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Abstract 

The use of Unmanned Aerial Systems (UAS) in remote sensing applications, specifically using the Trimble UX5 

HP platform for aerial data collection over Karakol city in Kyrgyzstan. Photogrammetric technique used to 

identify and match common features in the overlapping aerial images to create a sparse point cloud, which 

were further processed to create a Digital Surface Model (DSM). A slope-based filtering algorithm was applied 

to the DSM data for generating a Digital Terrain Model (DTM). The normalized Digital Surface Model (nDSM) 

was derived from the DSM by subtracting the DTM. Object-based image analysis applied to UAS datasets for 

the extraction of building footprints in an urban area. The results indicate that extracted building footprints 

have been generated accurately with an overall completeness of 92.4% and correctness of 95,2%. 
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1. Introduction 

Unmanned Aerial Systems (UAS) are known with 

different names and acronym such as Unmanned 

Aerial Vehicle (UAV), Remotely-Piloted Aerial 

Systems (RPAS) or simply called Drones. The 

widely used term UAS was adopted by the 

Department of Defense of the USA and the Civil 

Aviation Authority of the UK. Initially, UAS were 

born and raised in the military context [1]. The 

evolution of UAS development in last few years and 

its transition into civilian applications have increased 

the number of professional manufacturers in the 

world. Classifications of UAS are mostly based on 

the performance characteristics including weight, 

wing span, speed, flying altitude, operating range, 

production costs and other capabilities [2]. 

In recent years, the use of UAS has become 

increasingly attractive for a wide range of remote 

sensing applications and aerial surveys. UAS provide 

rapid deployment and efficient mapping capabilities 

for urban environments at user-defined spatial and 

temporal scales [2]. UAS can be equipped with a 

range of sensors and cameras [1]. Each type of sensor 

serves a specific purpose and the combination of 

different sensors allows for the collection of detailed 

and accurate data. The integration of Real-Time 

Kinematic (RTK) technology and dual-frequency 

Global Navigation Satellite System (GNSS) 

receivers into UAS plays a significant role in 

enhancing precise positioning and navigation 

capabilities [3]. The GNSS receiver in the UAS 

determines its position using signals from satellites 

and receives a differential signal from a stationary 

base station. The RTK–GNSS technology helps for 

reducing errors caused by atmospheric delay and 

provides real-time positioning information with 

centimeter-level accuracy [4]. The use of specialized 

cameras on UAS significantly improves the 

capabilities of these systems, allowing for detailed 

understanding of the environment and to capture 

different types of data [1]. 

UAS are well suited for urban applications and 

the extraction of building footprints. Flying at lower 

altitudes allows UAS to capture images at very high 

spatial resolutions up to 0.01 m [5], allowing for the 

detailed mapping of urban areas and analysis of 

building structures.
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The high level of detail is important for accurate 

extraction of building footprints and other building 

information. It provides the precise location and 

shape of individual buildings within a specific 

geographic area. Building footprints are fundamental 

component in the creation of building inventory 

databases. These databases are valuable for various 

purposes, including assessing vulnerability to natural 

disasters such as earthquakes [6]. They help in 

estimating potential casualties, damage to 

infrastructure, and economic losses.  

High-resolution UAS image allows for the 

accurate delineation of building footprints and 

extraction of detailed building dimensions 

(parameters), including length, width, and area [7]. 

This data assists in updating building attributes in 

databases. Integrating building footprints with 

cadastral data is essential for creating comprehensive 

databases that include important attributes associated 

with each building. It helps for the classification of 

individual buildings based on their usage type, such 

as residential, commercial and other relevant 

information. Regularly updated building information 

are valuable for assessing the vulnerability of 

buildings to natural disasters [7]. 

 

2. Trimble UX5 HP 

The application of the fixed-wing UAS platforms 

have significantly increased in last decades with the 

advent technologies such as the Trimble UX5 HP 

aerial imaging system. Trimble Company is a leader 

in aerial survey innovation and imaging solution [8]. 

The Trimble’s unmanned aerial systems is a new 

standard in aerial surveying and mapping by 

combining a robust design and user-friendly system. 

The main components of this system are the Trimble 

UX5 HP Aerial Imaging Rover, Digital camera, 

Ground control station and Launcher [9]. The 

Trimble UX5 HP Aerial Imaging Rover contains of 

the several devices. The wing body of the rover is 

made on a carbon frame structure of foam that has 

exceptional pressure resistance. The exterior foam 

reduces the physical damage and protects the internal 

electronics of an incident [8]. The main removable 

boxes are the eBox and the gBox devices. The eBox 

contains the autopilot that controls the Trimble UX5 

HP, which is connected to a GPS antenna for 

navigation and it has connection to the digital camera 

for sending commands and recording feedback 

events. The gBox contains a GNSS receiver, which is 

connected to a GNSS antenna for recording high 

level positions and it also has connection to the 

camera for capturing images with precise geodetic 

coordinates [9]. The Trimble UX5 HP Rover delivers 

very accurate data by integrating the GNSS receiver 

and a superior camera. The camera is capable to 

capture low altitude images with spatial resolutions 

down to 1 cm during the flight of the rover. The Sony 

A7R camera of 36 Megapixel is mounted on board of 

the UX5 HP Rover that provides sharp, very detailed 

images and focal length can be fixed with a 15 mm, 

25 mm or 35 mm lens. The selection of lens size is 

related to flying altitude that produces different 

image resolutions and the area coverages. In case of 

the same flight altitude at 100 m, where the image 

resolution is 3.3 cm when selecting the 15 mm lens 

that covers large area, the resolution is 1.9 cm when 

using the 25 mm lens and high resolution is 1.4 cm 

when using the 35 mm lens that offers lower 

coverage [10].  

The desired flight height can be selected for the 

Trimble UX5 HP Rover, where is capable of flying 

altitude ranges from 75 m to 750 m above ground 

level. The UX5 HP Rover is an easy to use, fully 

autonomous flight and safe landing. It is operated 

remotely that follows a pre-programmed the flight 

path, where uses a multi-frequency radio antenna for 

communication with the receiver on the ground. The 

ground control station is aimed to monitor, control 

and command the Trimble UX5 HP Rover from the 

ground. It applies the Trimble Access™ Aerial 

Imaging software which is mostly designed for 

planning aerial missions, automatic performing pre-

flight checks, controlling and monitoring of the flight 

paths, specifying take-off and landing locations [9]. 

