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Abstract 

Hydrological models significantly estimate water movements and their distribution at local and catchment sizes. 

They have been used to simulate the relative between rainfall and runoff. They enhance city planners and 

hydrology communities to investigate the complex relationship between precipitation and runoff in catchment 

and city sizes. Water movement is a vital matter, especially on the ground. This study reviews several 

hydrological modeling studies in different environments, including spatial analysis in the Watershed Modelling 

System (WMS). It seeks to consider only the most critical Hydrology and Hydraulic Modelling to investigate 

water in a watershed. Furthermore, this review gives a fundamental understanding of the empirical hydrology 

methods used to calculate runoff and a brief for 2D denominational. This review found that Hydrology 

Modelling is based on a) Loss Methods, b) Direct Run-off, and c) 2 Dimensional. This review concluded that 

the popular hydrology models applied in different environments are the Hydrologic Engineering Center-

Hedrologic Modeling System (HEC-HMS) and Soil Water Assessment Tool (SWAT). Also, Hydrologic 

Engineering Center-River Analysis System (HEC-RAS) sites are at the top of the hydraulic water depth (1D) 

and water Distributed (2D) models to assess flood plans. Hydrological models became a postnatal application 

to understand flood risk in both gauged and ungauged catchments. 
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1. Introduction 

In recent years, researchers have shown an increased 

interest in hydrology because it’s a critical subject for 

people and the environment [1]. Hydrology models 

are a branch of earth science [2]; they guide water 

resources planning and management [3]. 

Furthermore, these models are widely used to 

enhance the discussion of water control [4]. These 

models are widely used as accessible tools in the 

subjects of water resources, engineering, and 

management [5]. Furthermore, most of these models 

can also be used to forecast and flood perdition [6]. 

Hydrological models are developed to manage, 

predict, and understand catchment water rescues [7]. 

Hydrologic models are essential for estimating water 

resources, including environmental management [8]. 

The goal of a hydrologic model is to conduct an 

analysis of the nonlinear and intricate relationship 

that exists between rainfall and runoff using 

empirical equations and a variety of parameters [9]; 

also, understanding to improves our knowledge in 

decision-making in water resource planning, and 

water movements on the surface and into the ground 

[10].  

Furthermore, there has been a dramatic increase 

in hydrology and hydraulic modeling in humid and 

arid zones, which have been used to understand the 

impacts of some factors to generate Run-off [11] and 

water distribution. The application of hydrology and 

hydraulic models in environmental studies has been 

increased. Hydrologic models have become a vital 

tool for analysis of the impact of modern 

anthropogenic factors on hydrologic regimes [12]. 

Also, they are essential to investigations and 

estimates of the effect of land use (LU) and land 

cover (LC) on runoff and flood inundation [13] and 

analysis of the impacts of their activities on runoff 

[14]. Hydrological watershed studies pay much 

attention to surface runoff in a watershed because 

most hydrological processes are directly or indirectly 

influenced by it [15].
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The hydrologic model aims to predict stream features 

and peak discharge, and its application has improved 

since RS data was developed [16]. Calculating and 

estimating runoff is the primary task in hydrology 

studies [17]. The application of hydrology models 

has value in improving city and urbanization 

catchment to reduce flood risk. Data access makes 

these models available in most developed nations 

[18]. Most of the hydrology data is absent in 

developing countries, especially those related to 

observation [19]. 

Therefore, Remote Sensing (RS) data 

enhancement extraction of flood inundation areas can 

be used to simulate flooding through integration with 

hydrology models. According to Sayama et al [20] 

hydrology models can simulate flood characteristics 

based on RS data. Wilson, Mitasova, and Wright [21] 

stated that with the fast improvement of WMS, 

geographic data frameworks and RSs have assumed 

a central role in building up these hydrological 

models. RS domain has improved the accessibility of 

information, and Geographical Information System 

(GIS) is an integral asset that forms a few sorts of 

information. Besides, WMS and its integration with 

GIS and RS can improve the more explicit 

estimation of water management at small and 

catchment sizes.  

RS data enhancement estimates floods and 

inundation areas. These models also investigate the 

impacts of human activities on runoff [22]. Also, 

Hydrological models have been improved since RS 

and GIS logarithms were developed [23]. Thus, RS 

technique and computing improvements leave out 

vital information about hydrological processes that 

generate runoff and hydrology celebration [24]. This 

review gives a brief fundamental of theoretical 

hydrology modeling based on Geographical 

background. To be able approaches to the article’s 

purpose is divided into four sections: General 

Hydrological classification, description of some of 

the majority models, Application of Hydrology and 

Hydraulic Models, and implication of these models 

in ungauged catchments. 

 

2. Methodology 

Hydrology and hydraulic models have been 

developed to assess and simulate water movement. 

These models have been established as engineering 

models to solve water movement from this time 

rainfall runs and are distributed on the surface, 

subsurface, and ground. The study aims to explore 

the application of hydrology models and their 

application. So, this paper reviews many published 

articles based on a) Google Scholar. B) SCOPUS. So, 

research focused on the terms “hydrology modeling,” 

“runoff models,” “hydrodynamic model,” 

“ungauged-catchment,” and “ungauged-Basin.” So, 

this paper focused only on these terms. In addition, 

this paper extracted massive articles related to 

hydrology and hydraulic models to investigate their 

application in different environmental conditions. 

Also, snowball methods have been adapted to cite 

articles from others. 

