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Abstract 

The process of modelling land use and cover (LULC) is an essential tool for predicting changes in land area in 

the future. This study aims to define the LULC changing patterns of the Ajdabiya region in Libya for 2016, 

2020, and 2022 and predict future LULC changes for 2030, 2040, and 2050 by combining Geographical 

Information Systems (GIS) and remote sensing with Land Change Modelling (LCM) included in the TerrSet. 

Sentinel satellite images were used to identify the LULC. In this study, Ajdabiya was classified into seven 

classes: water, urban, agricultural land, salt marsh, flat sand, sand dunes, and sand bars. The combined 

algorithm was used to classify the LULC classes. All the classified LULC maps demonstrate excellent accuracy, 

showing more than 92% overall accuracy. Implementing Cellular Automata–Markov Chain (CA-Markov) 

prediction model, future scenarios for LULC were developed. According to the statistics derived from the kappa 

indices and agreement/disagreement marks, the outcomes of predicting the LULC changes proved satisfactory. 

Kappa for no information (Kno) equals 0.832, Kappa for location (Klocation) equals 0.777, and Kappa for 

standard (Kstandard) equals 0.772. During the study period prediction from 2022 to 2050, the values of 

increase in the LULC classes of urban, agricultural land, salt marsh, flat sand, and sand bar are 63.69%, 

43.26%, 71.03%, 35.08%, and 0.81%, respectively. By studying the LULC changing pattern, this study will 

assist urban planners and policymakers in choosing appropriate sustainable development options in the study 

area. 
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1. Introduction 

The categorization of land-use/land-cover (LULC), 

which is frequently based on remote sensing imagery, 

is one of the key study topics in terms of global 

environmental change [1]. Investigating different 

changes in environmental processes and climate 

change at both the local and global levels require 

LULC information [2]. One of the most popular 

approaches to understanding past land usage, the 

types of changes calculated, the mechanisms driving 

such changes, and the visible changes to the Earth's 

surface is LULC change  [3] and [4]. Critical 

concerns, including biodiversity destruction and 

detrimental effects on human existence, might be a 

result of LULC modifications [5] and [6]. 

Assessment of LULC change is now essential to 

many aspects of the interaction between humans and 

the environment [4].  Changes in LULC are 

widespread and cause major concern across the world 

[7]. 

Making an accurate estimate for demand of land 

use and simulating it in potential future scenarios are 

required for land use policy and planning to be as 

effective as feasible [8]. Identification of LULC is 

essential for assessing regional, local, and global 

environmental change [9] and [10]. Geographic 

information systems (GIS) and remote sensing (RS) 

are effective techniques for gathering precise and 

current information on the spatial distribution of 

LULC changes. RS is an effective tool for constantly 

monitoring and evaluating LULC change in the 

environment and the development of landforms using 

geomorphological studies [8] and [9]. 
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Researchers have been attracted to the cellular 

automata (CA) model in recent years because of its 

ease of use, adaptability, and capacity to integrate 

spatiotemporal aspects [11]. Traditional CA is 

insufficient to provide a realistic simulation since 

each individual model's structure only considers 

spatial data [12]. Additionally, the CA is a poor 

model for incorporating the dynamics that drive land 

use change, making it challenging to manage [8]. The 

Markov chain, a well-known model that predicts 

future change based on the past, and CA, which 

locates the location of change spatially [12] and [13]. 

The CA-Markov model was employed to attain the 

goals since the Markov model by itself cannot 

accomplish the geographical position of future LULC 

[14]. 

Numerous studies have shown that the Land 

Change Modeller (LCM), which is based on an 

integrated CA [15] and Markov chain  (MC) resulting 

in a CA-Markov chain model, is an effective model 

for the study and forecasting of LULC change and 

urban expansion  [8] [11] [16] [17] [18] and [19]. 

Simulating the spatiotemporal aspects of LULC 

dynamics is possible with the CA-Markov chain 

combination [14] and [20]. The combined CA-

Markov model has never been used for LULC 

simulations in Libya. Based on Multi-Layer 

Perceptron neural networks (MLPNN) and CA-

Markov chain, the LCM model forecasts future 

LULC images [21]. In this research, CA-Markov is 

implemented to forecast future LULC changes. 