The mechanical launcher provides a safe way to 

catapult launch the Trimble UX5 Rover in the 

direction of takeoff. It requires an open space area of 

approximately 25 m in lengths and 3 m in width for 

the catapult launching. The recommended landing 

space area of approximately 50 m lengths and 30 m 

width is necessary [9].  

 

3. Methodology 

3.1 Study Area  

Our study focuses on Karakol city, which was 

formerly known as Przhevalsk and is the 

administrative capital of Issul-Kul region in 

Kyrgyzstan according to Figure 1(a). The city is 

located about 1750 m above the mean sea level and 

near the eastern tip of Issyk-Kul Lake, about 150 

kilometers from the Kyrgyzstan-China border and 

380 kilometers from the national capital Bishkek city. 

It is the administrative capital of Issyk-Kul Province 

with 44 square km area [11]. The region of research 

interest is not included the small town of Pristan-

Przhevalsk, which is located adjacent to Issyk-Kul 

Lake. The city and town are located separately and 

the distance between them is approximately 12 km. 
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Figure 1: a) Country border, b) UAS flight blocks, c) Pre-flight view and d) the flight trajectory view 

 

Karakol city covered with a mix of residential, 

commercial, industrial, and agricultural areas, along 

with efficient transportation infrastructure. 

Artificially planted trees are deciduous and mostly 

apple trees. The last two decades farmland and bare 

lands have been converted to urban uses. Karakol is 

one of Kyrgyzstan's major tourist destinations, 

serving as a good starting point for the excellent 

hiking, trekking, skiing and mountaineering in the 

high central Tian-Shan to the south and 

east. Agricultural areas including croplands, apple 

orchard and pastures are located in the south and west 

portions of the region. The river of Karakol runs 

southwest to northwest through the city.  

 

 

3.2 Aerial Image Acquisition 

The State Agency “Cadaster” is the national land 

property registration service and cadastral mapping 

agency in the Kyrgyz Republic. The Cadaster 

Agency has acquired an Unmanned Aerial Systems 

(UAS), a Trimble UX5 HP for the aerial image data 

acquisition and precisely delineation of the cadastral 

borders. The Trimble UX5 HP platform used for 

aerial surveying for the Karakol city as case study 

area. For safety purposes danger obstacles such as 

trees, buildings and engineering structures, electrical 

pylon and cables in urban areas have to be identified. 

Therefore, the inspection of the flight area is 

necessary before starting to use the Trimble UX5 HP 

aerial imaging rover. 

  



 

International Journal of Geoinformatics, Vol. 20, No. 2, February, 2024 

ISSN: 1686-6576 (Printed)  |  ISSN  2673-0014 (Online) | © Geoinformatics International 

67 

It is very important to select a suitable open flat space 

area for the catapult launch and safety landing to the 

ground surface. While the Trimble UX5 HP platform 

is capable of landing on grass areas without any 

obstacles, so that the platform body and a digital 

camera will not be damaged. The Trimble UX5 HP 

Rover delivers high precision data by integrating 2-

frequency Global Navigation Satellite System 

(GNSS) receiver with Post-Processed Kinematic 

(PPK) technology that minimizes the need for the 

ground control points (GCP) [9].  

We together with GIS specialists of the Cadaster 

Agency used Trimble UX5 HP for the low altitude 

aerial image acquisition over the Karakol city. The 

aerial survey was performed on 10-20 May 2019. The 

weather conditions were suitable for the flight, that 

was without wind and cloudless sky during the time 

of the aerial surveying. Preliminary, the study area 

was split up in 19 blocks to be covered the most 

settlement areas in 19 separate flights. ArcGIS 

software was used to plan the flight areas and to 

delineate these blocks as shown in Figure 1(b). The 

area of each block ranged in size from 90 to 205 ha, 

where the total aerial surveyed area has 3025 ha. The 

coordinates for each flight areas were collected with 

the Trimble R6-4 GNSS receiver and transferred to 

the ground station operator to generate flight path. 

The Trimble Access™ Aerial Imaging software 

running on the Trimble Tablet rugged PC was used 

for mission planning and flight monitoring. On each 

day at most two separate flights occurred between 

10:00 and 16:00 local time. After the Trimble UX5 

HP rover landed, the battery was replaced, data sets 

were downloaded, the acquired aerial images and 

information from the onboard GNSS receiver were 

checked. The maximum duration of each flight was 

35 minutes, with about 800 images being acquired 

per flight. Ground control point (GCP) markers were 

designed with a black-yellow cross on the metal. 

During each flight about 4-6 markers were placed at 

different locations within the block area at the terrain 

level and measured using the GNSS receiver. The 

Trimble R6-4 GNSS receiver was initialized for each 

flight area as shown in the Figure 1(c), where the 

geographic coordinates were determined from the 

Karakol base station within "KYRPOS" network. 

The distance between the GNSS receiver and the base 

station were not exceeded 6 kilometers. Each flight 

lines were completed in the appropriate direction to 

deliver a frontal and a side overlap of images at 80 

%. The flight overview for the Block 15 is presented 

in the Figure 1(d), where is showing the Trimble UX5 

HP rover’s detailed trajectory in the West-East 

direction including all turns from take-off to landing 

place.  

During the aerial survey in total of 7180 images were 

taken at the altitude of 200 m with a ground sample 

distance (GSD) equal to 0.06 m covering all flight 

areas. The aerial images were acquired by the Sony 

A7R camera of 36 Megapixel resolution with 35 mm 

focal length, which is mounted onboard of the 

Trimble UX5 HP. The internal parameters of the 

Sony A7R camera was manually calibrated, where 

the ISO sensitivity selected as Auto and the aperture 

setting was fixed to f/5.6, the lens distortion as 

polynomial type, the focal length and the position of 

the principal point were selected as self-adjusted. The 

acquired digital images are true color RGB bands that 

saved in JPEG format with radiometric resolution of 

8 bits and has an image size of 2048 x 2048 pixels.  