 

3. Classifications / Theoretical Hydrological 

Models 

Hydrology models have been established for water 

source management, and their application started in 

the middle of the 19th century with rational methods 

to estimate the relationships between rainfall and 

runoff [1].  In the last few years, primarily in the 

water resources domain, there has been a dramatic 

increase in the number of populated urban areas 

globally. This increase led to more demand for water 

resources and urbanised lands. On the other hand, 

environmental modeling became necessary to 

understand this dynamic. Hydrological models give a 

disentangled numerical portrayal of the hydrology 

framework [25]. They are intended to show surface 

stream conveyed and sub-surface procedures and 

include primary devices for controlling and 

overseeing water assets.  

Hydrological models are regularly utilised 

because of the impediments of hydrology estimation 

methods. Likewise, hydrology models may 

appropriately expand our comprehension of 

streamflow recurrence water. The movement of flood 

waters through the landscape can be approximated 

using many other methods and modeling. Hydrology 

is one of the most significant environmental models 

used to estimate a catchment’s runoff volume and 

peak discharge. Thus, it is also used widely in 

different environmental conditions, such as humidity 

and drylands [26]. However, hydrology modeling has 

likely been applied for more than 165 years for 

various purposes. For example, in rural to urban 

areas, land change typically results in increased 

erosive processes, storm runoff quantity, and 

discharges in a catchment, and travel time is affected 

by surface soil [27]. 

Thus, practically all modeling has been created 

for applications in damp territories [28]. Precipitation 

Runoff Modelling covers a broad scope of uses and 

practices. This can be separated into two primary 

gatherings: I) flood examines (arranging and 

planning another pressure-driven structure, working 

and assessing existing water-driven structures, 

getting ready for and reacting to flood harm decrease, 

and controlling floodplain exercises), and II) 

stockpiling considers (catchment and store yield 

investigation, and water asset potential [29]. 
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The hydrology model has been classified into three 

majority groups depending on special resolution: 

Lumped, Semi-Distributed, and Distributed, and they 

also can simulate any runoff in the catchment 

boundary Jajarmizadeh, Harun [30] and integrated 

with land use change models to simulate runoff [12]. 

Also, it is classified into two main categories: A) 

model structure, empirical Modell, Conceptual 

Modell, and Physical Modell. B) processing special 

resolution, for example, a) Lumped Model, b) Semi-

Distributed Model, and c) Distributed Model [31  

However, the application of hydrology and the 

domain of these models are surfaces, urbanization 

hydrology, and groundwater, and the quality of 

preference of any hydrology model consists of the 

availability of data and its accuracy [30]. The 

hydrology models are classified based on previous 

categories as shown in Figure 1. So, determining 

which model is used and applied undoubtedly 

involves studying the aim. Abdulkareem et al., [4] 

stated that the review paper investigated the 

application of hydrology modeling in Malaysia 

during 2007-20018. They found that 65% used the 

physical model, 37% applied the empirical model, 

and 6% used conceptual models. The above table 

illustrates hydrology model types based on both 

methods and resolution. 

 

4. Brive and Descriptive of a Few Models 

In recent years, there has been an increase in 

urbanization areas worldwide, both in developing 

nations and developed countries. The expansion has 

an advantage in human lives, such as modern housing 

life, but also a disadvantage in the environment and 

ecosystems, including air population and decreased 

natural ground cover and hydrology matters. This 

review investigates the application of hydrology 

models based on special resolution, which are 

lumped, seem distributed, and distributed models.  

 

 

Figure 1: Application of Hydrology/Hydraulic Models Devia et al., [1] and Sitterson et al., [31] 
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4.1 Hydrological Engineering Centre-Hydrology 

Modelling System Model (HEC-HMS) 

The US Army Corps of Engineers Hydrology 

developed the HEC-HMS. The model is intended to 

simulate precipitation runoff in watershed systems. 

The system can model various geographical areas, 

including large river catchments and small urban or 

natural watersheds [32]. Furthermore, the model has 

been widely applied to simulate and forecast stream 

flows for humid, topography, and arid watersheds 

[33]. Also, Gumindoga et al., [34] used HEC-HMS 

to simulate runoff at ten ungauged catchments in 

Zimbabwe. This study involved the transfer method 

from measured to ungauged catchments by Snyder 

methods. Furthermore, they concluded the suitability 

of applying HEC-HMS with micro sub-catchments to 

the runoff model. Yilma & Kebede [35] modeled 

runoff at the Dabus Subbasin, Blue Nile Basin, 

Ethiopia, based on HEC-HMS, and this study 

concluded that this model has value in simulating 

runoff in catchments facing a shortage in hydrology 

data. Ramli et al.,[36] have found that this model can 

be applied in both gauged and ungauged catchments. 

The system data describes the watershed area in 

the basin model. Data for precipitation and 

evapotranspiration, which are required to simulate 

watershed processes, are stored in the meteorological 

model. In contrast, HEC-HMS can model 

infiltrations from the land’s surface, but the system 

cannot model storage and water movements 

vertically within the soil layer. Instead, it combines 

the near-surface and overland flow and models it as a 

direct runoff [37].  As LU changed, Szwagrzyk et al., 

[38] analyzed that LU changes impact flood risk in 

the Ropa river basin, a 1000 km2 area in Poland. 

