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Abstract 

The Vietnamese government has established 37automatic ground air quality stations in three northern 

provinces, including the capital Hanoi, Bac Ninh, and Bac Giang, to provide hourly averaged PM2.5 data. 

However, these stations are still sparsely and unevenly distributed. This study seeks to develop an approach 

utilizing advanced machine learning models to forecast PM2.5 air pollution, with a specific focus on Bac Ninh 

Province in Vietnam. Historical relationship between the independent variable (input variable) and the 

dependent variable (target variable) to construct a time series model for PM2.5 prediction. The research 

findings reveal that the AutoARIMA model demonstrates superior performance, exhibiting better accuracy 

compared to other models (R2 = 0.81, MSE = 3.5, MAE = 23.24, and RMSE = 0.17). The concentration of 

PM2.5 dust in Bac Ninh Province reaches a sensitive level that poses a threat to human health (100 

micrograms/m3). Thuan Thanh, a southern district of Bac Ninh Province, registers the highest pollution level 

in the province, with a dust concentration value of 110 micrograms/m3. The research methodology is 

scientifically contributing to raising public awareness about air quality for both individuals and local 

government stakeholders. 
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1. Introduction 

Air pollution constitutes a global challenge, with an 

annual toll of 7 million deaths attributed to exposure. 

The majority of fatalities linked to air pollution are 

documented in Southeast Asia and the Western 

Pacific [1]. In Vietnam, major urban centers such as 

Hanoi and Ho Chi Minh City consistently register 

unhealthy air pollution levels on the Air Quality 

Index (AQI), ranging from 150 to 200. This surpasses 

the World Health Organization's (WHO) annual air 

quality standard value by a staggering 21.9 times and 

has seen a significant escalation from 2010 to the 

present. The primary concern revolves around fine 

particulate matter measuring less than 2.5 mm 

(PM2.5), a factor that heightens the risk of 

cardiovascular and respiratory illnesses [2].  

Despite the Vietnamese government's issuance of 

stringent air pollution control regulations, 

exemplified by Circular No.10/2021/TT-BTNMT 

outlining technical provisions for environmental 

observation and management of environmental 

quality information and data, air pollution continues 

to worsen. In the period from 2020 to 2023, the 

government established 37 automatic ground air 

quality stations across three northern provinces 

namely Hanoi, Bac Ninh, and Bac Giang to furnish 

hourly averaged PM2.5 concentration data [3]. 

Notably, half of these stations are situated in Bac 

Ninh province, yet their distribution remains sparse 

and uneven. In Vietnam, efforts have been made by 

scientists to create PM2.5 prediction maps.  
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However, two limitations in the existing ground air 

quality stations must be addressed to enhance PM2.5 

prediction capabilities: the presentation of PM2.5 

data as points and the absence of a raster map 

depicting air pollution; additionally, there is a lack of 

time series prediction methods to effectively 

interpolate air pollution [3].  

In recent times, discussions on air pollution 

forecasts have become widespread, particularly with 

a focus on the predictive capabilities of machine 

learning (ML) models. ML, being an 

interdisciplinary field that encompasses statistics, 

data science, and computing, has garnered significant 

interest across various domains of study [4]. What 

sets our study apart is the utilization of 

meteorological time series data sources and ML 

models for learning and forecasting spatiotemporal 

PM2.5 concentrations. Traditional approaches have 

seen the widespread application of Artificial Neural 

Networks (ANN) [5] and [6], Support Vector 

Machine (SVM) [7], and Random Forest (RF) [8] [9] 

and [10] for facilitating dust size retrieval. However, 

the intricacies of complex datasets necessitate the use 

of sophisticated machine learning models [11]. The 

selection of the most suitable ML model in our study 

hinges on the availability of historical data and the 

relationship between the training and test variables 

[12]. Employing complex ML models offers several 

advantages, including the ability to comprehend and 

execute various tasks based on experience in 

searching for optimal parameters and appropriate ML 

models. This involves utilizing a weighted average of 

past observations, which is well-suited for long-term 

time series data and evident seasonal patterns, as well 

as accommodating sparse data series and time series 

with discontinuous variation [13]. 

Hence, the primary goal of this study is to 

introduce a novel approach employing advanced 

machine learning (ML) models to forecast 

spatiotemporal PM2.5 air pollution, focusing on the 

case of Bac Ninh province in Vietnam. The key 

contributions of this research include: 

1. The proposal of a methodology for 

preliminary input data analysis, addressing 

scenarios with no data, values of 0, and -9999 

for PM2.5 input values. 

2. Investigation of ML models categorized into 

three types: Level time series, Trend time 

series, and Seasonal time series, with the aim 

of selecting the most suitable ML model for 

the input dataset. 

3. Implementation of cross-validation as a 

method to train, test, and validate ML models 

for PM2.5 forecasting. 

4. Establishment of short-term PM2.5 forecast 

maps within the study area. 