  

4. Data Processing and Results 

4.1 Adjusting Orthophotos 

The acquired high-resolution images using the 

Trimble UX5 HP, aerial photo station data, GNSS 

information, coordinates of the reference station and 

ground control points (GCP), including an 

information of the camera sensor calibrations were 

imported into the Trimble Business Center 

Photogrammetry (TBC) software for processing data 

to produce an orthophoto images and point clouds. 

After importing data sets, all flight missions were 

merged to a single project data covering the whole 

study area. It contains of an interconnected series of 

the aerial images. Each time aerial photo images were 

captured, where an aerial photo station was created 

along the flight direction with records of the GNSS 

positions. It is necessary to adjust the aerial photo 

stations for delivering final products with the highest 

precision. 

First, the relative adjustment process for the aerial 

photo stations was performed using the Photo 

Stations command within the TBC, in which 

automatically extracted tie points from the aerial 

images. A tie point is a measurement that represents 

the same position in the adjacent images. It 

automatically connects all images to exactly orient 

the aerial photo stations to each other and 

georeference them to the ground based on GNSS 

recorded information when the aerial images were 

captured [12]. To increase the reliability assessment, 

where the tie points are located on at least two or 

more adjacent images can be included for the auto 

adjustment procedure [13]. However, after the 

application of the relative photo station adjustment, 

there may be misalignment in the georeferenced data 

products. In case of availability of the ground survey 

data, it is recommended to continue with performing 

of the absolute adjustment before generating an 

orthophoto and point cloud data products [12].  
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The absolute adjustment process was performed 

immediately after the relative adjustment results in 

order to reach the highest precision. In the absolute 

adjustment process, the aerial photo stations were 

adjusted using the ground control points (GCPs). The 

coordinates of the GCPs such as the markers on the 

ground, the corner of foundations, sidewalks and 

road marking were measured with the Trimble R6-4 

GNSS receiver. These ground objects were selected 

evenly throughout the city and their positions are 

clearly visible in the aerial images.  The aerial photo 

stations covering the Karakol city were adjusted 

precisely with ground control points (GCPs), where 

the Adjust Photo Stations with GCPs command 

applied within the TBC. The complete flight 

overview of the Trimble UX5 HP Rover over the city 

of Karakol is shown in the Figure 2(a). 

Aerial survey data were used for adjustment 

processing of the aerial photos. There are 19 separate 

flight blocks, where the direction of each flight paths 

in these blocks can be visually analyzed using 

spatially distributed green points. These green points 

indicate the camera locations for 6075 successfully 

adjusted photos in the project. A total of 19 flight 

missions were conducted. There are 291 flight strips, 

and each strip connects photo stations along the 

trajectory. Grey points in the background represent 

extracted tie points, which are based on the Structure 

from Motion algorithm [14]. Tie points have a 

connection with flight strips and provide stable block 

connectivity. The study area has a planimetric extent 

of about 7204 x 12762 m and the height range in the 

area is approximately 1640-1997 m. 

The report statistics show a total of 313,006 tie 

points, which are classified into four different colors 

in Figure 2(b). Tie points are reference points 

identified in aerial images that are used to 

georeference of the orthophotos.  The tie points are 

classified into four different categories based on the 

number of aerial images in which they are found. 

Each category is represented by a different color: Red 

points found in less than 2 images; Orange points 

found in 3-4 images; Green points found in 5-10 

images; and blue points found in more than 10 

images. Red category points are mainly located at the 

edges of the blocks and are not considered for the 

adjustment. Orange, green, and blue points, occurring 

in more than three images, were included in the 

adjustment procedure. These points connect multiple 

strips and provide about 80% strip overlap. The tie 

point distribution map serves as an indication of 

block connectivity and strip overlap.   

Accuracy of the final adjustment process is 

estimated by the Sigma naught σ0 value. The values 

of standard deviations were computed for all the tie 

points which were included in the block adjustment 

process of aerial images. It measures the quality of 

each single tie point relative to pixel size of digital 

camera. Table 1 presents the results of adjusting the 

aerial images in 19 blocks over the study area. Based 

on the above-mentioned table, where the accuracy 

value of sigma naught measured of 5.9813 micron. 

The next accuracy is the mean standard deviation of 

translations that estimates of the photo positions 

calculated in the air, where the X, Y, Z coordinates 

lies within 0.019 - 0.0349 m. Mean standard 

deviation of rotations estimates the accuracy of the 

photo rotations calculated in the air, where the 

angular parameters Omega, Phi, Kappa values are 

ranged from 4.0034 to 7.4772 degrees. Mean 

standard deviation of terrain points estimates the 

accuracy of the tie points calculated on the ground, 

where the X, Y, Z coordinates estimation are located 

within 0.0754 - 0.1388 m. Based on the adjustment 

results in Table 2, it can be concluded that the 

adjusted aerial images gave a good result. 

 

Table 1: Block adjustment results 
 

1 Accuracy 

Sigma naught σ0 (micron)  5.9813 

2 Mean standard deviation of translations 

X (m) Y (m) Z (m) 

0.0190 0.0196 0.0349 

3 Mean standard deviation of rotations  

Omega (deg/1000) Phi (deg/1000) Kappa (deg/1000) 

7.4772 6.0488 4.0034 

4 Mean standard deviation of terrain points 

X (m) Y (m)  Z (m)  

0.0754  0.0781  0.1388  
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Figure 2: a) The complete flight, b) Tie points 

 

4.2 Creation of an Orthomosaic Image  

After completion of the final adjustments of the 

Trimble UX5 images, the orthomosaic and the point 

cloud datasets covering the whole study area have 

been generated in TBC software. The 

orthorectification process in TBC software is fully 

automated for the creation of the orthomosaic image. 

Orthorectification and orthomosaicking are crucial 

processes in aerial imaging, which are applied to 

create accurate, georeferenced and high resolution 

orthomosaic image from multiple aerial photos. The 

main goal of both orthorectification and 

orthomosaicking processes are to preserve the same 

level of quality and spatial accuracy from the original 

aerial photos [15].  