Based on the SCS-CN method and application of the 

HEC-HMS model, they established different 

scenarios for future LU on flood risk and concluded 

that flood risk would increase. The HEC-HMS has 

been applied in different environmental locations to 

investigate the impacts of climate change and LU and 

LC in runoff and peak discharge. Therefore, the 

HEC-HMS model is classified as one of the vital 

hydrology models to estimate UH in the catchment. 

Abdulkareem et al., [4] argued that most Malaysian 

hydrology studies were published from 2007 to 2018. 

Model auto and manual calibration are better in HEC-

HMS [39].  

 

4.2 Soil and Water Assessment Tools SWAT 

SWAT has been used widely in many environmental 

conditions. This model was initially developed to 

assist the United States Department of Agriculture 

(USDA) and the Agriculture Research Service (ARS) 

in their research [40]. The SWAT can estimate and 

compute runoff based on two essential methods: Soil 

Conversation Surface- Curve Number (SCS-CN) and 

Green Ampat (GA) [41]. Shafiei et al., [42] applied 

the SWAT model in Northwest Iran in the Maroon 

Basin (3801 km2) to investigate LU development in 

the runoff. This study stated that runoff increased 

during the last forty years from 1970 to 2010 due to 

catchment changes and loss of vegetation. Also, the 

SWAT model analyzes the Impact of LU change in 

runoff at the Chennai Rahdar watershed, Southwest 

Iran [43]. Yamamoto et al., [44] investigated that 

runoff based on two hydrology methods based on 

SWAT models, such as SCS-CN and GA, were 

implemented at the Batanghari River basin in western 

Indonesia to evaluate the impacts of LU in 

hydrology. So, they found the difference in the runoff 

simulation under similar data.   

This model has also been used to analyze the 

impacts of human activities such as LU on runoff. 

Tan et al., [45] Investigated LU change and Climate 

change for the hydrology regime at Johor River Basin 

(JRB), Malaysia; this study applied the SWAT 

model. Also, Aghakhani et al., [15] investigated the 

effect of LU in runoff at the Taloqan basin in Iran. 

This study suggested some scenarios to evaluate LU 

management in runoff based on the SWAT model. 

Therefore, this study focuses on applying the SWAT 

model to LU management. Tabassum [46] used the 

SWAT hydrology model to investigate how LU 

impacts the hydrology regime in Bloomington, 

Indiana. So, this study found that LU had a critical 

impact on runoff.  

So, investigated LU impacts, especially in runoff 

and sub-surface water, can be simulated in SWAT. 

For example, Aga [47] examined anthropogenic 

effects in the basin of Gilgal Abay in Ethiopia, and 

this study found that climate change affects the 

amount of runoff. Kavian et al., [48] argued that LU 

development at Haraz River had increased runoff. 

This study was carried out in most Iranian basins. 

They suggested that, based on some scenarios, LU 

management should reduce runoff. Jodar et al., [49] 

evaluated the impacts of LU change in five Espin 

watersheds. They found that the increasing urban 

growth in this catchment affected soil quality and 

reduced its infiltration, and CN has increased from 85 

to 90 due to the catchment urbanization, which 

covered 70% of these basins. Khadka et al., [50] have 

modeled the impacts of climate change and LU 

change in Mun River, Thailand, based on SWAT, and 

they found that runoff increases with development 

areas. 
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4.3 Hydraulic Model 1 D and 2D (HEC-RAS)  

     Application  

One-dimensional hydrodynamics are broadly applied 

for contemplating flood levels and releases in-stream 

frameworks. HEC-RAS is an essential hydraulic 

model used to understand depth and water 

distribution on the ground. As straightforward 

hydrological steering strategies, 1D and 2D 

hydrodynamic models consider rapidly assessing 

dispersed water levels and releases in dendritic and 

arranged stream frameworks, considering impacts, 

for example, backwater, a shift in weather conditions, 

and dissemination [51].  

In water-distributed one- and two-dimensional 

models, hydrodynamics is regularly parameterized 

through a progression of cross-areas of the channel 

opposite to the stream course and floodplain 

geography, which can be obtained from a ground 

study at a sensible expense. Two-dimensional models 

consider stream bearings in both flatways, permitting 

estimation of progressively point-by-point water 

levels along the waterway [53]. This brings about 

better expectations of potential flooding and volumes 

of water leaving the virtual waterway channel. 

Furthermore, the water leaving the main track can be 

steered through the levees or overbank, dependent on 

the stream course, and alters to the stream course.  

Since RS data enhancement, the HEC-RAS 2D 

has been applied to estimate the inundation area. The 

primary input data are the DEM, rainfall data, and 

boundary conditions [54]. Utilisations of such 

models to normal waterway floodplains have shifted 

in scale, both as far as the length of the stream arrived 

at the spatial goals of the model work or advanced 

rise model (DEM) used to speak to the channel and 

floodplain geology. Consequently, it has become 

mainstream in flood displaying, particularly in a 

perplexing geology floodplain region. An estimated 

water depth in an urban area should be done using a 

1D / 2D model to get water depth and establish flood 

map risk.  

Thus, Huţanu et al.,[55] found that integrating 

hydrology models, enhancement of RS data, and GIS 

increased the accuracy of the suitability of flood risk, 

so they applied the HEC-RAS model to stimulate 

urban flooding in Jijla, Romania. This study used 

DEM high resolution 0.5 M derived from LiDAR 

data. Mawasha and Britz [56] estimated that flood 

depth at the Alexandra Township, South Africa, 

based on the HEC-RAS model, and found that flood 

depth increased from 2.3m in 1987 to 3m in 2015 due 

to LU change along the Jukskei River. Muthusamy et 

al., [54] estimated urban flooding using HEC-RAS, 

and they compared the outcome of modeling with the 

extent of water depth, the effect of the fluvial 

flooding, and the combined effect of both fluvial and 

pluvial flooding. Gholami [57] investigated the flood 

in the Hyrcanian forests of northern Iran based on 

HEC-RAS, and he calibrated the hydraulic model 

based on making flood depth in the field. 

