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Abstract 

Traffic accidents are a pervasive global issue. In Thailand, a Southeast Asian country, recent years have 

witnessed a concerning surge in such incidents. This research aims to identify accident black spots within the 

country. The secondary data, including accident location records on national and rural highways from 

Thailand's Ministry of Transport, covering the period between 2021 and 2022, was examined by analytical tools 

such as severity index analysis, spatial autocorrelation analysis (Moran's I), Getis-Ord Gi* statistic, Cluster 

and Outlier Analysis, and Kernel density estimation (KDE). The findings revealed a non-random spatial 

distribution of accidents across Thailand's road network, characterized by spatial clustering. These clusters, 

both high and low severity of road accident intensity (hot spots and cold spots), exhibited a 99 percent 

confidence level and spanned all regions. Furthermore, accident density varied within each area, influenced by 

provincial size and internal characteristics. Precise identification of genuine accident black spots in each 

province emerged through a comprehensive overlay and analysis of these combined results. These findings 

support relevant agencies in assessing accident cluster levels and effectively pinpointing black spots, ultimately 

enhancing safety on national and rural highways in Thailand. 
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1. Introduction 

The World Health Organization (2018) has identified 

traffic accidents as the foremost global cause of 

mortality. The gravity of this issue is contingent upon 

the enforcement of policies and legislation within 

each country, encompassing aspects like speed limits, 

driving under the influence, helmet usage, and the 

utilization of car seats. Each year, 1.35 million lives 

are lost to road accidents, with an additional 20-30 

million individuals sustaining injuries due to this 

cause worldwide. Notably, road accidents constitute 

the primary cause of fatality among individuals aged 

5-29 years, particularly in developing regions such as 

middle-income and low-income countries. In 

Southeast Asia, the road traffic death rate per 100,000 

people experienced an upward trajectory between 

2000 and 2016. Thailand occupied the top position 

with the highest road traffic death rate at 32.7 deaths 

per 100,000 population, followed by Vietnam (26.4), 

Malaysia (23.6), Myanmar (19.9), Laos (16.6), 

Cambodia (17.7), the Philippines (12.3), Indonesia 

(12.2), and Singapore (2.2), respectively [1]. 

Between 2014 and 2021, Thailand experienced a 

notable increase in accident frequencies. 

Specifically, 19% of all accidents in Thailand 

occurred on the national highways, which constituted 

the primary public thoroughfares connecting various 

regions, provinces, districts, and significant locations 

within a comprehensive network. Within the broader 

context of accidents across the country, there existed 

a considerable 66% likelihood of encountering 

accident-prone zones, often termed 'black spots,' 

distributed as follows: 66% on straight road 

segments, 13% at curves, 6% at median points of 

cross-shaped intersections, 5% at T-shaped 

intersections and Y-shaped intersections, 3% at 

cross-shaped intersections, 2% on bridges, and 2% on 

steep slopes, respectively [2]. 
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These road accident black spots are also known as 

hazardous road locations, high-risk areas, accident-

prone spots, hotspots, sites warranting attention, and 

priority investigation locations [3]. They are 

identified as places with heightened accident risks, 

often resulting in loss of life and property. Their 

identification is contingent upon a synthesis of road 

characteristics, land utilization patterns, and socio-

economic considerations. Furthermore, these 

hotspots serve as indicators of areas marked by a 

disproportionately higher concentration of accidents 

relative to other regions [4]. 

Hotspot mapping is a spatial analysis technique 

employed to visualize the distribution of accidents 

across the Earth's surface, while also accounting for 

the varying levels of accident density in different 

regions [4]. This mapping method encompasses three 

principal analytical approaches: 1) spatial analysis, 2) 

interpolation, and 3) cluster mapping. Spatial 

analysis involves the examination of spatial data, 

such as coordinates, in conjunction with descriptive 

data. Examples include Kernel density estimation 

(KDE), point density estimation (PDE), and line 

density estimation (LDE) [5] and [6]. Interpolation, 

on the other hand, is a spatial estimation method that 

relies on the existing values within a given dataset. 

This entails the selection of appropriate equations for 

estimation, including techniques like Inverse 

Distance Weighting (IDW), kriging, spline, or 

natural neighbour [7]. Cluster mapping, the third 

approach, is a spatial autocorrelation analysis 

technique that assesses the degree of clustering of the 

phenomenon under investigation when compared to 

neighbouring areas using statistical methods [8] and 

[9]. The outcomes of these three analytical 

approaches are presented as spatial data, delineating 

accident risk areas and their respective risk levels. 