Orthorectification is necessary because aerial 

photos might come with distortions due to several 

factors such as ground relief, camera lens and rapid 

change of lighting conditions [13]. Correcting these 

distortions is critical for accurate measurements and 

analysis. It involves geometrically correcting aerial 

photos to remove distortions caused by ground 

terrain variations and camera characteristics. The 

improved images are georeferenced orthophotos, 

where all objects are positioned accurately on the 

ground surface. The orthophotos are overlapped with 

a smaller coverage and are needed to stack for 

producing a final orthomosaic image [15]. 

Orthomosaicking process is based on stitching of the 

individual orthorectified photos by sewing on the 

overlapped areas of adjacent photos seamlessly and 

combining them into a single orthomosaic image. 

During the orthomosaicking process, the software 

aligns and merges the collection of the orthorectified 

aerial photos based on their geometric and 

radiometric properties. The final orthomosaic image 

was exported as a TIFF file format ensures that the 

image remains visually continuous and free of 

geometric distortions [13], making it suitable for 

detailed spatial analysis and integration with other 

geospatial datasets.  

The created orthomosaic image has 103420 x 

194138 pixels with a spatial resolution of 0.06 m by 

covering 33,4 km2 area that represented in Figure 3. 

As an example, the extended view for small areas 

represented by two blue boxes, where the distribution 

of the multi-store buildings in subpart (a) and the 

single-store buildings in subpart (b) are clearly 

demonstrated. The coordinate system WGS84 UTM 

Zone 44N (EPSG:32644) was selected for study area 

mapping and analysis. The orthomosaic image is a 

natural true color RGB composite with the 

combination of visible red, green and blue channels. 

It ensures that the natural appearance of the landscape 

is highly interpretable in the orthomosaic image. 
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Figure 3: Orthomosaic map and the extended views in subpart a) and in subpart b) 

 

4.3 Creation of Point Clouds  

A point cloud is a huge collection of data points 

plotted in a three-dimensional space, where each 

point is defined by its X, Y, and Z coordinates. These 

points are a valuable resource for representing and 

analyzing geographical location [15]. Once 

individual points come together, it forms a 3D 

representation of the terrain, natural objects and 

engineering structures.  In addition to its spatial 

coordinates, each record for point cloud data can 

store several attribute information such as the point 

source, GPS time, intensity, spectral information, etc. 

This information is very useful for distinguishing 

features, analyzing the point data, and visualizing the 

landscape in 3D space [16].  

The Semi-Global Matching (SGM) algorithm 

developed by Hirschmuller in 2005 [17] is a powerful 

method for creating point clouds by automatically 

matching multiple images to each pixel in the aerial 

photos. It involves analyzing pairs of aerial photos to 

identify corresponding points in each image. SGM is 

known for its accuracy and precision in generating 

point clouds, which has a wide range of applications 

including a digital elevation model (DEM) creation 

and an orthoimage production [18]. The generated 

point clouds in TBC software were exported in LAS 

file format, which is associated with Light Detection 

and Ranging (LIDAR) sensors. It is a common file 

format used for storing and managing point cloud 

dataset [16]. Various Geographic Information 

System (GIS) software tools, including ArcGIS, 

QGIS, SAGA, and others, support the import and 

visualization of LAS files. In ArcGIS software, the 

LAS Dataset toolset is used for exploring the 

properties, displaying and visually analyzing of the 

point clouds as a point and as a surface. The 

triangulated surface use elevation attributes to 

provide a continuous representation of the 3D objects 

in the area. 

The LAS file statistics shows that the city area 

covers of 938,242,899 data points giving the average 

point spacing of 0,269 m and the point density of 27.4 

points per m2. Additionally, the point data set has 

shown a minimum elevation of 1635,43 m and a 

maximum elevation of 1987,930 m. The density of 

point cloud is an important indicator, where higher 

density provides more information while lower 

density provides less information [15]. It might 

impact the quality of further data products that 

depends on point clouds such as using information 

about elevation. The point clouds are unclassified 

data sets that contain ground and non-ground objects. 

Because of the point clouds derived from the UAS 

orthophotos do not have multiple returns as LIDAR 

dataset [19].  

Due to the large size of LAS file dataset, the 

smaller areas were extracted for efficient processing, 

where the LAS dataset 3D view tool used to create a 

3D view as given in the Figure 4. Here, point clouds 

provide a detailed representation of the area, where 

visual colorations based on elevation values that 

makes easier to analyze objects. The actual height 

information can be obtained for each objects by 

selecting the point clouds.  
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Figure 4: 3D view of the point cloud datasets in subpart a) and in subpart b) 

 

4.4 Creation of a Digital Surface Model 

A Digital Surface Model (DSM) is a digital 

representation of the topographic surface, which 

includes both natural terrain features and man-made 

structures located on the ground. It provides height 

information for all objects that are part of the ground 

surface and other objects that stand higher than their 

surroundings [20]. A DSM datasets are mostly 

generated from a variety of sources such as the 

airborne laser scanning, stereo processing of aerial or 

optical satellite imagery and radar interferometry 

techniques [21]. The traditional photogrammetric 

methods can extract elevation point values for each 

image pixel from the aerial photos acquired by an 

unmanned aerial system (UAS), which is generating 

a very high-resolution DSM dataset. The use of UAS-

based photogrammetric terrain mapping has 

increased in the last decades [15].  