This study identified past LULC changes and 

simulated future changes using combined 

classification approach, CA-Markov, GIS spatial 

analysis, the ERDAS image, and the LCM. Based on 

the previously categorized images, the LCM 

integrated in TerrSet was utilized to predict the 

LULC in the future. For quantity estimate as well as 

for spatial and temporal modelling of LULC 

dynamics, the CA-Markov model is a reliable 

technique. The CA-Markov model may simulate 

changes in various LULCs as well as the transition 

from one category of LULC change to another [12] 

and [23]. One of the basic principles of the MC for 

simulating the LULC transition is that it is a 

stochastic process that quantifies the likelihood that 

one state will change to another state [12] [14] and 

[24]. This is made possible by the creation of a land-

cover transition probability matrix (TPM), which 

shows that the nature of the shift may still be 

implemented to forecast the subsequent period [24]. 

Therefore, it is essential to use RS/GIS tools and 

simulation models to discover, identify, and model 

past, current, and future LULC situations. In order to 

create successful urban policies and plans for 

economic, demographic, and environmental growth 

that are sustainable and maintain environmental 

balance, such an approach is necessary. Obtaining 

spatial-temporal features throughout time is a 

prerequisite for these strategies [14] [25] [26] and 

[27]. 

This study, which focuses on Ajdabiya in Libya, 

attempts to: (a) identify, quantify, and analyze in 

detail past LULC variations over the years 2016-

2020-2022; and (b) forecast future LULC maps in the 

coming three decades (2030-2050) based on LCM. 

Additionally, this study intends to give decision-

makers and policymakers a strong basis on which to 

build policies for sustainable development. The 

findings of this study might be used both within 

Libya and everywhere in the world. Sentinel imagery 

and modelling LCM will be combined to address the 

paper's goals. So far, to the best of our knowledge, 

investigating and predicting LULC in Ajdabiya have 

not been investigated. 

 

2. Materials and Methods 

2.1 Study Area 

This study was conducted in Ajdabiya, which is the 

capital of the Al Wahat district in northeastern Libya. 

The majority of Libya is a desert nation with a dry 

climate and a sparse amount of vegetation. Ajdabiya 

is located 150 km south of Benghazi and lies along 

the southern side of the Mediterranean coast. 

Ajdabiya is located in east Libya, as presented in 

Figure 1. Ajdabiya is located between latitudes 27º 

50´ N to 31º 10´ N and longitudes 18º 30´ E and 21º 

E and has a total area of about 63900 km2, as shown 

in Figure 1. The higher elevations were concentrated 

in the south, and the lower elevations were 

concentrated in the north. In Ajdabiya, the average 

annual amount of precipitation is 48 mm, and the 

average annual temperature is 27 ℃. 

 

2.2 Dataset  
The remote sensing data employed in this study were 

based on Sentinel-2. Satellite images for the years 

2016, 2020, and 2022 are collected by Sentinel-2, 

which downloaded them from the Copernicus Open 

Access Hub (https://scihub.copernicus.eu/) and then 

merged them into Erdas Imagine (version 15) to carry 

out the classifications of each LULC. High-resolution 

landcover monitoring is the primary objective of the 

Sentinel-2 satellite, which is a component of the 

Sentinel program. It was first launched in 2015. 

Sentinel-2 contains twelve spectral bands with spatial 

resolutions of 10, 20, and 60 m. All images were 

obtained in the same month for the purpose of 

preventing seasonal variations in the images. 
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Figure 1: The study area in Ajdabiya, Libya 

 

The whole study area is covered by sixteen images 

from the Sentinel-2 satellite. The Sentinel images 

were projected to a World Geodetic System 1984 

(WGS 84) into a Universal Transverse Mercator 

(UTM) Zone 34 N coordinate system. 

Furthermore, a 30 m digital elevation model 

(DEM) was extracted from the ASTER DEM 

(https://www.earthdata.nasa.gov/). Topographic 

features such as elevation, slope, and aspect are 

derived from the DEM. Road network data and 

hospital data are obtained from the Open Street Map 

(OSM) (https://www.openstreetmap). River data are 

extracted from the Global River Classification 

(GloRiC) (https://www.hydrosheds.org). The WGS 

1984 UTM Zone 34 N coordinate system is applied 

to all the data before being input into the CA-Markov 

model. 