 

5. Watershed Modelling System (WMS) 

Hydrological models give a streamlined scientific 

portrayal of the hydrology framework, are intended 

to show surface stream and groundwater forms, and 

involve fundamental instruments for controlling and 

overseeing water assets [58]. WMS has been 

established based on two significant subjects: GIS 

and hydrology, recognizing watershed information 

and supporting hydrology processing [59]. With 

increasing computer technology, the performance of 

hydrology modeling is becoming more accurate and 

significant [21].  

Hydrology models may expand our comprehension 

of streamflow recurrence. Also, most of the 

hydrology data is prepared using WMS, including a) 

catchment parameters and boundaries and b) running 

its data through an interface of this software. WMS 

was established to analyze watersheds and is the 

critical tool for running hydrology data and 

transferring massive amounts of information in GIS 

format [60]. Thus, many aspects should be 

considered before choosing any hydrological 

modeling. Therefore, there are various benefits to 

implementing WMS in hydrologic studies. 

According to Ritzema [58], WMS has been 

developed to enhance watershed and drainage 

analysis and hydrological management. So. The first 

step in each hydrology project is to determine the 

catchment boundary. This process usually consists of 

DEM quality, which can generally be extracted in 

WMS to identify catchment boundaries. 

After extracting catchment boundaries, 

computing morphological and morphometrical 

catchment areas is significant information to analyze 

and evaluate area study, which became available and 

more accessible in the WMS model. Catchment 

characteristics are critical elements in hydrology 

studies for modeling runoff and inundation lands; 

these characteristics, such as geomorphological and 

morphometrical characteristics, are the backbone of 

hydrology and catchment management, and WMS 

has a powerful preference for analyzing catchment 

features. After extracting the basin boundary, this 

software has many verities, such as preparing data to 

run in many hydrological subjects. Figure 2 

illustrates the application of WMS in many 

hydrology subjects. WMS is a critical model for 

analyzing watersheds and preparing data for the GIS 

program. 
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Figure 2:  Hydrology classification in WMS Abdulkarim [61] 

 

Hydrology and hydraulic models are established for 

water movement, runoff, and inundation [2]. 

Undoubtedly, many factors, including soil hydrology 

groups, LU, LC, elevation, geomorphology, and 

rainfall, are the most input data to evaluate these 

models. Hydrological parameters and catchment 

boundaries, including their morphometric and 

geometric dimensions, can be determined by 

applying WMS. This model has been used in many 

catchments, such as Khan et al., [62], which 

investigated catchment characters at Abha, Saudi 

Arabia. So, they applied WMS to estimate catchment 

parameters. Hosseini et al., [63] used WMS to 

simulate runoff in the Khuzestan Catchment, Iran. 

Also, Saudi Arabia modeled the Jeddah flooding in 

2009 by applying WMS River tools to construct the 

HEC-RAS flow model. 

 

6. Application of Hydrology and Hydraulic 

Models 

Hydrology and hydraulic models have been 

incredibly applicable in many environmental studies. 

They are used widely in the water cycle and their 

movement on or in the ground. Hydrology models are 

critical for understanding water problems in surface 

and sub-surface domains [64]. Also, it estimates 

basin hydrology response to rainfall and LU impacts 

in hydrology regimes [4]. In addition, hydrology 

models are used to investigate the effects of climate 

change on runoff and peak discharge Yang et al., 

[65]; also established to estimate runoff: a) Runoff 

Volume, b) Direct Run-off, c) Base Flow, and d) 

Channel Flow [66]. Hydrology models use many 

approaches to simulate and extract unit hydrographs.  

Estimating runoff and flood at any catchment level 

and condition can be computed using various models 

depending on the study aim and quality data.  
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Figure 3: Application of Hydrology/Hydraulic Models Raghunath [2] Chow et al., [52]and Feldman [70] 

 

So, the hydrology model can also be applicable in 

different environmental situations, such as arid, semi-

arid, and humid zones [27]. Flooding and inundation 

can also be simulated using hydraulic models based 

on 1D water depth and 2D water distribution [53]. So, 

after a runoff, water can sometimes be flooded due to 

extreme weather, climate change, and the 

development of LULC changes [67]. Furthermore, 

these models increase hydrology and catchment 

planer to understand water management [68]. The 

hydrology model’s essential domain is understanding 

and predicting water movements in catchment levels 

[69]. Figure 3 illustrates these applications for 

hydrology and hydraulic models, including peak 

dishrag and flow direction. 

After perception runoff, water will move on a 

surface depending on the slope degree in each land 

part, gravity, water capacity, and morphology, and 

usually, the answer is, in which direction does the 

water flow and flow direction. Hydraulic modeling 

has become a utilised apparatus for concentrating on 

water-powered and ecological science and designing 

as often as possible. A broad scope of hydrodynamic 

displaying types is accessible today, and this ranges 

from sensibly basic pressure-driven (Water DI-D 

models to complex 2-D models, considering stream 

bearings. Water depth and velocity have become vital 

simulations of 2D [70], and inundation maps [71]. 