Generally, point clouds and DSM datasets are 

valuable source for creating 3D representations of the 

Earth's surface, including trees, buildings and other 

objects [16]. Due to insufficient overlap of the 

original point clouds might not cover for some areas 

that makes appearance of gaps. One of the main 

advantages of the DSM data generation is filling gaps 

by interpolation of point cloud datasets [22]. Aerial 

images often have limitations in their spectral 

information that can make it challenging to 

distinguish between the ground surface and man-

made structures [20]. The availability of high-quality 

DSM data plays an important role for building 

extraction that provides detailed and accurate 

elevation information [23]. The main purpose of the 

DSM generation is creating a detailed 3D model of 

the visible ground surface with high accuracy by 

considering terrain discontinuities [24]. The LAS 

Dataset containing the entire point clouds were 

converted into a raster layer. This conversion is 

achieved through a fast-binning process, which 

involves of point dataset using the Inverse Distance 

Weighting (IDW) interpolation method for 

producing a DSM raster layer. The created DSM 

image is presented in Figure 5, which is strongly 

correlated with the orthomosaic map. The elevation 

values on the DSM data ranges from 1635 m to 1988 

m above the mean sea level. A visual representation 

of small areas presented by two blue boxes in Figure 

5, where the multi-store buildings in subpart (a) and 

the single-store buildings in subpart (b) are clearly 

represented. The separation of buildings from the 

ground surface and other natural objects are 

considered in the further image analysis processes.  

 

4.5 Creation of a Digital Terrain Model 

A Digital Terrain Model (DTM) is a digital 

representation of the ground surface, excluding any 

above-ground objects, while a DSM includes the 

elevation of all objects on the ground [21] and [25]. 

In open areas without objects higher than the ground, 

the elevation values of the DSM and the DTM will 

be very similar, representing the elevation of the 

natural terrain [15].
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Figure 5: DSM image and the extended views in subpart a) and in subpart b) 

 

A DTM provides highly accurate elevation 

information exclusively for the bare earth surface 

[25], which is not includes the height of objects such 

as buildings and trees. Generally, the elevation data 

is mostly created through remote sensing, including 

LiDAR and UAV technologies, photogrammetry and 

GPS ground surveying methods [15]. These 

technologies capture elevation data points over the 

study area and are processed to generate a DTM 

dataset. In the past, several DSM filtering algorithms 

for DTM generation have been developed. Initially, 

these algorithms were applied for ground point 

filtering of the airborne laser scanner data, which is 

becoming a primary source of DSM data [21]. The 

algorithms were used to process DSM data and have 

played a crucial role in the extraction of ground 

information from the elevation datasets. The filtering 

algorithms have progressed over time and have been 

integrated into various Geographic Information 

System (GIS) software packages. This made it more 

accessible for GIS researchers to perform terrain 

analysis and generate DTMs from DSM data.  

Morphological filtering methods, including the 

slope-based filtering that was developed by [26], 

which are widely used in the remote sensing analysis. 

It is based on the basic idea that the elevation 

difference of two adjacent ground points is unlikely 

to be affected by a steep slopped terrain. More likely, 

the higher elevation point is not ground point. Thus, 

for some elevation difference, the possibility that the 

higher elevation point value might be non-ground 

point increases when the distance between the two 

points decreases. Therefore, the slope filter 

determines a maximum elevation difference between 

the two adjacent points as a function of the distance 

between the points. The set of points are classified as 

ground if there is no other point within a certain 

radius to which the elevation difference is exceeds 

the allowed maximum elevation difference for the 

given distance between these two points [26].  

DTM slope-based filter is implemented in SAGA 

software [27]. This algorithm was used to generate a 

DTM that represents the bare earth surface by 

removing non-ground objects from the DSM data. 

After several attempts, the optimal values for search 

radius of 40 and terrain slope of 5% were selected for 

the DSM filtering process. After applying the slope-

based filter, the obtained results are two separated 

raster layers with detection of bare earth surface and 

the removed non-ground objects.  

There is appearance of gaps in the created bare 

earth data. These gaps occur at the locations, where 

elevation data values are missing due to the removal 

of non-ground objects. The size of gaps increases as 

the search radius of the filter increases.  To fill these 

gaps and create a continuous surface representing of 

the bare earth is necessary the use of interpolation 

method. By applying the tool Close Gaps with Spline 

within SAGA software, we can effectively to fill the 

gaps areas in the bare earth surface data and 

producing a continuous DTM surface for further 

terrain analysis applications. The effectiveness of the 

DTM slope-based filter may depend on the landscape 

characteristics of the ground surface and specific type 

of the elevation data. The created DTM image is 

presented in Figure 6, where the elevation values on 

the DTM data ranges from 1635 m to 1984 m above 

the mean sea level. 
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Figure 6: DTM image and the extended views in subpart a) and in subpart b) 

 

4.6 Creation of a Normalized Digital Surface Model 

When measuring building height, it usually refers to 

the vertical distance from the ground level to the 

highest point of the roof. The measurement of each 

building height in urban area with traditional field 

survey can provide detailed information but are very 

expensive and time consuming [28]. Therefore, a 

building height information can be obtained from 

UAS based data by generating a normalized Digital 

Surface Model (nDSM). The nDSM data is generated 

by subtracting the DTM data from the DSM data that 

derived as: 

 

nDSM = DSM – DTM 

Equation 1 

 

This subtraction process effectively removes the 

elevation of the bare earth from the elevation of all 

the objects on the ground. The resulting nDSM data 

represents the relative heights of all objects above the 

ground surface and clearly illustrates the vertical 

characteristics of the landscape. The nDSM data 

provides information about the relative heights of 

man-made structures and natural features above the 

ground, including buildings and trees [29]. 

Generally, it is common to obtain negative height 

values in the nDSM due to accuracy issues in the 

DSM and the DTM datasets or interpolation 

processes [16]. Consequently, we investigated the 

places with negative height values comparing with 

the orthomosaic image and found that the most of 

them are appeared around the river side. These 

negative values in the nDSM data were replaced by 0 

value that considered as zero-elevation ground 

surface. It was achieved by apply the CON function 

in the ArcGIS Raster Calculator as follows: 

Con(“nDSM”<0,0,“nDSM”). The correction of the 

height values makes easier to identify ground and to 

measure building heights while reducing noise from 

the nDSM dataset. The final nDSM data covering the 

Karakol city is shown in the Figure 7. The height 

values of the nDSM ranges from 0 to 56m, where the 

highest elevation corresponds to the Tian-Shan 

Spruces. A visual demonstration of small areas 

presented by two blue boxes in Figure 7, where the 

multi-store buildings in subpart (a) and the single-

store buildings in subpart (b) are clearly represented. 

