such as orchards and plantations that are not 

cut for harvesting. Examples include fruit trees, 

coffee and tea plantations, oil palms, and rubber 

plantations. (4) Tree-covered areas, this category 

includes any geographic location with more than 

10% of natural tree plants, shrubs, and herbs that 

have a higher density than trees. It also includes trees 

for afforestation and forest plantation. (5) 

Mangroves, this category includes any geographic 

area with more than 10% woody vegetation that is 

constantly or sometimes flooded by salt and brackish 

water. (6) Water bodies, this category encompasses 

any geographic location that is primarily covered by 

inland water bodies throughout the year. (7) Salt 

fields, this class is about any place covered with salt 

from human activity and (8) Miscellaneous, this 

category comprises geographic areas dominated by 

natural herbaceous plants, shrubs, and vegetation that 

cover less than 10% of the land. The classified LULC 

outcomes for the period spanning 2019 to 2021 

underwent validation through a comparative analysis 

with ground truth data. This rigorous validation 

process served as a pivotal step in establishing a 

reliable initial input for the subsequent prediction 

model. 

 

 
Figure 3: The methodology workflow 
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3.2 LULC Prediction Models 

Finding reliable models to forecast changes in land 

use has long been a goal of scientific inquiry. Many 

approaches have been used in several research areas 

to improve prediction capacities. Huang et al. applied 

Markov models using cellular automata to forecast 

changes in Beijing's land use. Their study 

demonstrated the applicability of the CA-Markov 

chain model in this setting by focusing on forecast 

changes in land cover in the area. Similarly, to 

forecast the development of different land use types 

in their research area over a certain timeframe, Xu et 

al. used the PLUS model, which combines the Land 

development Analysis Strategy (LEAS) with the 

Cellular Automata model of Multi-type Random 

Patch Seeds (CARS). Their findings showed a 

significant increase in simulation accuracy, with high 

kappa coefficients suggesting better prediction 

accuracy for urban and other land use patterns. 

Higher precision is still a struggle, though, even with 

these developments. For example, Gantumur et al.'s 

study on the urban growth rate of Ulan Bator has 

limitations; even with the use of cellular automata 

and artificial neural network approaches, the kappa 

coefficient only achieved just above 70%. It also 

suggests that, while some models may produce 

promising results, gaining ideal accuracy remains an 

important issue. Future research efforts may need to 

investigate novel techniques or modify existing 

methodologies in order to overcome these constraints 

and get higher prediction accuracy in land use change 

modelling. 

 

3.2.1 Markov Chain (MC) 

We used the Land Change Modeler (LCM) in TerrSet 

software to project the future change of LULC in 

Samut Songkhram province with historical land 

covers and spatial driving factors. The LCM was 

developed as an empirically parameterized land 

change projection tool. This modeler can help to 

support a wide range of planning activities based on 

an analysis of historical dataset, transition, a set of 

explanatory variables. Also, the Markov Chain (MC) 

are utilized to derive the relationship and a projection 

of quantity to map the future land activities [11]. The 

LULC datasets in 2019 (initial) and 2021 (final) were 

inputted to LCM in TerrSet software to compute the 

change analysis and determine spatial trends as well 

as gains and losses between two periods. Then, the 

explanatory variable datasets were performed to 

create potential transitions with Multi-Layer 

Perceptron Neutral Network (MLPNN). Various 

variables were identified as inputs to predict LULC 

maps that descriptive variables are indicators which 

can influence changes in each LULC class.  

In the present study, the Cremer’s V coefficient was 

used to select the variables. After, we generated 

future prediction in 2023 by applying CA algorithm 

based on the extracted maps of LULC types for the 

past year (2019 and 2021).3.2.2 Cellular Automata 

Artificial Neural Network (CA-ANN) 