 

2. Study Are and Data Source 

2.1 Study Area 

Situated north of the Hanoi capital, Bac Ninh spans 

822.71 square kilometers and is home to a population 

of 1,488,250 (as of 2022) [14] (Figure 1). The 

topography features a plain terrain that slopes from 

north to south, with hill and mountain areas reaching 

approximately 400 meters above sea level. Presently, 

Bac Ninh grapples with pollution stemming from 

rapid urbanization, expansive industrial zones, and 

craft villages. Following Hanoi capital, Bac Ninh 

province holds the second position in the air pollution 

index table, boasting an average AQI of 171. 

Pollution primarily results from anthropogenic 

activities such as transportation, industrial emissions, 

and trade villages within the province, adversely 

impacting the health of residents and hindering 

economic development. 

 

2.2 Ground Based Measurements 

The study acquired hourly PM2.5 data from ground 

air quality stations covering the period from January 

1, 2022, to June 30, 2023. This data was sourced from 

the National Environmental Observation Center's 

website (https://cem.gov.vn/), the division of the 

Vietnam Ministry of Natural Resources and 

Environment (MONRE). The spatial distribution of 

PM2.5 monitoring stations across the province is 

uneven, with a concentration in the western region. 

During data preprocessing, abnormal PM2.5 values 

exceeding 300 micrograms/m3 were excluded in the 

analysis. Additionally, observations of less than 12 

hours a day were also excluded to ensure data quality. 

The temporal resolution of the datasets used in this 

study is 1 hour, enabling the calculation of daily 

average PM2.5 concentrations for input into ML 

modeling. The time stamp is linked to short-term 

forecasts at intervals of 1, 2, 4, 8, 16, 24, and 48 

hours. 

 

3. Methodology 

3.1 The research Flow 

The study aims to enhance the uniformity of input 

datasets and identify the optimal model for 

forecasting PM2.5, leading to the creation of forecast 

maps for the study area. Initial data analysis was 

conducted to ensure input dataset consistency. 

Subsequently, three ML models, namely Level time-

series, Trend time-series, and Seasonal-time series, 

were employed to determine the most suitable model.  
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Figure 1: Bac Ninh province, Viet Nam 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Study workflow 

 

Cross-validation was employed for the training, 

testing, and validation of the ML models in PM2.5 

forecasting. Ultimately, PM2.5 forecast maps at a 

1:50,000 scale was generated. Figure 2 provides a 

visual representation of the PM2.5 retrieval process 

through the ML models.  
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Figure 3: Status of input data 

 

3.2 Preliminary Data Analysis 

Data plays a crucial role in the effectiveness of 

machine learning methods, significantly influencing 

the outcomes derived for ML models. Therefore, 

when implementing a machine learning model, the 

key priority is to curate a suitable dataset that 

facilitates effective model learning. It is imperative 

that the data accurately represents new cases to 

ensure generalizability. In this study, supervised 

learning methods were employed, necessitating the 

careful definition and preparation of training data for 

both input and output datasets. The timestamp used 

in the study is set at 1 hour. However, the collected 

datasets contained records with 0, null, and -9999 

values (indicating errors). The graphical 

representation illustrates the distribution of attribute 

values (the column), with -9999 values accounting 

for 10.89% and 8.31% in 2022 and 2023, 

respectively. Additionally, null data corresponds to 

8.86% and 16.25% for the same years (Figure 3). 

Data preparation is an essential preliminary 

procedure aimed at rendering the dataset more 

suitable for machine learning [12]. In this study, three 

interpolation methods were proposed to address 0, 

null, and -9999 values, outlined as follows: 

• Replacement of missing data with the daily 

average of measurements at one station 

(comprising 24 values per day). If the average 

value is unavailable, the corresponding data 

point is discarded. 

• In cases where a daily average is not accessible, 

the study substitutes missing data with the 

monthly average at the respective station. 

• In case a monthly average is also unavailable, 

the study resorts to replacing missing data with 

the annual average at the designated station 

In this study, a supervised learning method was 

employed, leveraging a labeled dataset for training to 

classify data and predict outcomes. The training 

sample is defined as an input vector xi, representing 

the value at time i, where i ranges from 1 to N as 

defines in Equation 1. 

0,1 0,2 1,11

0,2 1,2 1,22

0, 1, 1,

...

...

......

...

T
p

T
p

T
N N p NN

x x xx

x x xx
X

x x xx

−

−

−

   
   
   = =
   
   

       
Equation 1 

 

Where: 

T  represents the forecast for the next 1, 2, 4, 8, 16,  

    24, and 48 hours.  

xi is row of the matrix X. 

xp is column of the matrix X with p = 0, 1, 2, . . .,  

     p – 1 

N represents the number of observations prepared 

for sampling and cross-validation, utilizing a 

dataset spanning from January 1, 2022, to June 30, 

2023. 

 

3.3 Machine Learning Models  

Time series forecasting holds significant importance 

within the realms of statistics and machine learning. 