 

5. Object-Based Image Analysis 

5.1 Object-Based Concepts 

The advances in Earth observation sensors providing 

a high-resolution satellite and aerial images have 

smaller pixel sizes, where each pixel represents a 

small area on the Earth's surface [30]. When grouped 

together, these pixels form an image that visually 

represents real-world objects like buildings, trees, 

roads, etc. The objects in the remote sensing images 

are essentially perceived through the grouping of 

pixels with similar spectral values [31]. Therefore, 

the traditional pixel-based method analyzes images at 

the individual pixel level that has limitations, where 

the neighboring pixels may belong to the same spatial 

object. This problem is found as ‘salt-and-pepper’ 

effect that aimed of grouping pixels into image 

objects instead of individual pixels [32]. 
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Figure 7: nDSM image and the extended views in subpart a) and in subpart b) 

 

Consequently, it has led to focusing on the 

application of the object-based image analysis 

(OBIA) method that allows to use the spectral 

similarity, shapes, sizes, textures, neighborhood, 

contextual information and other spatial parameters 

of the image [30]. The paradigm shifts from 

analyzing individual pixels to meaningful objects 

allows for a more contextually and semantically 

meaningful interpretation of remote sensing imagery 

[31]. OBIA approach consists of two main steps: 1) 

image segmentation, 2) feature extraction and 

classification [33]. The main processing of OBIA are 

homogenous regions that called image objects [34] or 

segments as the basis entities for further 

classification [35]. As human vision generally tends 

to generalize images into homogenous areas first, that 

computer vision also processes of recognizing visual 

information through segmentation and  meaningful 

object extraction [36], which should perfectly 

coincide with pattern of real-world objects [31]. 

Image segmentation is a form of partitioning an 

image into non-overlapping regions that each region 

is homogeneous [37], and the partitioned regions are 

representing the meaningful objects based on certain 

criteria in the image [31]. Segmentation have already 

been introduced in the mid-1970s [38] for identifying 

objects in an image processing through the available 

segmentation techniques [37]. Traditional image 

segmentation methods are categorized into four main 

approaches: (i) pixel-based, (ii) edge-based, (iii) 

region-based and (iv) hybrid methods [32] [33] and 

[39]. 

Image segmentation allows representation of image 

information at different scales are often referred to as 

multiscale segmentation method. It determines the 

type of a certain object at different scales, ranging 

from fine to coarse scales within an image [34]. 

Between these scales there are spatial and 

hierarchical dependency, as well as its connection to 

relationships within segments and classification 

procedures [40]. 

The feature extraction and classification in OBIA 

mostly depend on the quality of image segmentation 

[33]. The quality of segmentation determines how 

accurately and meaningfully objects are defined, 

contributing to the precision of further classification. 

Object-based classification can be rule-based or 

machine learning-based and a combination of both 

approaches. In rule-based classification, human 

expertise is used to define a set of rules [31] that 

determine how objects should be classified based on 

their features. In machine learning-based, algorithms 

are trained on labeled data to learn patterns and 

relationships between features and classes. Common 

machine learning approaches for OBIA include 

nearest-neighbor, fuzzy logic, and supervised 

classification methods [30]. 

eCognition, developed by Definiens AG, was one 

of the first commercial software packages designed 

for object-oriented image analysis (OBIA), which 

became available on the market on 2000 [34]. 

Alternative to commercial software, a free and open-

source software (FOSS) in the field of Geographic 

Information System (GIS) that has very rapidly 

developed during the last decades.  
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The System for Automated Geoscientific Analyses 

(SAGA) is open-source GIS software for 

geoscientific data analysis and modeling [27]. The 

first public release SAGA 1.0 became available in 

2004. SAGA utilizes a region growing algorithm for 

segmentation. The region growing algorithm starts 

from seed points and expands regions by merging 

neighboring pixels based on a similarity criterion, 

which creates homogeneous object primitives or 

segments [35]. 

 

5.2 Image Segmentation Strategies 

The image segmentation and building footprint 

extraction processes were performed in SAGA 

software. The latest version of SAGA 9.1.0 used for 

our research work that available to download 

(https://sourceforge.net/projects/saga-gis/). This 

software offers various tools for remote sensing and 

geospatial data analysis. SAGA provides the Object 

Based Image Segmentation tool that uses a Seeded 

Region Growing (SRG) algorithm. SRG merges 

neighboring pixels to homogenous features or image 

objects. It starts from a limited number of single seed 

pixels, which are defined by its spectral and spatial 

features [35].  

There are several parameters of the Object Based 

Image Segmentation tool in SAGA. The Band Width 

for Seed Point Generation is important parameter that 

quantifies the distance on the both spectral and spatial 

features in the neighborhood based on the 

homogeneity criterion. It maximizes the average 

homogeneity and minimize the heterogeneity of the 

image segments.  According to the size of geographic 

objects on the image, where the given larger value for 

this parameter creates large image segment and the 

given smaller value creates smaller segments.  

The neighborhood parameter gives an option to 

select between the Neumann (4-connected pixels) 

and the Moore (8-connected pixels) neighborhood 

types. The distance type allows selection for 

computation considering only in feature space or the 

both in feature space and position. It specifies the 

merging criteria of the adjacent clusters and the 

influence of spectral features and its spatial position.  

Generalization parameter controls the intensity of the 

smoothing effect that applies a majority filter with 

defined search radius [35] and [41]. The multi-scale 

image segmentation is important for building 

footprint extraction such as single scale will lead to 

under- or over-segmentation [34]. The limitation of 

the SAGA that is not generating a hierarchical 

structure of image segmentation strategies such as the 

bottom-up and the top-down approaches. These 

approaches are possible using the multiresolution 

segmentation in eCognition software [42].  

We are interested to apply the concept of the 

bottom-up approach in SAGA, where the initial 

segmentation generated small image segments at the 

fine scale Level-1. The small segments aggregated to 

lager group of spatial objects at the medium scale 

Level-2. Based on the multiscale segmentation 

process, small features are better represented by 

segments of a lower segmentation level, while some 

other features are better detected on a higher level. 