However, it is essential to acknowledge that the 

shape, extent, and location of these risk areas may 

differ according to the specific variables and 

indicators employed in each technique. 

Utilizing all three types of hotspot analysis 

techniques to identify accident black spots 

significantly enriches our comprehension of their 

occurrence. The application of Global Moran's I, a 

spatial autocorrelation analysis, serves to grasp the 

comprehensive landscape of accidents. 

Subsequently, Getis-Ord Gi* statistic and Cluster and 

Outlier Analysis assessment are employed to discern 

accident severity levels. Employing density analysis 

uncovers densely clustered accident black spots. The 

amalgamation of these three analytical approaches 

aids in pinpointing hotspots, thereby contributing to 

the establishment of a foundational knowledge base 

that underpins the formulation, administration, and 

execution of traffic-related policies. This endeavor 

aims to ensure safer roads and diminish accidents 

within the study area [10][11] and [12]. In this 

research, spatial analysis is applied to identify 

accident black spots along Thailand's national 

highways. Through the utilization of hot spot analysis 

techniques, encompassing spatial autocorrelation 

analysis, Global Moran's I, Getis-Ord Gi* statistic 

and Cluster and Outlier Analysis, and Kernel density 

analysis, the outcomes are compared, enabling the 

effective pinpointing of accident black spots. This 

endeavor culminates in a spatial dataset that 

buttresses decision-making concerning Thailand's 

highway accident management. 

 

2. Research Methodology 

Thailand, situated in Southeast Asia, shares borders 

with Laos, Myanmar, and Cambodia. It ranks as the 

20th most populous nation globally. Geographically, 

the country is demarcated into six regions, 

encompassing the northern, northeastern, eastern, 

western, southern, and central zones. Thailand 

comprises 77 provinces, as illustrated in Figure 2. 

The conceptual framework shows the research 

methodology of this study, which consists of data 

collection, data preparation, and data analysis 

processes (see Figure 1). 

 

2.1 Research Data 

The secondary dataset utilized in this analysis 

included accident location data within the national 

highway and rural highway network, covering the 

period from 2021 to 2022 [13], as detailed in Table 

1. Thailand is geographically partitioned into six 

regions: the Northern Region, Central Thailand, the 

Northeastern Region, Eastern Thailand, and the 

Western and Southern Regions. Collectively, these 

regions encompass 77 provinces, as depicted in 

Figure 2, spanning a total land area of 513,120 square 

kilometers. 

 

Table 1: Data used in research 
 

Order Information Source 

1 
Accident locations on the network of national 

highways and rural highways 
Department of Highways (2020) 

2 Thailand’s administrative boundaries  Ministry of interior (2020) 

3 Road networks Ministry of Transport (2020) 
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Figure 1: Conceptual framework 

 

 
Figure 2: Administrative boundaries and locations of national highway and rural  

highway accidents in Thailand 
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The data collection phase extended from January 1, 

2021, to September 30, 2022, encompassing 

information on accident locations, road names, 

damage sustained, and the contributing causal factors 

for each incident. A meticulous process involving 

accuracy assessment, outlier identification, and 

subsequent removal was undertaken, resulting in the 

establishment of an extensive spatial accident 

database for Thailand's road network. 

 

2.2 Data Analysis 

In this research article, the spatial accident database 

of the Thai road network was analyzed to identify 

accident black spots on the national highways. 

Commenced with a spatial assessment of accidents 

on the Thailand Road Network, the analysis was 

structured into the following steps: 

• Conducting a Severity Index analysis to 

assess the severity levels of accidents in 

each location. 

• Determining an optimal spatial distance 

using Incremental Spatial Autocorrelation 

analysis. 

• Utilizing the Global Indicator of Spatial 

Autocorrelation to discern the overall 

spatial distribution pattern of accidents on 

the Thai road network and categorizing 

them as random, dispersed, or clustered. 

• Applying Kernel Density analysis to 

identify areas with high accident density 

within the road network. 

• Executing Hot and Cold Spot analysis. 

• Implementing Cluster and Outlier Analysis 

to elucidate the relationship between 

accident severity levels and neighbouring 

locations. 