This nomenclature is aptly chosen because these 

models are specifically designed for datasets with 

temporal elements. The foundation of time series 

forecasting rests on the assumption that past patterns 

will recur in the future. Consequently, this study 

involves modeling the historical relationship between 

the independent variable (input variable) and the 

dependent variable (target variable) to construct a 

time series model. Considering the influence of 

objective factors, the time series analyzed in this 

study exhibit distinct characteristics: 1) Long 

observation time series; 2) Dispersed data resulting 

from the uneven distribution of ground observation 

stations; 3) Seasonal variation; 4) Intermittent 

volatility; and 5) Univariate time series. [15] 

recommends the use of machine learning models 

aligned with the aforementioned characteristics for 

effective forecasting. Accordingly, this study 

proposes the most suitable machine learning models 

for the specified time series models. 
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Level Time Series: AutoRegressive Integrated 

Moving Average model (AutoARIMA), GARCH 

model, Simple Moving Average model, Exponential 

Smoothing models (ETS) including Simple 

Exponential Smoothing model (SES), Simple 

Smooth Optimized model (SSO), Seasonal 

Exponential Smoothing model (SASO), Vector 

Exponential Smoothing model (VectorETS), Holt’s 

method (HOLT) models.  

 

Intermittent Time Series: Random Walk model 

(RWD), Croston model including Croston Classic 

model (CC) and Croston Optimized model (CO), 

Intermittent Multiple Aggregation Algorithm model 

(iMAPA), Theta including Models included 

AutoTheta model (AutoTheta), Standard Theta 

model (STheta), Optimized Theta model (OTM), and 

Dynamic Standard Theta model (DST) model.   

 

Seasonal Time Series: Simple Moving Average 

(SMA) model, Naïve model including Seasonal 

Naïve and Naïve models. 

 

3.3.1 Models for level time series 

The AutoRegressive Integrated Moving Average 

(AutoARIMA) model [16] was utilized as an 

Automatic forecast model, employing a long-term 

time series to predict future trends in PM2.5 dust 

concentration. The effective use of this model entails 

determining appropriate data, configuring 

parameters, and computing forecasts [15]. The model 

operates based on the assumption of a stationary 

series and constant error variance. It utilizes past 

values of the forecasted series, incorporating both 

auto-regression and moving average components. 

Given that many time series tend to exhibit upward 

or downward trends over time, obtaining a stationary 

series can be challenging. To address this, the series 

is transformed into a stationary state through 

differencing. To tackle these issues, the ARIMA 

model incorporates three sub-models: p, d, and q. 

Here, p represents the autoregressive part of the 

model, signifying the number of lagged series used 

for future predictions [17]. The parameter d indicates 

how many differences are required to render the 

series stationary. The AutoARIMA (p, d, q) 

expressed in Equation 2. 

 

( )(1 ) ( ) ( ) ( )dB B Y t B t   − = +
 

    Equation 2 

Where:  

 φ(B), ϑ(B) : polynomials of p, q, respectively. 

Δ : a constant.  

B : an operator. 

 

 

Y(t) : a variable.  

ε(t) : a noise at time t 

 

Subsequently, the study employed the Generalized 

Autoregressive Conditional Heteroskedasticity 

Process (GARCH) model, initially formulated by 

Bollerslev [18]. This statistical model finds 

application in time-series data where the variance 

error exhibits serial autocorrelation. Within the 

GARCH model in Equation 3, the conditional 

variance is expressed as a linear function involving 

the square root of past observed values and 

previously calculated conditional variances. Notably, 

the model has gained prominence due to its ability to 

fit datasets more effectively than other models, with 

its parsimonious parameterization. Over the years, 

GARCH series have proven increasingly effective in 

adjusting level time series data, as they incorporate a 

second moment to gauge time variation. 

 

1| (0, )t t tN h  −  
Equation 3 

Where: 

ℎ𝑡 : the conditional variance. 

 𝜓𝑡−1 : information at time 𝑡−1 

 𝑁 : the conditional distribution 

 

Then the GARCH [19] is determined from Equation 

4. 
2

0 1 11 1

q p

t t t j tt j
h h   − −= =
= + + 

 
Equation 4 

 

with 𝛼0 >0, 𝛽𝑗 ≥0, for 𝑖=1, 2…, 𝑞; 𝑗=1, 2,…, 𝑝       

 

The input dataset exhibits a time series format with a 

discernible trend fluctuating over time. To address 

this trend, Exponential Smoothing (ETS) models 

were employed [10] and [20]. Notably, ETS models 

represent specific instances of AutoARIMA, being 

non-stationary in contrast to the stationary nature of 

ARIMA models. In this study, various ETS models 

were explored, including Simple Exponential 

Smoothing (SES), Simple Smooth Optimized (SSO), 

Seasonal Exponential Smoothing (SASO), Vector 

Exponential Smoothing (VectorETS), and Holt’s 

(HOLT).  

SES operates by employing a weighted average 

of past observations, with weights diminishing 

exponentially. This model assigns varying levels of 

influence and importance to values at different times, 

with those closer to the forecasted time receiving 

higher weight than those further in the past. SES is 

particularly suitable for forecasting data with a subtle 

trend but lacks clear direction [15].  
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The forecast t+1 is the estimation of average level at 

time t as expressed in Equation 5. 