However, it is difficult to define the appropriate scale 

parameters for image segmentation. Human visual 

interpretation is the best way to evaluate the results 

of any image segmentation technique [37]. After 

apply several trial-and-error procedures in SAGA, 

the specific parameter values used for segmentation 

at two levels, where each level corresponds to a 

different size of resulting image objects from fine to 

medium detail that given in Table 2. 

The orthomosaic image with Red (R), Green (G), 

Blue (B) bands and DSM data used as input features 

during the use of the Object Based Image 

Segmentation tool in SAGA. The images were 

resampled from the original spatial resolution 0.06 m 

to 0.3 m for increasing the image processing and 

saving the time purposes. The use of DSM data 

increases an accuracy of segmentation instead use 

only the RGB image. Because the segmentation 

causes some building roofs in separating from the 

roads, which have similar spectral properties. The 

result of segmentation process is a polygonal vector 

data. Generally, the mean spectral values of each 

input datasets calculated for all the image segments 

and stored on the attribute table of the vector data. 

 

Table 2: Parameters of the Segmentation in SAGA 
 

 Level-1 Level-2 

Band Width for Seed Point Generation 1 10 

Neighborhood 4 (Neuman) 4 (Neuman) 

Distance Feature space and 

position 

Feature space and position 

Variance in Feature Space 1 1 

Variance in Position Space 1 1 

Generalization 1 1 
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The creation of a hierarchical structure in image 

segmentation is necessary for representing images at 

multiple scales of detail. Because images often 

contain objects and features of varying sizes and 

complexities. The hierarchical structure allows for 

the identification of spatial relationships between 

image segments at different levels, providing variety 

of information such as spatial, size, spectral, textural 

and contextual [42]. At the bottom-up approach case, 

where the outer outlines of the image segments at 

higher levels are usually determined by those at the 

lower levels [43]. Unfortunately, the image 

segmentation procedure in SAGA software not 

preserving the outer borderlines when producing 

image segments at different hierarchical levels. 

Generating a hierarchical network of image segments 

characterized at both lower and higher levels in two 

separate steps. The multi-level segmentation strategy 

was applied, where the first lower Level-1 focuses on 

generating small segments with detailed spectral and 

shape information. The specific goal at this level is to 

separate ground and non-ground image objects based 

on height information. Therefore, the Grid Statistics 

for Polygons tool used to compute a Mean elevation 

value based on the nDSM layer, which represents the 

relative heights above the ground surface. 

The statistical approach summarizes the height 

information values found within the image segments. 

All the polygonal image segments on the lower level 

were updated using elevation values. The image 

segments meeting the criteria based on elevation 

statistic values, where the mean nDSM≥2.0m were 

selected as the elevated objects. The selected 

segments, representing elevated objects such as 

buildings or a part of a buildings including trees were 

exported as a new vector layer. This new layer 

contains information about the spatial extent, the 

spectral and height characteristics of these elevated 

objects.  

The second image segmentation process applied 

to generate medium sized image segments at the 

higher Level-2. Compare to lower Level-1, the 

increased number for the distance between seed 

points would result the larger segments and it led to 

a loss of finer details in the segmentation. In 

homogeneous areas, the segmentation groups a larger 

number of similar pixels into bigger segments.  In 

areas with high heterogeneity creates smaller 

segments by preserving finer details and delineating 

the boundaries of different objects. The certain types 

of building roofs that may have similar spectral and 

shape characteristics to roads and being over-

segmented. Therefore, the created new layer 

representing elevated objects is based on the lower 

Level-1 was overlaid with image segments from the 

higher Level-2 using the Union operator. It combines 

the geometries of the two layers, creating a new layer 

that represents the spatial union of features from both 

Level-1 and Level-2. Common border lines between 

larger and smaller segments are preserved in the 

resulting layer. Figure 8 shows the segmentation 

results at Level-1 and Level-2, where the elevated 

objects highlighted in red to make them visually 

distinguishable from other segments. 
 

 
Figure 8: Image segmentation views in subpart (a) and in subpart (b) 
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Spectral and elevation values from both segmented 

layers are combined and stored in the attribute table 

of the newly created layer. Segments without 

elevation values that usually stored as No Data with 

the value of “-99999” in the attribute table are 

identified and classified as ground objects. 

Remaining segments with elevation values represent 

elevated objects, which are the main focus of the 

research. Both segmented layers' ID-fields are stored 

in the same attribute table to identify larger and 

smaller segments. Larger segments, which contain 

several smaller segments, need to be merged while 

preserving outer borders. The Dissolve operator is 

used to aggregate larger image segments based on 

specified ID-field attributes into a new single layer. 

The aggregated segments may include summaries 

such as the mean and the standard deviation of 

attribute values from the input layer. The resulting 

layer from the Dissolve operation is considered for 

the next classification process. The results obtained 

from multi-level image segmentation strategies on 

Level-1 and Level-2, and particularly focusing of the 

elevated image segments for classification are given 

at Classification Level in Figure 8. 

 

5.3 Classification of Image Segments  

Using the Grid Statistics for Polygons, the spectral 

values of the RGB image, DSM and nDSM datasets 

were computed for the elevated image segments 

using grid statistics. In addition, the polygonal shape 

indices for segments were calculated, which is 

providing information about the geometric properties 

of objects within an image. By extracting the shape 

indices such as the area, the perimeter, the ratio 

between perimeter and area (P/A ratio), we can 

obtain geometric characteristics of segments [5]. It 

provides information about the shape and size of the 

objects in an image. 

The manually labeled image segments were used 

as training data for classifying the elevated segments 

into different categories. The training segments were 

selected randomly to classify buildings and not 

buildings such as trees and shadows across the entire 

study area. The class identifier codes were assigned 

to each class in the attribute table. This table contains 

information about the assigned class for labeled 

segments. Empty fields in the table indicate instances 

where training data were not specified. The attribute 

properties of the selected segments, especially pixel 

values can provide a detailed characteristic of the 

image datasets. By examining the distribution and 

range of pixel values for each class, we can identify 

key features that distinguish one class from another. 

Image segments classification was implemented 

using the Supervised Classification (Shapes) tool. 