 

The details of each step are elaborated below: 

 

2.2.1 Spatial analysis of accidents on the Thailand’s 

road network 

1) Severity Index 

Analyzing the severity of road accidents provides 

insight into the extent of damage incurred. This 

research employed the concept of Equivalent 

Property Damage Only (EPDO) (Equation 1), which 

aggregates the weighted values of accident patterns 

along with accident frequency [14][15] and [16]. 

 

i j ijEDPO w f=  

Equation 1 

 

Where: 

 EDPOi = Equivalent Property Damage 

                 Only for area i 

wj = Weighting factor for accident type j as  

          detailed in Table 2 

fij = Frequency of accidents of type j in area i  

 

Table 2: Weighting factors for different types  

of accident damage [14] 
 

Severity Categories j Weight (wj) 

Property Damage 1.0 

Minor Injuries 3.5 

Severe Injuries and Fatalities 9.5 

 

2)  Global Indicator of Spatial Autocorrelation 

The Global Indicator of Spatial Autocorrelation 

measures the level and direction of spatial 

distribution of accidents on national and rural 

highways. The results of the analysis were 

categorized into 3 types: clustered, dispersed, and 

random, determined by 1) Global Moran's I for 

Spatial Autocorrelation, 2) z-scores, and 3) p-values 

(see Equation 2). 
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Equation 2 

 

Where:   

I = Moran’s I index   

xi = Observed value of area i 

xj = Observed value of area j  

             x  = Average of observed values  

n = Number of observations 

w = Sum of the spatial weight matrix 

wij = Spatial weight matrix  

 

To perform the analysis, it was crucial to select an 

appropriate distance that would define the analysis 

scope for the phenomenon. Fixed distances were 

employed based on the principles of spatial 

relationships. Consequently, spatial data within a 

specified distance were assigned weights, while 

spatial data beyond that distance received a weight of 

0. (Equation 3) calculated this based on the distance 

of the spatial data and the proximity of accident 

occurrences for each dataset, utilizing the distance 

determination method derived from Incremental 

Spatial Autocorrelation [17]. 

 

( ) ( )
2 2

2 1 2 1d X X Y Y= − + −  

 

Equation 3 

Where: 

(X2, Y2) = Geographic coordinates of spot a  

(X1, Y1) = Geographic coordinates of spot b 

         d = Distance between a and b 
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Spatial autocorrelation, as measured by Global 

Moran's I, fell within a range between -1 and +1. 

Values within the range of 0 to +1 indicated a positive 

spatial relationship, signifying a cohesive spatial 

pattern. Values within the range of 0 to -1 denoted a 

negative spatial relationship, indicative of a 

fragmented spatial pattern. Finally, when the spatial 

autocorrelation value of Global Moran's I equaled 0, it 

suggested a random spatial distribution. 

 

3) Kernel Density Estimation 

The size of the bandwidth in Kernel density 

estimation is a critical factor that significantly 

influences the outcomes of the analysis. This method 

estimates a smooth surface representing the density 

of event points within the area, and this estimation 

relies on the chosen bandwidth size [18][19] and 

[20], as shown in (Equation 4).  If the chosen 

bandwidth size is excessively large, it results in a 

coarse representation, rendering the study area 

inadequately detailed. Conversely, opting for a 

bandwidth size that is too small leads to the opposite 

effect [21] and [22]. To ascertain the appropriate 

bandwidth size, we employed Incremental Spatial 

Autocorrelation analysis. 
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Equation 4 

Where: 
ˆ( )s  = Kernel density estimates 

         s, si   = Distance between S and 𝑠𝑖 based on the  

             observations of phenomena in the study  

             area 

  k    = Weighting value of the Kernel function 

  τ    = Bandwidth 

 

4) Hotspot Analysis (Getis-Ord Gi
*) 

Hotspot Analysis (Getis-Ord Gi
*) was a Local 

Indicator of Spatial Association (LISA) method 

(Equation 5) used for analyzing accidents within 

Thailand's road network. 

The results of the hot and cold spot analysis were 

represented with values including z-scores and p-

values. This analysis involved studying a dataset at 

various locations in conjunction with neighboring 

location data. The z-score became statistically 

significant only when the sum of observations in each 

location significantly differed from the sum of 

observations in neighboring areas. If this difference 

exceeded random chance, the null hypothesis, 

indicating spatial aggregation, was rejected. 

Accepting the null hypothesis suggested the absence 

of spatial aggregation, offering insights into the level 

of clustering of the studied phenomenon [23]. 