The Modules of Land Use Change Evaluation 

(MOLUSCE) plugin within QGIS 2.18 software 

serves as a valuable tool for estimating potential 

LULC changes. Constructed with the Cellular 

Automata (CA) model, it incorporates a transition 

probability matrix. Furthermore, the Cellular 

Automata Artificial Neural Network (CA-ANN) 

model integrated into MOLUSCE, proves to be a 

dependable instrument for predicting future LULC 

patterns. This predictive capability is applicable to 

investigation, planning, and management activities 

across various, as facilitated by this tool. The spatial 

shifts in LULC within the model's predictions are 

determined by assessing the pixel's current condition, 

including the initial situation, neighboring events, 

and the governing changeover laws [12]. In this 

study, an examination of the tangible alterations in 

Land Use and Land Cover (LULC) between 2019 and 

2021 was conducted within Samut Songkhram 

province. Subsequently, a transition matrix was 

generated based on the findings of this analysis. Two 

initial LULC datasets and five spatial variable 

datasets were inputted into the model to generate a 

comprehensive land cover change map, revealing the 

evolving patterns. Moreover, the transition 

probabilities obtained through the Multi-Layer 

Perceptron Artificial Neural Network (MLP-ANN) 

learning process were utilized to elucidate the 

dynamics of LULC changes observed. The transition 

potential maps, certain function, and simulated land 

use/cover map were generated under this component 

using the cellular automata approach. 

 

3.2.3 Patch-Generating Land Use Simulation 

(PLUS) 

The PLUS model integrates a land expansion 

analysis strategy (LEAS) and a Cellular Automata 

(CA) model based on multi-type random patch seeds 

(CARS). This fusion incorporates a novel multi-type 

seed growth mechanism and employs multi-objective 

optimization algorithms. The model is designed to 

uncover underlying patterns and their distinct 

contributions to changes in land use. Furthermore, it 

incorporates a novel data mining framework for 

identifying the rules governing land use change. 

Consequently, the model is anticipated to provide a 

more comprehensive exploration of the various 

factors influencing land use change [13] and [14].  
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In this study, different categories of land spanning the 

two phases of Land Use and Land Cover (LULC) 

change in 2019 and 2021 were utilized to extract 

expansion through the Land Expansion Analysis 

Strategy (LEAS). The added portions were sampled 

using a random forest algorithm to discern factors 

influencing the expansion of various types of LULC 

and their driving forces. Consequently, the 

probabilities of development expansion and the 

contributions of explanatory variables to the 

expansion of different land types during this period 

were derived from this analytical step. Subsequently, 

the Cellular Automata (CA) model, based on multi-

type random patch seeds (CARS), was implemented. 

This model combines random seed generation and a 

threshold-decreasing mechanism. The PLUS model 

dynamically simulates the automatic generation of 

patches in both time and space, constrained by the 

development probabilities obtained in the earlier 

step. Therefore, the future LULC simulation in 2023 

was performed in this framework. 

 

3.3 Model Assessment and Validation 

The validation of the prediction LULU map in 2023 

obtained from LCM, MOLUSCE, and PLUS was 

done using the actual LULC in 2023 map. In this 

study, indices, including completeness, correctness, 

and quality, were used to quantitatively assess the 

forecast finding of these methods. The details of 

different indices used in this research are described 

below. The completeness index represents the 

percentage of features present in the source data that 

are accurately considered in the result. This index 

specifically discounts any impact from feature units 

that are related to other features and are incorrectly 

distinguished. Consequently, the completeness index 

is defined as defined in equation 1. 

 

(%) 100
TP

Completeness
TP FN

= 
+

 

Equation 1 

 

The correctness index serves as a metric for the 

accuracy of predictions. It represents the percentage 

of features detected in the results that align with the 

reference features. Notably, in this index, the 

presence of feature units in the source data that were 

not distinguished in the result does not impact the 

value of the correctness index. This index is defined 

as defined in equation 2. 

(%) 100
TP

Correctness
TP FP

= 
+

 

Equation 2 

The quality that pertains to the evaluation of finding 

of both correctness and completeness and is thus 

defined in equation3. 

(%) 100
TP

Quality
TP FP FN

= 
+ +

 

Equation 3 

 

The true positive (TP) is defined as the count of units 

within a feature that both exist in the source data and 

are correctly identified in the findings, representing 

the number of features accurately detected. The false 

positive (FP) corresponds to the count of features that 

do not actually exist in the source data but are 

erroneously identified in the result as features. On the 

other hand, the false negative (FN) denotes the count 

of negative features present in the source data but 

overlooked or not identified in the result [15]. 