Most of the hydrodynamic flood models support 1D 

and 2D flood flow modeling.  

The 1D model assumed that the flood flow is in the 

stream-wise direction (direction of the flow) of the 

channel, and the geometry is represented by cross-

sections (lines) of the track, which can be 

automatically extracted from DTM. Each model type 

has different characteristics (assumptions, input 

parameters, and output).  The roughness properties of 

the route can be described as points on the cross-

section lines (one value per cross-section), and the 

computation process estimates the average velocity 

and floodwater depth at each cross-section. Finally, 

the surface water profile is compared with an 

elevation of channel banks (left and right). The 1D 

model is numerically stable and computationally 

efficient but cannot accurately model complex 

topography. Flood extent and depth, regardless of the 

source of the flooding, are almost always predicted 

from numerical modeling [54].  

The application of hydrology models involves the 

relationship between water, soil, climate, and LU. 

Hydrology models can also be applied to investigate 

water movement in any catchment characters, 

including their geomorphology and morphometrics. 

The rational method is the most popular method used 

in hydrology due to its simplified runoff analysis, 

which was established to assess runoff in a small 

catchment [72]. Applying these models’ 

enhancement understanding to answer most 

hydrological questions: how much water a runoff 

Discharge in m3/s will be, and in which direction 

does the water flow.  
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The first question, especially for hydrology modeling 

and the need to determine which strategies are helpful 

to apply from four main groups of computation 

processes, which are a) Excess rainfall (or runoff 

volume) computation, b) Direct runoff computation, 

c) Baseflow computation, and e) final one is channel 

flow routing computation. However, each 

computation process has several methods of 

calculation. The second question involves using 

1D/2D and discussing water depth and distribution. 

Furthermore, information many guidebooks are 

published by [73]. 

Hydrology models estimate runoff from 

perception, which refers to channel water 

movements. Therefore, those models are essential to 

simulate the impacts of many factors, such as land 

use/cover in runoff and peak discharge. Furthermore, 

the application of the hydrology model still needs 

more improvement, especially in the arid zone, due 

to data limitations [74]. Unit Hydrograph as shown in 

Figure 4 (UH) is a substantial value in a catchment 

that shows a peak discharge using hydrology models 

[2]. So, peak discharge is vital in hydrology studies 

to determine and predict flood depth [63]. The UH is 

how peak discharge affects soil groups, LU, LC, 

rainfall, and geology [75]. Also, UH has many shapes 

and curves and differs from arid to humid zones. 

Hydrology models can be applied to simulate runoff, 

predict flood features based on UH, and investigate 

the impacts of LU and human activities to reduce the 

quality of the catchment area [13]. Also, they can be 

used to model runoff in many environment locations, 

including arid, same-arid, and humid zones. UH is 

also necessary for various hydrology studies, such as 

estimating flood and flood risk [76]. For example, 

Raghunath [2] observed that the peak curve of UH 

comes earlier in a dry zone, but in a humid location, 

it appears in the middle of the curve. 

The above charts have been observed from 

massive review papers results. As we also see, in a 

short time of rainfall, the peak discharge occurs in a 

short time, such as flash flooding; on the other hand, 

in a humid zone, the peak discharge seems to be a 

standard curve. The difference between them may 

involve Soil condition and its physical. Chathuranika 

et al., [77] argued that observation data at the 

Mekong River watershed in northeastern Thailand 

differed between the wet and dry seasons. This study 

estimated runoff based on two hydrology models, 

SWAT and HEC-HMS.

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Unit Hydrograph in different environmental conditions Sen [78] 

 

Figure 5: Hydrological Model-based Resolution. Ha’il City Catchment Saudi Arabia Alzamil  

(a) Lumped (b) Semi Distributed (c) Distributed model [79] 
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Hence, Figure 5 shows the primary Hydrology model 

based on data input (LU, Rainfall Record, 

Topography, Soil Types) into three Modell A- 

Lumped, B- Semi Distributed, and C-distributed 

models. In addition, these models can be applied 

based on three resolutions, including a) Lumped. b) 

Semi Distributed. c) Distributed model. 

In addition, the hydrology model enhances 

knowledge about runoff, peak discharge, and 

flooding at any catchment characters. It would be 

great to run data in different hydrology models to 

increase hydrologists’ determination using two or 

more models. For example, Aliye et al., [51] Also 

compared the preference of two hydrology models, 

SWAT and HEC-HMS, in the Katar Basin, Ethiopia, 

to simulate runoff. So, they concluded that HEC-

HMS was more predictive in this area with the 

performance value. Sith and Nadaoka compared the 

performance of both GSSHA and SWAT to predict 

streamflow and suspended sedimented concentration. 

This study took place in a small agricultural 

watershed in Japan; it also found that both models 

have advantages in simulating that flood, but in 

considerable time, SWAT is better than GSSHA.  

Therefore, on a large scale, such as a catchment, 

the Lumped model is a practical application of 

runoff; on the other hand, on a small scale, a city-size 

Distributed model gives a high result. Applying a 

hydrology model based on some methods is the best 

way to analyze LU and LC impacts on runoff and 

peak discharge [80]. They are a valuable model for 

investigating LU and LC and their runoff change. 