This classification involves classifying image 

segments are based on the values of the mean and 

variance of input features. The computed features 

include Red, Green, Blue, nDSM and the P/A shape 

indices, which are describing the spectral, height and 

shape characteristics of each segment. The 

classification process involves training a model using 

class identifier field and selecting the Maximum 

Likelihood classifier to classify image segments 

based on the statistical distribution of 10 input 

features. The class identifier field contains labels for 

different classes that the classifier will learn to 

recognize classes. Maximum Likelihood 

classification is a statistical approach that assigns 

each segment to the class with the highest probability 

based on the statistical distribution of the input 

features. It assumes that the input features follow a 

certain statistical distribution for each class [15]. The 

classification result of image segments representing 

building footprints are given in the Figure 9, where 

two blue boxes are present. The first box in subpart 

a) appears to represent multi-store buildings, while 

the second box in subpart b) representing single-store 

building footprints.     

 

5.4 Evaluation of Building Footprints 

The process of object-based evaluation was 

performed by comparing the classification results of 

the building footprints to reference dataset. The 

evaluation provides a quantitative measure of how 

well the classified building footprint math the 

reference building. A number of research papers use 

the completeness and the correctness in object-based 

evaluation of classification results, which can be 

calculated as [44]:  

 

𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Equation 2 

 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Equation 3 

 

In Equations (2) and (3), TP is representing the 

number of true positives, i.e., the number of image 

objects correctly classified as building footprints and 

also corresponds to buildings in the reference dataset. 

FN is representing the number of false negatives, i.e., 

the number of buildings in the reference data that 

were not correspond to classified building footprints. 

FP is denoting the number of false positives, i.e., the 

number of image objects that were classified as 

building footprints but do not correspond to buildings 

in the reference dataset [44]. 
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Figure 9: Building footprints and object-based validation views in subpart a) and in subpart b)  

 

Completeness, often referred to as Producer’s 

accuracy [45], which is related to the percentage of 

features in the reference data that were correctly 

detected on the classification map [46]. Correctness, 

often referred to as User’s accuracy [45], that 

indicates how well the classified features match the 

reference datasets [46]. In object-based evaluation, 

the most criterion is based on substantial overlap 

between the classified building footprints and the 

reference buildings [45]. However, the topology of 

the reference data may not match with the 

classification results, particularly in densely built-up 

areas. Therefore, the topologies of the both datasets 

were spatially adjusted. Building footprints 

composed of multiple segments were merged to 

better represent individual buildings. 

The reference dataset includes 1400 manually 

digitized buildings across the study area is given 

Figure 9. These buildings represent a variety of usage 

types, including single and multi-residential, 

commercial, administrative, etc. The building areas 

range from 50 to 4000 square meters and the mean 

area of the buildings in the dataset is 235m2. The 

reference buildings were categorized into several 

classes based on their area parameters. The 

classification resulted building footprints were also 

categorized into the same classes as those used in the 

reference dataset. 

Completeness is assessed separately for each 

category of the building in the reference dataset [45]. 

The categorization is based on the characteristics of 

the building area parameters. If the centroid of a 

polygonal building in the reference data falls within 

the boundaries of the classified building footprint, the 

number of determined and not determined buildings 

are counted. The determined reference building is 

considered as a True Positive (TP) and other not 

determined building is considered as a False 

Negative (FN). Completeness of the dataset is then 

calculated based on the counts of TP and FN. 

Correctness is calculated for each category of the 

classified building footprints in the dataset [45]. Area 

of the building footprint is taken into consideration 

during the assessment. A classified building footprint 

whose centroid falls within the boundaries of the 

reference building is considered as a True Positive 

(TP). And other building footprint that is not defined 

in the reference dataset is considered as a False 

Positive (FP). Correctness of the dataset is then 

calculated based on the counts of TP and FP.  

The object-based evaluation results for building 

footprints indicates with an overall completeness of 

92.4% and correctness of 95,2%. Based on the results 

we can conclude that extracted building footprints 

have been generated accurately. 

 

6. Conclusions 

The use of Unmanned Aerial Systems (UAS) in 

remote sensing applications, specifically using the 

Trimble UX5 HP platform for aerial data collection 

over Karakol city in Kyrgyzstan. Aerial surveys 

resulted in the capture of 7180 images at an altitude 

of 200 meters with a very high ground sample 

distance (GSD) of 0.06 meters.  
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The acquired aerial images were adjusted precisely 

using the GNSS receiver data and ground control 

points. Photogrammetric technique used to identify 

and match common features in the overlapping aerial 

images to create an orthomosaic image and a point 

cloud. The point cloud datasets were interpolated to 

create a Digital Surface Model (DSM). A slope-based 

filtering algorithm was applied to the DSM data for 

generating a Digital Terrain Model (DTM). The 

normalized Digital Surface Model (nDSM) was 

derived from the DSM by subtracting the DTM, 

which represents the height information of above-

ground features, such as buildings and vegetation. 

Object-based image analysis (OBIA) approach 

applied to UAS data analysis that consisted of the 

segmentation and classification steps to correctly 

extract building footprints in an urban area. 

Combining orthomosaic image with DSM data in the 

segmentation process contributed to accurately 

delineating image objects based on spectral, spatial 

and height information characteristics. Image 

segmentation was conducted at two different levels, 

starting with finer details and progressing to larger 

scale features. The first level focused to create 

smaller segments for a detailed analysis. The image 

segments with a mean nDSM value greater than 2.0 

meters were selected as the elevated image objects. 

The second level aimed to create larger segments, 

grouping together regions with similar 

characteristics.  

Building footprint classification was performed 

using the supervised classification method. The 

spectral values of RGB image, relative height and 

geometric shape characteristics were computed for 

each larger segments. The manually labeled image 

segments were used as training data to train the 

classifier. The Maximum Likelihood classifier used 

to classify image segments based on statistical 

distribution of input features. The final classified map 

containing the accurate footprints of buildings within 

the urban area. The acquired UAS datasets and the 

corresponding building footprints are highly valuable 

for further vulnerability assessments of urban areas 

to natural disasters. 
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