 

4. Results 

4.1 The LULC Classification between 2019 and 2021 

This section delineates the outcomes of the methods 

employed for the Land Use and Land Cover (LULC) 

classification in Samut Songkhram province during 

the period spanning 2019 to 2021. The results 

obtained through the Random Forest algorithm are 

specifically discussed. Figure 4 illustrates the LULC 

maps derived from the classification process, 

depicting distinct categories for the years 2019 and 

2021. The change in LULC classes between 2019 and 

2021 is depicted in Figure 5. It is observed that the 

artificial surface, water bodies, tree-covered areas, 

and miscellaneous might increase by 19.4 km2, 6.4 

km2, 6.1 km2, and 0.2 km2, respectively, while woody 

crops mangroves, herbaceous crops, salt fields might 

decline by 22.5 km2, 3.6 km2, 3.4 km2, 2.6 km2, 

respectively. The analysis extends to examining the 

LULC changes as a percentage of the total land area. 

A positive value indicates an improvement in 

categorization, whereas a negative value signifies a 

deterioration in categorization. 

 

4.2 The LULC Prediction in 2023 

In this prediction phase, three models, namely 

Markov Chain from LCM, CA-ANN for 

MOLUSCE, and the PLUS model, were used for 

predicting the Land Use and Land Cover (LULC) 

map of Samut Songkhram province in 2023, as 

depicted in Figure 6. Subsequently, the LULC 

classification for the year 2023 revealed the 

following areas: artificial surfaces covering 78.9 km², 

herbaceous crops spanning 58.2 km², woody crops 

occupying 104.6 km², tree-covered areas 

encompassing 22.5 km², mangroves extending over 

39.4 km², water bodies comprising 99.0 km², salt 

fields encompassing 9.3 km², and miscellaneous 

areas covering 1.6 km².
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Figure 4: Land use land cover map of Samut Songkhram province (a) 2019 and (b) 2021 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: LULC Change analysis from 2019 to 2021 

 

The LULC prediction for 2023, generated by the 

Land Change Modeler, produced the subsequent 

areas: artificial surfaces covering 98.4 km², 

herbaceous crops spanning 61.5 km², woody crops 

occupying 86.5 km², tree-covered areas 

encompassing 10.8 km², mangroves extending over 

31.0 km², water bodies comprising 112.4 km², salt 

fields encompassing 11.8 km², and miscellaneous 

areas covering 0.8 km². The predictions from 

MOLUSCE for 2023 were as follows: artificial 

surfaces covering 101.8 km², herbaceous crops 

spanning 54.2 km², woody crops occupying 91.5 

km², tree-covered areas encompassing 8.6 km², 

mangroves extending over 29.5 km², water bodies 

comprising 117.1 km², salt fields encompassing 10.0 

km², and miscellaneous areas covering 0.7 km². 

Finally, the PLUS model predictions for 2023 were 

as follows: artificial surfaces covering 115.8 km², 

herbaceous crops spanning 56.8 km², woody crops 

occupying 74.1 km², tree-covered areas 

encompassing 11.0 km², mangroves extending over 

28.5 km², water bodies comprising 116.2 km², salt 

fields encompassing 10.4 km², and miscellaneous 

areas covering 0.6 km² as illustrate in Figure 6. 
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Figure 6: Predicted LULC in 2023 from different techniques; (a) Actual classification (b) LCM 

(c) MOLUSCE and (d) PLUS 
 

Also, the predicted LULC 2023 map by using these 

three models was validated with different validation 

techniques. In addition, the results of classifying 

LULC into all 8 classes using different methods were 

utilized. The classification results were compared 

and are presented in Figure 7. The study found that 

the classification of LULC classes; Herbaceous crop, 

Mangroves, Salt fields, Tree-covered areas, and 

Miscellaneous by all methods produced similar 

results [Figure8].  

For enhanced comprehension and comparative 

analysis of the methods, Table 1 displays the 

outcomes of completeness, accuracy, and quality 

indicators. This table serves to evaluate and compare 

the results of Land Use and Land Cover (LULC) 

prediction for the year 2023 using three distinct 

methods. The completeness, correctness, and overall 

quality of the validation methods are presented, with 

the highlighted blue numbers in the table signifying 

the most promising results. Consequently, it is 

observed that the accuracy of the Markov Chain 

method closely aligns with that of CA-ANN in LULC 

prediction models, while the PLUS method provides 

a satisfactory level of accuracy. In scenarios 

involving artificial surfaces, herbaceous crops, 

mangroves, water bodies, and salt fields, the Markov 

Chain methods exhibited the highest overall quality, 

with the PLUS model registering the lowest overall 

quality. Also, the CA-ANN method provides the 

highest overall quality for woody crops. 