In the context of hot and cold spots, their locations 

and surrounding spots were considered "hot spots" 

when they exhibited high values (positive z-scores), 

while "cold spots" were characterized by low values 

(negative z-scores) [8][17] and [22]. 
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Equation 5 

 

When Gi
* represents the value of the Getis-Ord's 

correlation standard score at any position: 

 xj   = Observation of the area j 

  x      = Average of the observations in area j 

  wij     = Weighted value between areas i and j 

  S       = Standard deviation of the observation  

               values 

  n   = Total number of areas 

 

The result of the 𝐺𝑖
∗  calculation must be validated 

using z-scores and p-values. 

 

5)  Analysis of Clusters and Outlier with Anselin 

Local Moran's I 

The Anselin Local Moran's I method (Equation 6) for 

analyzing clusters and outliers determined the extent 

of accident clustering by visualizing hotspots. It 

differentiated between high and low clusters as well 

as spatial outliers, relying on z-scores, p-values, and 

identification codes for spatial cluster types to depict 

statistically significant cluster patterns. 
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Equation 6 

 

Where:  

 xj   = Observation of the area j 

  x      = Average of the observations in area j 

  wij     = Weighted value between areas i and j 

 

Si
2 is determined from equation 7 

2
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Equation 7 

 

  n   = Total number of areas 
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The z-score (zIi) is calculated from (Equation 8): 
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Equation 9 

 

V[Ii] = E[Ii
2] – E[Ii]2 

Equation 10 

 

When the z-score results were positive, it indicated 

that the analyzed position shared similar 

characteristics with neighboring areas, either being 

consistently high or consistently low. This pointed to 

a clustering pattern. A negative z-score suggested 

that the analyzed position differed from neighboring 

areas in terms of characteristics, indicating an outlier 

pattern. In both cases, the p-value had to reach a 

statistically significant level. The type of cluster that 

emerged could be categorized as having high-high 

(HH) or low-low (LL) values, signifying similar 

characteristics among clustered areas. Conversely, 

high-low (HL) and low-high (LH) values represented 

differences in characteristics between the analyzed 

area and its surroundings. The confidence level was 

set at 95 percent to determine statistical significance 

[24] and [25]. 

 

2.2.2 Identifying accident black spots on Thailand’s 

national highways 

The findings of the spatial model analysis regarding 

accidents on Thailand's national highways were 

examined by integrating them with the results of 

Kernel density estimation. Additionally, both hot and 

cold spot analyses and cluster level assessments were 

performed. The accident blackspot was characterized 

by a high-density area, with a confidence level of 99 

percent. The clusters were categorized as ‘HH’ [26]. 

 

3. Research Results 

3.1 Results of Spatial Analysis of Accidents on the 

Thailand’s Road Network 

Based on the Ministry of Transport's road network 

accident statistics in Thailand between 2021 and 

2022 [13], when classified by hazard severity, it was 

revealed that there were 15,738 instances of property 

damage only, 12,820 cases of minor injuries, and 

6,912 cases of serious injuries and fatalities, totaling 

35,470 incidents (see Table 3). 

After conducting data management and mapping 

techniques to display the number of accidents on 

Thailand's national highways by province, classified 

into categories using the Quartile method, the 

provinces' accident types were categorized as 

follows: low level, ranging from 67 to 226 incidents; 

moderate level, ranging from 227 to 354 incidents; 

high level, ranging from 355 to 496 incidents; and 

very high level, exceeding 496 incidents (see Figure 

3). The breakdown by geographical region is as 

follows: A very high number of accidents (>496) is 

observed in each region of Thailand, as indicated in 

Table 4. 

For the spatial analysis of accidents on national 

highways in Thailand, weighted Spatial 

Autocorrelation (Moran's I) was employed, resulting 

in a Global Moran's I coefficient of 0.124874, a z-

score of 65.509159, and a p-value of 0.000. This 

indicates a statistically significant spatial association 

model (see Figure 4).