Hydrology models have been used to estimate and 

predict water movement on the surface and 

subsurface of the earth and its impacts on a) LU 

development on water resources [81], b) LU 

development on climate change [82], and c) LU on 

water distributed [83] estimating runoff at a 

catchment scale faces many challenges depending on 

factors such as the identity of LU, topography, and 

LC [84].  

Hydrology studies on a large scale, such as 

catchment, become available to simulate runoff and 

flooding using integrated GIS and hydrology models 

such as HEC-HMS and HEC-RAS. Hydrology 

similitude to runoff at The San Antonio River Basin 

(about 4000 square miles, 10,000 km2) in Central 

Texas, USA [85]. Therefore, hydrology models can 

also be applied in gauged and ungauged catchments 

to simulate runoff and flood management [6]. Many 

methods and models can be used to study water 

movement at small and large catchment sizes 

determined by topography, geology, and vegetation 

cover [52]. 

 

7. Ungauged Catchments 

Runoff prediction is a crucial yet challenging task in 

surface hydrology. This is especially important in 

headwater basins since these areas are typically the 

primary water supply for their respective regions. An 

accurate runoff prediction is essential for successful 

water management for human life, agriculture, 

industry, and the environment and for developing 

infrastructure [86]. Therefore, studying runoff at 

ungauged catchments increased dramatically a few 

years ago in different journals [87]. Throughout the 

world, unengaged catchments exist where direct 

stream flow data monitoring is unavailable.  

Most catchments worldwide are ungauged, and 

observation hydrology data is missing [88]. 

Furthermore, estimation catchments, parameters, and 

evaluation are enhanced knowledge to understand a 

flow character in an ungauged basin [89]. 

Understanding catchment system characteristics, 

including hydrological processes, would be 

improved and increase our knowledge of the 

management of water resources, including (a) 

topographical conditions of the catchments, (b) 

degree of urbanization, (b) scales or shapes of basins, 

(c) total amounts of rainfall and rainfall duration in 

upstream and mountainous areas, (d) ranges of soil 

permeability on the river channels, (e) variation of 

runoff features in wadi basins, and (f) scarcity of data 

and limitation of methods for flash floods forecasting 

[90]. Thus, in gauged basins, the standard method of 

calibration, classical calibration, must rely on based 

on outdated or unreliable hydrological and 

precipitation records, separated geographically or 

temporally from one another. Celebrating a 

hydrological model at the ungauged watershed can be 

implemented with many data sources and methods 

[91]. Ungauged catchments are distributed 

worldwide in dry and humid environments [88]. For 

example, the catchment of the Imjin is extended 

between North and South Korea, classified as one the 

most critical basins in Korea, and management of 

flood there is hard to do due to the limitation and 

sharing of hydrology data between North and South 

Korea [92].  In Russia, a large country in Asia, nearly 

2.6 million streams are still recorded as ungauged or 

poorly observed data [93], and they developed a 

hydrology model Multi-Layer Conceptual Model, 

3rd generation) (MLCM3) by the Russian State 

Hydrometeorological University. This model 

devolved for ungauged Russian catchments. Zhang et 

al.,[86] simulated runoff at 222 ungauged catchments 

in different Australian regions based on two lumped 

models using the genetic algorithm global to 

optimize 14 parameters in the Xinjiang model and the 

nine parameters in the SIMHYD model.
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Despite the shortage of observation data, many 

methods apply to model celebration, such as physical 

models and data-driven approaches. In the first 

method, water is simulated from rainfall to runoff, 

and the second method is used for statistical 

relationships between independent and dependent 

variables. Hydrology parameters can be done using 

many forms, such as transfer from gauged to 

ungauged data Bárdossy [6] and driving data, such as 

statistics in ungauged catchments [91]. In hydrology 

studies, transfer parameters to ungauged data can be 

accepted for similar catchment caricatures [94. Flood 

frequency can be helpful for flood modeling due to 

the lack of rainfall observation and water discharged 

at ungauged catchments [95]. So, Chiew et al., [96] 

investigated runoff modeling in 780 engaged 

Australian catchments. They found that flow medium 

and high flows have significant results in model 

celebration, but low flows have uncertain outcomes.  

In an ungauged catchment, many methods should be 

implemented to evaluate and celebrate the hydrology 

model, such as Mapping floods through RS-

applicable data, which helps calibrate and validate 

hydrology models and improve understood 

management, especially in ungauged catchments 

[97]. Furthermore, RS images can be used to support 

model calibration in ungauged catchments using 

water boundaries. To improve the Hydrology model 

celebration [98] argued that serious Landsat images 

are alternative data to observe floods from space and 

enhance the hydrologist community for their model’s 

celebration. The most common changes for modeling 

runoff in ungauged catchments are soil types and land 

management [99].  

Modify and adjust observation data one of these 

solutions to celebrate the hydrology model. Zanial et 

al., [100] argued that due to the limitation of 

hydrology data, adjustment observation data is better 

to celebrate the hydrology model in the ungauged 

catchment. Kannan et al., [101] estimated that and 

modeled runoff in the large catchment in the USA, 

including the entire Mississippi and Atchafalaya 

River Basin. The most significant study challenge 

was the availability of data to calibrate and validate 

hydrology models and topography characters. Also, 

Demisse et al., [102] estimated runoff at Omo-Gibe, 

Ethiopia, based on HEC-HMS; this study used 

catchment information from the gauged and 

ungauged surface of the catchment. HEC-HMS can 

predict runoff at ungauged catchments [7]. 