Nevertheless, when considering tree-covered areas 

and miscellaneous categories, these exhibited the 

poorest overall quality across all methods in this 

study. This outcome is attributed to the limited 

presence of these specific LULC types within the 

province. Additionally, the random points for 

accuracy assessment in these classes were limited 

and lacking enough. 
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Figure 7: the comparison of LULC prediction from different methods in Samut Songkhram province 

 

 
 

Figure 8: Accuracy assessment of LULC classification in 2019, 2021 and 2023 
 

Table 1: Evaluation of the role of the methods in predicting the LULCs Blue numbers indicate the best results 
 

Models 
Validation 

Methods 

LULC (%) 

AS HC WC TC MG WB SF MC Average 

LCM 

(Markov 

chain) 

Completeness 98.68 88.37 67.74 9.09 73.81 95.00 70.00 0.00 62.84 

Correctness 87.21 65.52 84.00 11.11 81.58 92.68 70.00 0.00 61.51 

Quality 86.21 60.32 60.00 5.26 63.27 88.37 53.85 0.00 52.16 

MOLUSCE 

(CA-ANN) 

Completeness 98.68 74.42 68.82 9.09 71.43 96.67 40.00 0.00 57.39 

Correctness 83.33 64.00 83.12 11.11 83.33 87.88 80.00 0.00 61.60 

Quality 82.42 52.46 60.38 5.26 62.50 85.29 36.36 0.00 48.08 

PLUS 

Completeness 90.79 60.47 44.09 9.09 59.52 90.83 40.00 0.00 49.35 

Correctness 66.99 50.98 70.69 11.11 86.21 84.50 33.33 0.00 50.48 

Quality 62.73 38.24 37.27 5.26 54.35 77.86 22.22 0.00 37.24 

 

In brief, the results of the indices and the subsequent 

calculation of the average between the two 

methodologies, Markov Chain and CA-ANN, reveal 

a close similarity. However, the Markov Chain 

method exhibits a superior average in terms of 

completeness, correctness, and overall quality 

compared to CA-ANN. As a result, the simulation of 

artificial surfaces, herbaceous crops, mangroves, 

water bodies, and salt fields within LULC categories 

is better achieved with the Markov Chain approach. 

On the other hand, the performance of CA-ANN is 

comparable to that of Markov Chain. At the same 

time, the PLUS model demonstrates moderate 

performance, indicating a need for adjustments in 

certain prediction processing parameters within the 

model. 
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4.4 Discussion 

The investigation of LULC changes in Samut 

Songkhram Province from 2019 to 2021 using 10-

meter spatial data shows an important increase in 

artificial surfaces, water bodies, tree-covered areas, 

and miscellaneous. The development is mostly due to 

the province's growing population, which allows for 

further urbanization and residential expansion. These 

findings are consistent with the findings of a 

comprehensive investigation on demographic shifts 

observed across Thailand's provinces between 2010 

and 2019. Samut Songkhram Province has a growing 

population, accounting for 71% of the province's 

total [16]. Regarding the GPP and the province's 

structure, it has been determined that the province has 

an agrarian economy and fewer municipalities than 

cities. Therefore, the province's urban areas have a 

large population and are important drivers of 

economic activity. There are public facilities for the 

residents in the surrounding area. As a result, it 

explains the rise in artificial surface areas. In 

addition, this tendency is consistent with the Land 

Development Department's (LDD) recommendations 

in the 2021 Agricultural Map Report [17], which 

encourages appropriate agriculture based on the 

criteria. It advises farmers to replace medicinal plants 

with high-value fruit plantations, including lychees, 

coconuts, and pomelos. 

In this prediction phase, LULC classifications 

during this timeframe were employed to generate 

transition potential matrices for LULC changes using 

three distinct models and simulate future changes. 

Three models were used: (1) the Markov Chain from 

the Land Change Modeler (LCM), (2) the CA-ANN 

for MOLUSCE, and (3) the PLUS model to forecast 

the LULC of Samut Songkhram province for 2023. 

The LULC classification includes artificial surfaces 

(78.9 km²), herbaceous crops (58.2 km²), woody 

crops (104.6 km²), tree-covered areas (22.5 km²), 

mangroves (39.4 km²), water bodies (99.0 km²), salt 

fields (9.3 km²), and miscellaneous areas (1.6 km²). 