 

Table 3: EDPO accident frequency 
 

Level of severity EDPO frequency 

Property Damage Only 15,738 

Minor Injuries 12,820 

Severe Injuries and Fatalities 6,912 

Total 35,470 
 

Table 4: A significantly high number of accidents are observed in every region of Thailand 
 

Region Provinces 

Northern Region Chiang Mai and Phrae 

Northeastern Region Nakhon Ratchasima 

Central Region 

Bangkok, Pathum Thani, Phra Nakhon Si Ayutthaya, 

Suphan Buri, Samut Prakan, Sukhothai, 

Nakhon Sawan, and Phetchabun 

Western Region Kanchanaburi, Tak, and Prachuap Khiri Khan 

Eastern Region Chachoengsao, Chanthaburi, and Chonburi 

Southern Region Nakhon Si Thammarat, and Surat Thani 
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Figure 3: Number of accidents on national highways of Thailand  

 

 

 
 

Figure 4: Global Moran's I spatial autocorrelation 
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Figure 5: Incremental spatial autocorrelation 

 

 
Figure 6: Identification of hot and cold spots for highway accidents with a 99%  

confidence level (Getis Ord Gi
*) 

 

The results of the Incremental Spatial 

Autocorrelation analysis were utilized to determine 

the optimal distance (bandwidth) that maximizes the 

level of high-level cluster formation. It was observed 

that different distances yielded varying z-scores and 

levels of statistical significance (see Figure 5). Figure 

5 displays a spatial autocorrelation graph for each 

distance, highlighting a First Peak value of 5400, a z-

score of 59.1564, and a p-value of 0.000. Analysis of 

hot and cold spots of accidents on the Thai road 

network revealed that several provinces had hot 

spots. The top 10 provinces with the highest accident 

rates were led by Chanthaburi, followed by Samut 

Prakan, Mukdahan, Chiang Mai, Bangkok, 

Nonthaburi, Tak, Udon Thani, Suphan Buri, and 

Nakhon Sawan, respectively. In contrast, for 

provinces with cold spots, the confidence level was 

set at 99 percent. Bangkok had the highest number of 

cold spots, followed by Chonburi, Pathum Thani, 

Samut Prakan, and Chachoengsao (see Figure 6). 
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In the analysis of accident density on Thailand's road 

network, the data was divided into 4 quartile levels as 

depicts in Tables 5 [6] and [27]: 

 

Table 5: Accidental density classification 

 

Accidental density Density classes 

0 Very low 

0.1 – 0.165 Low 

0.166 – 0.661 Moderate 

0.662 – 42.175 High 

 

The province with the highest accident density was 

Nakhon Ratchasima, followed by Chiang Mai, 

Suphan Buri, Surat Thani, Chon Buri, Chanthaburi, 

Tak, Nakhon Si Thammarat, Bangkok, and 

Phetchabun, as shown in Figure 8. 

Figure 7 displays the results of LISA statistics. It 

revealed 1096 locations with high severity accidents 

in adjacent positions (High-High: H-H). 

Additionally, there were 7755 low severity accidents 

with adjacent locations (Low-Low: L-L). The 

number of low severity and high severity adjacent 

accidents was 615 (Low-High: L-H), and the number 

of high severity and low severity adjacent accidents 

was 2269 (High-Low: H-L), while the remaining 

positions represented accidents that were not 

statistically significant. 

 

3.2 Results of Identifying Accident Black Spots on 

Thailand's National Highways  

Thailand, divided into 77 provinces, revealed high-

density areas as hot spots with a confidence level of 

99%, Clusters in the category of HH were identified 

in 40 provinces, with the most notable being 

Chanthaburi, followed by Mukdahan, Samut Prakan, 

Chiang Mai, Udon Thani, Nonthaburi, Nakhon 

Sawan, Suphan Buri, Bangkok, Tak, Sakon Nakhon, 

Surin, Kamphaeng Phet, Nakhon Ratchasima, Chai 

Nat, Nakhon Si Thammarat, Roi Et, Maha Sarakham, 

Surat Thani, Nong Khai, Ubon Ratchathani, 

Kanchanaburi, Phitsanulok, Samut Sakhon, Kalasin, 

Trang, Yasothon, Rayong, Sisaket, Saraburi, 

Chachoengsao, Prachinburi, Sa Kaeo, Ang Thong, 

Phayao, Chiang Rai, Narathiwat, Phrae, and 

Sukhothai (see Figure 9 and Table 6). 