On the other hand, Ungauged catchments are 

facing the absence of observation hydrology data 

distributed in both developed and developing nations 

worldwide. Observation data is used to determine 

accurate hydrology simulation. In an ungauged basin 

with a shortage of hydrology data, the best method to 

simulate runoff is using two or more hydrology 

models, especially in countries in arid and similar 

arid zones [103]. They implemented two approaches 

to simulate runoff: transfer information from the 

nearest catchment gauge and regional location. 

Hydrological models also became important methods 

to estimate and investigate water resources and their 

cycle in different environmental conditions in local 

and catchment sizes.  

Hrachowitz et al., [91] argued that the lack of 

observation data at ungauged catchments sets out the 

critical subject in hydrology studies, making runoff 

modeling hard to expect. Thus, in some cases, driven 

data methods are another solution to a celebration of 

hydrology models. These methods would increase 

the prediction and celebration of hydrology models. 

Also, integrating GIS and RS has improved 

knowledge of simulation and extraction of 

hydrological parameters, and it became an alternative 

method and tool in hydrology studies due to missing 

observation data resulting from some significant 

factors such as optimizing of simulated output 

hydrology model with critical ground data, massive 

hydrology studies are carried out in different 

environmental conditions around the world. So, this 

review has extracted some of the thesis’s studies 

listed in Table 1. Furthermore, most methods and 

techniques used in these studies are hydrological 

models, GIS, and RS, which would be great to flow 

up any methods, especially in ungauged catchments 

at different levels and conditions. As we have read in 

the previous section, hydrology studies aim to 

consider water movements on the ground based on 

gravity and infiltration of water. Observation data is 

to be attributed to significant field information 

calculated in m3s to understand the water capacity at 

the outlet point for the catchment level. The 

following table shows some studies carried out at 

ungauged catchments. 

 

8. Conclusion 

Summary This article investigates the application of 

hydrology modeling in both runoff and flooding. 

Hydrology models became the most significant for 

the analysis of runoff and flooding. Hydrology 

models are widely implemented in water sources, and 

their risks are investigated. Water source 

management, including urban area hydrology and 

human activities, is also applicable to the hydrology 

model. Implementing GIS and RS associated with the 

hydrology model has an advantage and critical 

simulation and prediction of runoff and flooding.  
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Table 1: Summarize some of the Hydrology studies carried out in ungauged and gauged  

catchments in different environmental conditions 
 

Study and References Modeling 

Aims 

Model  Environment Basin  Catchment location 

Country 

R L E A S H U G 

Koneti et al., [8] • √ • HEC-HMS • • √ • √ Godavari. India 

Aghakhani et al.,[15] • √ • SWAT • √ • • √ Taleqan, Iran 

Gumindoga et al.,[34] √ • • HEC-HMS • • √ √ √ Zimbabwe 

Jodar et al., [49 • √ • SWAT • √ • √ • SE.Spain. 

Gholami [57] √ • • HEC-RAS • √ • √ • Hyrcanian, North Iran 

Zhang et al.,[86] √ • • Xinanjiang.SIMHYD • √ √ √ • Australia 

Msilini et al [92] √ • • RFA*1 • • √ √ • 11 Catchments. Canda 

Sokolova et al.,[93] √ • • MLCM3 • • √ √ • 50 Basins. Russa 

Sisay et al., [94] √ • • SWAT • • √ √ • Thien Hue. Vietnam 

Pool et al., [104] √ • • HBV • √ • √ • East. The USA 

Nepal et al., [105] √ • • J2000 • √ • √ • Nepal 

Kim et al., [106] √ • • GR4J • √ • √ • S. Korea. 

Zhang et al.,[107] √ • • Disturbed • • √ √ √ The. The UK 

Derdour et al.,[108] √ • • HEC-HMS √ • • √ • SW. Algeria 

Bisri et al., [109] • √ • Kineros • • √ √ • E.Java Indonesia 

Al-Salamah et al., [110] √ • • GIUH.DEM • √ • √ • Kala.Chitta. Pakistan 

Papaioannou et al.,[111] √ • • HEC-RAS • √ • √ • Xerias Basin, Greece. 

Rabba et al., [112] √ • • Disturbed • • √ √  S.Africa&Ethopia. 

Yang et al.,[113] √ • • WASMOD • • √ √ • Norway 

Lee et al., [114]*2 √ • • PDM • • √ • √ Geum River. Korea. 

Mustafa et al., [115] • √ • 2D WOLF • • √ • √ Wallonia, Belgium. 

Shakti et al., [116] √ • • GSSHA • • √ √ • Norther Kyushu,Japan 

Papaioannou et al., [117] √ • • SCS/HE-RAS • √ • √ • Mangesia. Greece 

Radwan et al., [118] √ • • SCS/GIS.RS. √ • • √ • Riyadh. Saudi Arabia 

Nigussie et al., [119] • √ • SWAT  • • √ √ • Ethiopia 

Meresa [120] √ • • HEC-HMS • • √ √ • Ethiopia 

Boulomytis et al., [121] √ • • GIS.AHP • • √ √ • Juqueriquere.Brazil. 

Durocher et al.,[122] √ • • N.Parmatic*3 • • √ √ • Different lands.Canda 

Kim et al., [123] √ • • FRA • • √ √ • South. Korea 

Kong et al., [124] √ • • TOPKAPI  • √ • √ √ Xixian,.China. 