 

1
ˆˆ ˆ( ) (1 )t t t m tL y S L − −= − + −

 
Equation 5 

Where: 

1
ˆ

tL −   : level forecast in period t-1 

    yt  : observed value at in period t 
ˆ

t mS − : seasonal effect 

      α : smoothing constant (0<α<1) 

 

Aishwarya [ 21] proposed an enhancement to SES. 

The SSO model was crafted by optimizing the initial 

level and trend of SES to minimize the Mean Squared 

Error (MSE) error function. The SSO model is 

widely recognized in the realm of time series 

modeling, appreciated for its intuitive functionality 

and adeptness in capturing seasonality. The equation 

for the SSO model can be derived effortlessly in just 

a few steps, as expressed in Equations 6 to 9. 

 

1
ˆˆ ˆ( ) (1 )t t t m tL y S L − −= − + −

 
Equation 6 

 

1 1
ˆˆ ˆ ˆ( ) )t t t m t tL y S L L − − −= − + −

 
Equation 7 

 

1 1
ˆˆ ˆ ˆ( ) )t t t t m tL L y S L − − −= + − −

 
Equation 8 

 

1 1
ˆˆ ˆ ˆ( )t t t t m tL L y S L− − −= + − −

 
Equation 9 

Where: 

1
ˆ ˆ

t m tS L− −−
 the forecast at time t and time t-1.  

 

Similarly, the smoothing formulation of the equation 

for the Seasonal Exponential Smoothing model 

(SASO) is presented in Equation 10. 

 
ˆ ˆˆ( ) (1 )t t t t mS y L S  −= − + −

 
Equation 10 

Where: 

β: a smoothing constant (0< β <1). 

 

VectorETS is considered to be a good model for 

forecasting by using Akaike Information Criterion 

(AIC) [15] as presented in Equation 11.  

 

AIC = -2log[L]+2k 

Equation 11 

 

 

Where:  

L:  the likelihood of the model. 

k:  the total number of variances. 

 

In addressing multiple variances, the study adopts a 

multivariate approach, representing them in vector 

form as presented in Equation 12. 
 

1, 2, ,...
T

t t t n ty y y y =    
Equation 12 

Where:  

n: number of records. 

 

VectorETS can be calculated from Equations 13 to 

16: 

1 1( ) (1 )t t t t m ty b s − − −= + +
 
Equation 13 

 

1 1( )(1 )t t t tb − −= + +
 

Equation 14 

 

1 1 1( )t t t t tb b b − − −= + +
 

Equation 15 

 

(1 )t t m ts s −= +
 

Equation 16 

 

Where:  

α = 0.1908, β = 0.0392, and γ = 0.0002.  

 

Holt's model, termed Triple Exponential, employs a 

simple moving average with equal weighting for past 

observations. The ETS function is utilized to allocate 

exponentially declining weights over time [15]. In 

this scenario, the time series exhibits a trend, leading 

the forecast to predict the trend for the upcoming 

period (t+1) as presented in Equation 17. 

 

1 1( ) (1 )t t t tT F F T − −= − + −
 
Equation 17 

Where: 

β: a smoothing constant (0< β<1). 

 

Holt Winter's model is an extension of Holt's method. 

The forecast for time (t+1) is the sum of the trend 

adjusted by a seasonality index for (t+1). The trend 

relationships mirror those in Holt's model, with the 

distinction that calculations are grounded in de-

seasonalized data [15]. The equation for Holt Winter 

is commonly formulated as Equation 18. 

 
* *( ) (1 )t t t t ms y s  −= − + −

 
Equation 18  
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 Where: 
* (1 )  = −

with 0< 𝛾<1, which translates to 

0< 𝛾<1- 𝛼 

 

3.3.2 Models for intermittent time series 

Croston's is a forecasting method specifically 

valuable for intermittent demand time series [5][22] 

and [23]. Croston Classic (CC) dissects the dataset 

into inter-demand intervals and models them using 

Simple Exponential Smoothing with a predefined 

parameter. The equation for the CC model is 

represented as Equation 19. 

 

1
ˆ ˆ ˆ( )t t t tT T T T+ = + −

 
Equation 19 

Where:  

Tt = tn – tn-1: interval time between tn and tn-1. 

tn  : Present time. 

tn-1 : Previous time. 
ˆ
tT
 : Forecast inter-demand intervals in time t. 

α  : Smoothing parameter, value 0-1. 

Β : Smoothing parameter for intervals, 0<β<1 

 

The Intermittent Multiple Aggregation Algorithm 

(iMAPA) is akin to CC but operates with larger time 

intervals (weekly to monthly or quarterly). It employs 

a traditional time series forecasting method to predict 

the aggregated data, enhancing the accuracy of the 

forecasting process [23]. Consequently, iMAPA can 

be computed through a three-step procedure, which 

involves aggregating time series using non-

overlapping means of length k. The temporally 

aggregated time series is denoted with a superscript 

[k]. Given a time series with Tt and t = 1..., n, the 

formula for iMAPA can be expressed as Equation 20. 