The Land Change Modeler's 2023 LULC prediction 

identified the following areas: artificial surfaces 

(98.4 km²), herbaceous crops (61.5 km²), woody 

crops (86.5 km²), tree-covered areas (10.8 km²), 

mangroves (31.0 km²), water bodies (112.4 km²), salt 

fields (11.8 km²), and miscellaneous areas (0.8 km²). 

MOLUSCE predicted the following areas for 2023: 

artificial surfaces (101.8 km²), herbaceous crops 

(54.2 km²), woody crops (91.5 km²), tree-covered 

areas (8.6 km²), mangroves (29.5 km²), water bodies 

(117.1 km²), salt fields (10.0 km²), and miscellaneous 

areas (0.7 km²). The PLUS model predicted the 

following areas for 2023: artificial surfaces (115.8 

km²), herbaceous crops (56.8 km²), woody crops 

(74.1 km²), tree-covered areas (11.0 km²), mangroves 

(28.5 km²), water bodies (116.2 km²), salt fields (10.4 

km²), and miscellaneous areas (0.6 km²). The 

expected LULC 2023 map derived from these three 

models was validated using various validation 

approaches.  

Moreover, the results of classifying LULC into 

all eight classes using different methods were 

compared and are presented. The study found that the 

classification of herbaceous crops, mangroves, salt 

fields, tree-covered areas, and miscellaneous areas 

produced similar results across all methods. The 

overall quality of the simulated LULC patterns 

demonstrated an average exceeding 50%, excluding 

the PLUS model. Notably, certain LULC types 

exhibited prediction qualities surpassing 80%, 

particularly in the case of artificial surfaces and water 

bodies. Furthermore, we conducted a comparative 

analysis by applying the proposed methods alongside 

well-accepted models such as Markov Chain, CA-

ANN, and PLUS to the study area for the year 2023. 

The comparison revealed that the proposed methods 

can simulate LULC dynamics more realistically, 

particularly when utilizing initial variable inputs. 

Previous research has shown that the impact of the 

LULC class area varies depending on the 

classification method used, including machine 

learning algorithms, predicting the LULC models, 

and typical classification techniques [18]. This study 

found that the results of the classification of the eight 

land use classes were not totally compatible with 

areas classified as the same land use class using other 

methodologies. The changes in the area under the 

LULC class across various models of classification 

were attributable to variances in model parameter 

modification, methodologies, and algorithm 

efficiency, respectively [19]. However, despite 

methodological differences, these approaches 

demonstrated similar prediction patterns, showcasing 

consistent outcomes in terms of complex interactions 

and competition within the LULC dynamics. In 

addition, the improvement of the open-source PLUS 

model for model’s applicability for higher resolution 

simulations is important. We can improve driving 

force factors relative to socio-economic and natural 

environmental factors such as population growth, 

GDP growth, technology, and climate scenarios [20]. 

 

5. Conclusion 

The rapid land use change is critical to natural 

resource management and planning. Change 

detection or predictable change with speed and 

precision are challenging. This study focuses on the 

proposed effective and reproducible tools to analyze 

the causes and consequences of alternative future 

landscape dynamics. Our study simulated three 

LULC prediction methods for 2023 in Samut 
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Songkhram province using initial LULC data from 

2019 and 2021. LCM, CA-ANN (MOLUSCE), and 

PLUS prediction models have been investigated. 

This comparison focused on the rapid classification 

of LULC to carry out simulation and model 

assessment. An artificial surface (AS) and water body 

(WB) have remarkable results, more than 80% in 

LCM and CA-ANN (MOLUSCE). Without 

parameter adjustment for the model, the results 

demonstrated the potential for rapid build-up area 

identification. The increase in artificial surfaces may 

be attributed to demographic influences leading to 

land transformation for various purposes, including 

urban and settlement development. However, crop 

information is still challenging, according to crop 

characteristics. Notably, this research focused on 

short-term changes in land use and land cover 

(LULC). Additionally, the short LULC prediction 

was proven using data from 2019 and 2021. This 

result can be helpful information for planners or 

governments who need insight data for land 

management and policy. Extending the analysis to 

long-term predictions is advisable for a more 

comprehensive understanding and informed 

decision-making. Such long-term predictions can 

provide valuable insights for policymakers and 

planners, aiding in the formulation of sustainable 

management strategies for the ecosystem in the study 

area. 
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