 

 
 

 

Figure 7: Identification of cluster and outlier for highway accidents (Anselin local Moran’s I) 
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Figure 8: Results of density analysis of accidents on Thailand's road network 
 

 
Figure 9: Accidental risks on Thailand’s road network 
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Table 6: Number of black spots in Thailand 
 

Province Number of Black Spots  Province Number of Black Spots 

Chanthaburi 152  Ubon Ratchathani 11 

Mukdahan 78  Kanchanaburi 10 

Samut Prakan 70  Phitsanulok 10 

Chiang Mai 64  Samut Sakhon 10 

Ubon Thani 36  Kalasin 9 

Nonthaburi 36  Rayong 7 

Nakhon Sawan 34  Trang 7 

Suphan Buri 31  Yasothon 7 

Bangkok 26  Saraburi 6 

Sakon Nakhon 24  Si Sa Ket 6 

Tak 24  Chachoengsao 4 

Surin 18  Prachin Buri 4 

Kamphaeng Phet 15  Sa Kaeo 4 

Nakhon Ratchasima 15  Ang Thong 3 

Chai Nat 13  Phayao 2 

Nakhon Si Thammarat 13  Chiang Rai 1 

Roi Et 13  Narathiwat 1 

Maha Sarakham 12  Phrae 1 

Nong Khai 11  Sukhothai 1 

Surat Thani 11    

 

4. Discussion 

Spatial analysis for identifying accident risk points 

on national and rural highways in Thailand utilized 

spatial statistics to analyze and identify genuine 

accident risk points through four key processes: 1) 

accident severity analysis, 2) Kernel density 

estimation. 3) hot and cold spot analysis, and 4) 

cluster and outlier analysis [25][26] and [28]. In the 

analysis of accident severity, it was observed that 

property damage only accounted for 44.4% of 

accidents, minor injuries constituted 36.1%, and 

serious injuries and fatalities made up 19.5% of the 

total accidents on Thailand's national and rural 

highways. Notably, provinces with the highest 

accident frequencies within each region of Thailand 

were those hosting major cities or serving as crucial 

transportation hubs connecting important regions or 

provinces [29] and [30]. 

The analysis of hot and cold spots on the Thai 

road network identified Bangkok and Samut Prakan 

as the provinces with the highest concentration of 

both hot and cold spots nationwide. These provinces 

were densely populated urban and commercial areas 

with significant economic activities [21][31] and 

[32]. The provinces with a high density of high-level 

accident occurrences, included Nakhon Ratchasima, 

Chiang Mai, Suphan Buri, Nakhon Si Thammarat, 

Surat Thani, Chanthaburi, Maha Sarakham, Prachuap 

Khiri Khan, Chonburi, and Tak.  

These findings highlighted a pattern of high accident 

prevalence in urban areas, gradually tapering off in 

other regions [31] and [33]. 

When the results of the analysis were overlaid and 

examined, an intriguing finding emerged: the 

analytical process employed in this research paper 

aided in mitigating the risk of artificial accidents, as 

identified by Kernel density estimation. The total 

number of accident risk points amounted to 800, 

stemming from accident locations out of 35,470 

instances, all characterized by severe injury or 

fatality. Chanthaburi ranked as the province with the 

highest accident risk on the road network, closely 

followed by Mukdahan. This observation 

underscored the elevated levels of accident severity, 

accident density, and clustering within these 

provinces. This constituted both a public and private 

concern. Local organizations could leverage the 

analytical framework outlined in this research paper, 

incorporating risk data to craft policies and enact 

measures aimed at curbing accidents within their 

respective areas [21][28] and [34]. 

 

5. Conclusion 

This research paper employs spatial statistics to 

analyze and pinpoint accident risk points within each 

province of Thailand, specifically focusing on 

national highways and rural routes for the years 

2021-2022.  
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The adopted approach proves to be efficient and 

swift, revealing a cluster of spatial patterns 

characterizing accidents across Thailand's road 

network. While hotspots and cold spots with a 

confidence level of 99% are distributed across all 

regions of the country. Remarkably, accident density 

correlated with provincial size and internal 

characteristics, with larger and more urbanized 

provinces exhibiting significantly higher accident 

densities. 

The results of each analytical facet namely, 

accident severity analysis, Kernel density analysis, 

hot and cold spot analysis, and cluster and outlier 

analysis were integrated to accurately pinpoint the 

precise accident risk points within each province. 

 

6. Recommendations 

For future investigations aiming to gain a more 

comprehensive understanding of accidents, the 

temporal dimension could be incorporated. However, 

it is necessary to acquire consistent data throughout 

the research period, including information such as the 

number of fatalities, serious injuries, and minor 

injuries, as well as accident dates and causes. 

Alternatively, researchers may explore the 

integration of spatial statistics and artificial 

intelligence technologies to extract insights into 

accident patterns. 
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