 

[ ] 1

1 ( 1)

ik
k

i t
t i k

T k T−

= + −

= 
 

Equation 20 

 

In addition to Croston's method, the Theta forecast 

method is also widely recognized. It involves 

modifying the local curvature through a coefficient 

"Theta" (θ) and includes variations such as 

AutoTheta, Standard Theta (STheta), Optimized 

Theta (OTM), and Dynamic Optimized Theta 

(DOTM) models. AutoTheta, a univariate forecasting 

method, decomposes the original data into two or 

more lines, referred to as Theta lines, extrapolates 

them using forecast models, and combines them to 

yield the final forecasts. [24] presented AutoTheta in 

a very intuitive and simple formula, as expressed in 

Equation 21.  

 

'ˆˆ( ) (1 )( )t t tZ y B   = + − +
 
Equation 21 

Where:  

yt : The original time series with t = 1, …, n. 

̂ and 
'ˆ
tB
: Least square estimators. 

 

To retain the long-observed data in this study, the 

research focused in the θ > 1, which will be 

optimized. Thus, the decomposition for the OTM 

[19] is given by Equation 22. 

 

1 1ˆˆ(1 )( ) ( )t tY t Z  
 

= − + +
 

Equation 22 

 

with θ > 1 and the forecast for k steps of time t are 

expressed as Equation 23. 

 

| |

1 1ˆˆ ˆˆ(1 ) ( ) ( )t k t t k tY t k Z  
 

+ +
 = − + + +
 

 
Equation 23 

Where: 

|
ˆ

t k tZ + is extrapolated theta lines 

 

The Theta method mentioned earlier employs two 

Theta lines; however, forecasting the original time 

series can involve using more Theta lines by 

optimizing the parameters θ to minimize forecast 

errors. The modification of AutoTheta is OTM [19], 

which incorporates unequal weights in the 

recompositing procedure for the final forecasts. The 

formula for OTM can be articulated by combining 

Theta lines, as presented in Equation 24. 

 

2( ) (1 ) ( )t t t tY wZ w Z = + −
 
Equation 24 

 

Where: 

w is calculated from Equation 25. 

 

2

2 1

1
w



 

−
=

−
 

Equation 25 
 

OTM relies on θ parameters, and the optimal value of 

θ2 with θ > 1 is determined by w = 1/θ. The t 

parameters are updated based on historical observed 

data. In this context, OTM can be represented by 

Equation 26. 

1

1
( 1)t t tY t Y Y

t
−

 = − + 
 

Equation 26 
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where: t=1, 2,…,n,
[0,1] 

 is the smoothing 

parameter with θ>1 .  If l0, α, and θ parameters are 

calculated by minimizing the sum of squared error, 

The forecast at time t is calculated by the DOTM [12] 

as presented in Equation 27: 

 

2

0 , ,0

ˆ ˆˆ( , , ) arg min ( )
n

l t t
t i

l Y   
=

= −
 

Equation 27 

 

3.3.3 Models for seasonal time series 

In the context of a simple forecast model applied to 

seasonal time series, our study employed the Simple 

Moving Average (SMA) model, as well as Naïve 

models, which encompass Seasonal Naïve and Naïve 

models. The Naïve model provides a method for 

transforming a non-stationary time series into a 

stationary one by computing the differences between 

observations. This differencing technique stabilizes 

the dataset, reducing the impact of trend and 

seasonality. The implementation of the Naïve model 

can be expressed through Equation 2. 

 

1
ˆ

ty y −=
 

Equation 28 

 

Where εt indicates noise, εt indicates the variability, 

the higher εt the more rapidly the values will change. 

The RDW model for the original series can be 

determined from Equation 29. 

 

1t t ty y −= +
 

Equation 29 

 

Vice versa, Naïve and Simple Moving Average 

(SMA) model can be considered as opposite ideas in 

level time series [25]. SMA uses the mean for a small 

value of the time series as expressed in Equation 30. 

 

1

1
ˆ

m

t t j
j

y y
m

−
=

= 
 

Equation 30 

Where: 

m is observation times. 

 

Similar to the Naïve model, Seasonal Naïve relies on 

the most recent value. Seasonal Naïve utilizes values 

from the corresponding period in the previous season 

[26]. It can be expressed as Equation 31. 
 

ˆ
t t my y −=

 
Equation 31 

Where:  

m is seasonal frequency. 

 

3.4 Model Validation  

3.4.1 Cross validation  

K-Fold Cross-Validation involves utilizing datasets 

to both test and train AI models [27], with the results 

indicating their practical accuracy (Figure 4). This 

method, known for being easy to understand, 

implement, and providing more reliable estimates 

than other techniques, is commonly employed for 

evaluating machine learning models. It maintains 

time dependence by training, optimizing, and 

evaluating models across multiple data folds. The 

crucial parameter in this process is 'k,' which signifies 

the number of groups into which the data will be split, 

hence the term "k-fold cross-validation." In this 

study, 5-fold cross-validation was employed on each 

parameter at every instance, resulting in the method 

being specifically referred to as 5-fold cross-

validation. During each training iteration, one of the 

folds was selected as the test data, while the 

remaining 4 folds served as the training data. This 

procedure was repeated five times on the entire 

dataset. 