Zahang et al., [125] √ • • Early Wrong*4 • √ • √ • Loses Plateau.China 

Masoud et al., [126] √ • • WMS.HMS √ • • √ • W.Dwaser. Saudi. 

Papaioannou et al.,[127] √ • • WRF. ARW. H-RAS*5 • √ • √ • Volos City, Greece 

Petroselli et al., [128] √ • • EBA4SUB.H-RAS.FLO • • √ √ • Two Basins. Slovakia 

Vojtek et al., [129] √ • • EBA4SUB.HEC-RAS • • √ √ • Korytárka, Slovakia 

Abdrabo et al., [130] √ • • AHP. RRI √ • • √ • Hurghada, Egypt 

Apollonio et al., [131] • √ • SCS-CN. FLO2D • √ √ √ • Apulia Region, S Italy 

Natarajan & Radhakrishnan [132] √ • • HEC-HMS • • √ √ • Canada 

Dehghanian et al., [133] √ • • Fuzzy.ANN.GA*6 • √ • √ • Tangrah NE, Iran 

Lee et al., [134] √ • • FFA.DFFA*7 • • √ √ • South Korea 

Boota et al., [135] √ • • HEC-HMS • √ • √ • Pakistan 

Chakraborty & Biswas [136] √ • • HEC-HMS • √ • √ • Teesta basin. India 

Natarajan & Radhakrishnan [137] √ • • HEC-HMS • √ • √ • Koraiyar basin. India 

Khélifa & Mosbahi [138] √ • • HEC-HMS √ • • √ • North-East of Tunisia 

Mukolwe et al., [139] √ • • ANN • • √ √ • Baringo basin, Kenya 

Filipova et al., [140] √ • • ANN √ √ √ √ • 25 Regions. The USA 

Houessou et al., [141 √ • • EBA4SUB • √ • √ • Narok town, Kenya. 

Kim et al., [142] √ • • CUH*8 • • √ √ • Imjin.basin.N/S.Korea 

Rasheed et al., [143] √ • • Machine Learning √ √ √ √ • 670 basins. The USA 

Saha et al., [144] √ • • Machine Deep Learning • • √ √ • Kunur basins. India 

Zhang et al., [145] √ • • Machine D Learning • √ √ √ • 35 mountio. China 

Hegazy et al., [146] • √ • WMS.HEC-HMS √ • • √ • West Cairo, Egypt 

Imran et al., [147] √ • • HEC-HMS • √ • √ • Manshar, Pakistan 

Prasad & Bhardwaj [148] √ • • SWAT • • √ √ • Salearn, North-w India 

Prakasam et al., [149] √ • • HEC-HMS • √ • √ • Himalayan basin, Indi 

Alsaleh [150] √ √ • SWAT √ • • √ • Riyadh, Saudi Arabia 

Siriwardana & Wijesekera [151] √ • • HEC-HMS • • √ √ • Attanagalu, Sri Lanka 

Sahraei et al., [152] • • √ GIS.MCDM • √ • √ • Southwest, Iran 
 

(R) Modeling Runoff. (L) Land Use impact on runoff. (E) Land Use impacts on Environmental issues. (A) Arid zone). (S)Same Arid. (H) Humid Zone. (U) 

Ungauged Catchment. (G) Gauged Catchment. (RFA*1) Regional Flood Analysis and Some Statical. *2 Typhoons Storms. *3 Nonparametric Models include 

local regression and generalized additive models. (Early Wrong*4) established based on rainfall and water stage. (*5) Combined Weather. Hydrology and 

Hydraulic models. (GA*6) The genetic algorithm can calibrate the rainfall-runoff. (FFA. DRRA*7) Flood Frequency Analysis and Design Rainfall–Runoff 

Analysis based on Machine Learning. (CUH*8) Clark unit hydrograph, Lumped model.  
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Specifically, the review concentrated on a few central 

parts of hydrological showing: hydrology and 

watershed models, computerized height model 

information, land-use/spread information, soil 

information, precipitation information, HEC-HMS, 

SWAT, and HEC-RAS model. 

Conclusion Hydrological models can analyze 

most hydrology matters, such as runoff volume, 

direct runoff, and base and channel flow for gauged 

and ungauged catchments in different environmental 

climates.  Dry regions require more specialists to beat 

the deterrents in hydrological demonstrating. For 

instance, specialists should consider new strategies 

for deciding spatial precipitation and penetration 

from ephemeral streams originating from streak 

floods. RS information can reproduce occasions in 

parched zones instead of checking the details. So, 

observation data can be collected from the field and 

compared to hydrology model results. This review 

found that massive application hydrology carried out 

in arid, semi-arid, and humid zones can predict 

runoff, flood peaks, and inundation areas based on a 

lumped, semi-distributed, and distributed model, 

which means all input data for catchment is a single 

factor. So, making a prediction and estimating runoff 

is safer to clarify. Recommendation This review 

concluded that applying hydrology models enhances 

the water resource community, city planners, and 

civil engineering to understand surface water and 

subsurface water management for sustainability. 

Also, flood risk and its mitigation are domain 

applications of these models. This study 

recommended that with increasingly populated cities 

in different environments, its ability to be more 

responsive to flood mitigation should be investigated, 

and this process must be done using a hydrology 

model. Hydrology models are significant methods for 

water management and prediction of the catchment’s 

future. Two hydrology models should be employed 

in ungauged catchments for more accurate results. 

So, this review strongly suggests using high-

resolution RS DEM to simulate runoff, especially in 

flat-plane lands.  
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