Additionally, a Grid Search was employed to 

optimize the exploration of each parameter 

influencing the accuracy of the trained model. Four 

parameters played a role in determining the accuracy: 

 

• The interpolation method involved two values 

derived from two interpolation methods: 

Kriging Ordinary and Universal, resulting in 

this parameter having two values. 

• The variogram model encompassed six models: 

linear, power, gaussian, spherical, exponential, 

and hole-effect, giving this parameter six 

values. 

• The number of averaging bins for the semi-

variogram consisted of 4, 6, and 8, providing 

this parameter with three values. 

• The weight parameter had two possible values: 

True or False.  

 

Consequently, the combinations of parameter values 

resulted in 72 models, each assessed across 360 data 

folds. The performance evaluation was conducted 

three times, leading to a total of 1080 training 

iterations in this study. 
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Figure 4: 5-folds cross validation in this study 

 

3.4.2 Performance of the error analysis  

For every machine learning model, R-square (R2), 

Mean Squared Error (MSE), the Root of the Mean 

Square Error (RMSE), and the Mean Absolute Error 

(MAE) were employed as metrics to ascertain the 

optimal model [28]. These performance indicators 

are calculated based on Equations 32 to 34.  
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i i
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MSE y y
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Equation 34 

Where:  

p is experimental value. 

q is forecasted value calculated from the model. 

N is total number of samples in the database. 

 

In the realm of model validation performance, the 

RMSE and MAE indicators achieve optimal values 

when approaching 0, while the R2 indicator attains its 

optimal value at 1. This implies that the model 

exhibits excellent predictive capabilities when these 

indicators reach the specified values. These three 

indicators are commonly utilized to assess the 

predictive prowess of a model. A higher R2 value 

signifies a stronger model, indicating a better fit to 

the dataset, with a maximum value of 1. Conversely, 

smaller MAE, MSE, and RMSE values indicate a 

stronger model.  

 

4. Research Results and Discussions 

4.1 Results of Data Analysis 

The development of accurate air quality forecasts 

using machine learning models relies heavily on a 

substantial volume of training datasets. 

Unfortunately, the ground observation data 

frequently exhibits uneven distribution and may 

contain gaps attributed to receiver errors, resulting in 

records with 0 values or negative values (-9999). 

Rectifying erroneous data is essential to ensure data 

integrity, thereby enhancing the training efficacy of 

machine learning models. Following the 

implementation of three methods recommended in 

Section 3.2, datasets were generated, and Figure 5 

provides a comprehensive overview of the data status 

before and after undergoing the data analysis 

processing. 

 

4.2 Result of PM2.5 Forecast Using Machine 

Learning Models 

Utilizing the machine learning models outlined in 

Section 3.3, the study can produce results for PM2.5 

forecasts using input datasets derived from ground air 

quality stations (Figure 6). 

 

4.3 Validation of the Results 

Criteria for assessing accuracy performance involved 

values of R2, MSE, RMSE, and MAE. Initially, the 

study examined the quality of PM2.5 forecasts based 

on the dataset and its compatible machine learning 

models. Despite proposing three interpolation 

methods in section 3.2 to maintain data integrity, a 

significant proportion of missing data (16.25%) and 

occurrences of -9999 (8.13%) still contributed to the 

lower accuracy of the machine learning models. 

Figure 7 illustrates the notably high MSE and MAE 

of the Intermittent Spare time series data. The metric 

values for MAE and MSE from AutoTheta, STheta, 

OTM, and DST underscored the specific range (1.03 

to 3.33 and 51.13 to 52.07, respectively).  

It is evident from Figure 7 that the automatic 

forecast model (AutoARIMA) and exponential 

smoothing models such as SES, SSO, VectorETS, 

Holt, and Holt Winter exhibit similar trends. This 

suggests that utilizing time series observation data is 

sufficiently effective for PM2.5 forecasting, with 

automatic forecast and exponential smoothing 

models demonstrating greater accuracy compared to 

other models. Notably, AutoARIMA yields 

approximately 5% higher results than other models 

when tested on the same monitoring station. 
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Figure 5: The condition of the data before and after undergoing data processing 

 

In Figure 7, the automatic forecast model, 

encompassing AutoARIMA and AutoTheta, 

demonstrates superiority over other AI models. The 

trend indicates that leveraging multi-temporal data 

obtained from long-term continuous observation of 

PM2.5 ground observation data creates a favorable 

condition for running this model, as evidenced by 

MAE, MSE, RMSE, and R2 estimations. 

AutoARIMA exhibits the lowest MSE at 23.24, 

MAE at 0.6, and RMSE at 4.7. The smallest RMSE 

suggests the narrowest difference between forecasted 

and observed values, signifying the highest accuracy 

of the PM2.5 forecast model compared to others. 

Interestingly, AutoARIMA and ETS exhibit a similar 

trend in MAE (23.2) but with lower RMSE and MSE 

values (4.7 to 7.06 and 23.24 to 32.56, respectively). 

Furthermore, the study implemented 5-fold cross-

validation (Figure 8) to generate scatter plots 

illustrating the best fit between two sets of PM2.5 

forecasted and actual values, providing a visual 

representation of their relationship. The scatterplots 

were generated for forecasted results at intervals of 2 

hours, 4 hours, 8 hours, 16 hours, 24 hours, and 48 

hours.
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Figure 6: Stimulations of the PM2.5 by using machine learning models (Unit of microgram/m3)  

(continue next page) 
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Figure 6: Stimulations of the PM2.5 by using machine learning models (Unit of microgram/m3)  

(continue from previous page) 
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Figure 7: (a) MSE, (b) MAE, (c) RMSE, of forcasted PM2.5 
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Figure 8: PM2.5 forecasted and actual values established through 5-fold cross-validation  

 

Notably, AutoARIMA demonstrated the highest 

accuracy among the models, achieving an R2 value of 

0.81. As a result, the performance validation 

indicates that AutoARIMA stands out as a suitable 

predictive model when compared to others. 

Additionally, by incorporating weight updates 

through the cross-validation method, this model 

aligns closely with the dataset used in the study. 

Consequently, AutoARIMA was chosen as the best-

fit model for the dataset outlined in Section 3.2. 

 

4.4 Mapping of Predicted PM2.5 Dust Concentration 

The mapping of future PM2.5 dust concentration in 

the study area employs well-established machine 

learning models to unveil insights into the PM2.5 

forecast in BacNinh province, Vietnam. Notably, in 

this study, AutoARIMA demonstrated its potential 

for forecasting future dust concentrations after 

analyzing the previous time series dataset derived 

from ground air quality stations. The performance 

analysis allows us to discern the functionalities of the 

sub-models p, d, and q. Figure 9 illustrates the PM2.5 

forecast at intervals of 2 hours, 4 hours, 8 hours, 16 

hours, 24 hours, and 48 hours. 

 

4.5 Discussions 

Based on a literature review on air pollution in Bac 

Ninh province, PM2.5 dust emissions are primarily 

linked to anthropogenic activities such as 

transportation and industrial emissions (Figure 1). 

This study has created PM2.5 forecast maps for time 

intervals of 2 hours, 4 hours, 8 hours, 16 hours, 24 

hours, and 48 hours using machine learning models 

(Figure 9).  
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Figure 9: The PM2.5 prediction results generated by the AutoARIMA model at 11:00 AM  

on September 23, 2022 (a) 0 hour, (b)2 hours, (continue next page) 
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Figure 9: The PM2.5 prediction results generated by the AutoARIMA model at 11:00 AM  

on September 23, 2022 (c) 4 hours, (d) 8 hours, (continue next page) 
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Figure 9: The PM2.5 prediction results generated by the AutoARIMA model at 11:00 AM 

on September 23, 2022 (e) 16 hours, (f) 24 hours, (continue next page) 
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Figure 9: The PM2.5 prediction results generated by the AutoARIMA model at 11:00 AM 

on September 23, 2022 (g) after the 48-hours, (continue from previous page) 

 

Despite the average level of PM2.5 dust emissions 

during this period, the distribution is uneven, leading 

to localized air pollution in neighboring areas. 

Notably, the annual PM2.5 dust emissions from 

industrial areas significantly exceed the province's 

average PM2.5 dust emissions (90 micrograms/m³ 

compared to 50 micrograms/m³, respectively).  

Additionally, the average daily PM2.5 dust 

emissions recorded at all ground air quality stations 

surpass the allowable standards. Notably, a 

substantial area exhibits a PM2.5 concentration 

exceeding 80 micrograms/m³, extending into 

residential areas along major traffic routes within the 

study area. Consequently, the PM2.5 concentration 

along these traffic routes significantly contributes to 

elevated PM2.5 levels, including dust carried by 

vehicles, impacting the air quality of the surrounding 

region. Another significant source of PM2.5 dust 

emissions in Bac Ninh Province is attributed to 

industrial zones. Currently, Bac Ninh hosts 15 

industrial zones distributed on both the west and east 

sides of the province. Figure 9 reveals that the 

average PM2.5 dust value in these areas exceeds 90 

micrograms/m³, reaching a level deemed harmful to 

human health according to Decision No. 1459, which 

promulgates Technical Instructions for calculating 

and announcing the Vietnam Air Quality Index 

(VN_AQI) as released by the Ministry of Natural 

Resources and Environment (MONRE) in 2019. 

Figure 1 provides a visual representation of the 

impact of industrial zones on air pollution in the 

province. Thuan Thanh, situated in the southern 

district of Bac Ninh Province, hosts three 

concentrated industrial zones namely Thuan Thanh 1, 

Thuan Thanh 2, and Thuan Thanh 3which displaying 

the highest pollution levels, reaching approximately 

110 micrograms/m³ (Figure 9). 

In its strategies and socio-economic development 

plans, the Bac Ninh government has been actively 

implementing various environmental protection 

measures, exemplified by policies aimed at reducing 

air pollution from dust emissions. An illustration of 

this commitment is found in Decision No. 222/QĐ-

UBND, outlining the Project for Environmental 

Protection of Bac Ninh province. The government 

has set increasingly stringent standards for vehicle 

inspections, advocated solutions for transitioning to 

renewable energy, promoted the reduction of coal-

fired thermal electric power, and mandated the 

installation of air treatment systems in industrial 

areas.  
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Additionally, the government is proactively 

addressing PM2.5 dust emissions from 

anthropogenic activities, emphasizing the use of 

renewable energy and upgrading the transportation 

system with a focus on public convenience. Bac 

Ninh, now one of the highest GDP provinces in 

Vietnam, has recently invested significantly in 

science and technology, particularly evident in the 

installation of additional air environment monitoring 

stations throughout the province. This initiative plays 

a crucial role in monitoring and mitigating the 

impacts of PM2.5 dust pollution on the community's 

health. As living standards improve and 

environmental awareness grows among the local 

population, people recognize the significant harm 

caused by air pollution, which is also identified as a 

contributing factor to waste generation, either 

directly or indirectly. Therefore, enhancing public 

awareness about air pollution is deemed a 

prerequisite to ensure a reduction in PM2.5 dust 

emissions in Bac Ninh in the near future.  

 

5. Conclusions 

This study developed an advanced machine learning 

(ML) approach to forecast PM2.5 air pollution within 

the Bac Ninh Province of Vietnam. Emphasizing the 

importance of cleaning input data before employing 

ML models, the study proposed three interpolation 

methods to preserve ground monitoring data. The 

selection of suitable machine learning models was 

based on dataset characteristics, including: 1) Long-

term time series; 2) Scattered data due to uneven 

distribution of ground observation stations; 3) 

Seasonal variation; 4) Intermittent volatility; and 5) 

Univariate time series. ML models recommended for 

time series data included Level time series, 

Intermittent time series, and Seasonal time series 

models. Among these, the AutoARIMA model 

demonstrated the best performance, exhibiting 

superior accuracy compared to other models (R2 = 

0.81, MSE = 3.5, MAE = 23.24, RMSE = 0.17). 

AutoARIMA achieved its highest accuracy of R2 by 

optimizing its three sub-models p, d, and q. The 

results revealed a PM2.5 dust concentration in Bac 

Ninh Province ranging from 40 micrograms/m³ to 

nearly 100 micrograms/m³, consistent with values 

obtained at the corresponding ground stations during 

the accuracy assessment. Thuan Thanh, the southern 

district of Bac Ninh Province, exhibited the highest 

pollution level with a dust concentration value of 

approximately 110 micrograms/m³. Consequently, 

PM2.5 forecast maps were established for intervals 

of 2 hours, 4 hours, 8 hours, 16 hours, 24 hours, and 

48 hours. These maps vividly depict the impact of 

industrial zones on PM2.5 air pollution in the 

southern district, particularly in the concentrated 

industrial zones of Thuan Thanh 1, Thuan Thanh 2, 

and Thuan Thanh 3. 

This study employed advanced machine learning 

(ML) models to forecast PM2.5 air pollution in the 

Bac Ninh Province of Vietnam. Emphasizing the 

significance of cleaning input data before employing 

machine learning models, the study proposed three 

interpolation methods to preserve ground monitoring 

data. The selection of suitable machine learning 

models was based on dataset characteristics, 

encompassing long-term time series, scattered data 

due to the uneven distribution of ground observation 

stations, seasonal variation, intermittent volatility, 

and univariate time series. The ML models 

recommended for time series data included Level 

time series, Intermittent time series, and Seasonal 

time series models. Among these, the AutoARIMA 

model exhibited the best performance, achieving 

superior accuracy compared to other models (R2 = 

0.81, MSE = 3.5, MAE = 23.24, RMSE = 0.17). 

AutoARIMA attained its highest accuracy of R2 by 

optimizing its three sub-models p, d, and q (Section 

3.3.1). The results indicated that PM2.5 dust 

concentration in Bac Ninh Province ranged from 40 

micrograms/m³ to nearly 100 micrograms/m³. This 

consistency was evident in the accuracy assessment 

process with values obtained concurrently at the 

corresponding ground stations. Thuan Thanh, the 

southern district of Bac Ninh Province, exhibited the 

highest pollution level, with a dust concentration 

value of approximately 110 micrograms/m³. 

Consequently, PM2.5 forecast maps were established 

for intervals of 2 hours, 4 hours, 8 hours, 16 hours, 

24 hours, and 48 hours, highlighting the impact of 

industrial zones on PM2.5 air pollution in the 

southern district, particularly in the concentrated 

industrial zones of Thuan Thanh 1, Thuan Thanh 2, 

and Thuan Thanh 3. 

In conclusion, the widespread applications of 

machine learning have generated significant interest, 

particularly in the realm of forecasting air pollution. 

This paper focuses on exploring innovative machine 

learning models for predicting future air pollution in 

Bac Ninh province, Vietnam. The study underscores 

the critical importance of pairing a suitable machine 

learning model with the dataset, as it directly 

influences result accuracy and reduces computational 

time. Notably, the limitations of the ground air 

quality stations in the study area, where only 17 out 

of 20 stations are operational, impacted the accuracy 

of research results, particularly in interpolating 

PM2.5 prediction maps. Future research will 

consider the implementation of Internet of Things 

(IoT) technology to enhance PM2.5 monitoring 

capabilities. 
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