 

2.3 Past LULC Classification and Accuracy 

Assessment 

For the LULC classification, the combined technique 

was used to determine the seven main land covers 

using the ERDAS Imagine V. 15 software. Both 

manual and automatic processes are used in the 

combine technique. Although the combination 

process takes a long time, it is suited for large areas. 

In this study, seven classes were defined for each 

satellite image: water, urban, agricultural land, salt 

marsh, flat sand, sand dunes, and sand bar.  

The selection of these classes was made according to 

field data and information from local people and 

experts. For evaluating the accuracy of the classified 

images, an accuracy assessment is a must. The 

accuracy assessment tool in Erdas was utilized, 

taking 98 ground truth points for the assessment of 

seven different LULC classes' classification 

accuracy. In order to evaluate the classification of the 

images, reference information was gathered from 

high-resolution imagery on Google Earth. Here, the 

computation of overall accuracy (OA), user accuracy 

(UA), producer accuracy (PA), and the kappa index 

of agreement served as the basis for accuracy 

assessment. When the kappa coefficient is less than 

0.4, there is poor agreement. A value between 0.4 and 

0.8 indicates moderate agreement, and a value larger 

than 0.8 demonstrates strong agreement, according to 

the authors of [20]. By dividing the total number of 

correctly classified pixels by the total number of 

reference pixels, the OA is determined [28]. 

 

2.4 Future LULC Prediction and Associated 

Driving Forces 

Future LULC changes have been simulated using the 

LCM module in TerrSet software version 18.31. 

LCM depends on transition suitability maps 

produced by training multilayer perceptron or logistic 

regression, MC matrices, and artificial neural 

networks [7].
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In this study, the CA-Markov model was used to 

forecast future LULC scenarios in Ajdabiya based on 

past classified images from 2016 and 2020. LCM 

used past LULC maps and several driving forces to 

map future LULC situations [3].  

The selection of the input driving variables is also 

essential for forecasting future LULC maps [29]. The 

driving variables that were considered in LCM in this 

study are elevation, slope, aspect, distance to 

agriculture, distance to urban, distance to river, 

distance to road, and road density. The dependent and 

independent factors were used to predict LULC 

change. The driving variables are considered 

dependent, and LULC maps are considered 

independent variables. It is important to keep in mind 

that the choice of variables and indicators may, to 

some extent, result in certain variations in the 

simulation results or parameters of the model, which 

will affect the forecast of LULC change [3]. In terms 

of distance from the road, for instance, if the region 

is extremely close to the road, the rate of urbanization 

is quite high, and vice versa. This also holds true for 

other determining variables. 

A stochastic modelling approach called CA-

Markov model is used by the TerrSet model. The 

widely utilized CA-Markov model, which simulates 

and models the dimensions and trends of LULC 

evolution, was utilized to simulate future LULC 

scenarios [8] and [4]. The TPM and transition 

probability areas were created using the Markov 

model [22]. Assessing the possibility of LULC 

changing from one class to another based on area 

suitability transitions and the existence of driving 

forces is known as transition potential modelling. The 

TPM keeps track of the likelihood that each land use 

class will shift into a different class [20]. The Bayes 

equation, which computes the change by contrasting 

the first (T1) and second land cover (T2), is used by 

the Markov matrix model to forecast changes in land 

use and cover (LULC) [3] and [7]. The predicted 

change in pixel numbers for each LULC class 

throughout the designated time period is contained in 

the transitional area matrix. In this study, the LCM is 

used to predict the future LULC changes in the 

Ajdabiya in three scenarios (2030, 2040, and 2050) 

by following four steps, namely: (a) change analysis 

of past LULC maps (2016, 2020, and 2022); (b) 

constructing transition probability matrixes; (c) 

model validation by comparing actual and forecasted 

maps of the year 2022; and (d) prediction of future 

LULC maps for the years 2030, 2040, and 2050, 

taking driving forces into account [3] and [7]. The 

overall methodology adopted in this study is 

illustrated in Figure 2.  

 

The potential for LCM in predicting future LULC 

was validated by creating a predicted map for 2022 

based on the 2016 and 2020 LULC maps and then 

comparing it with the actual 2022 map. Kappa 

indices of agreement such as Kappa for no 

information (Kno), Kappa for location (Klocation), 

and Kappa for standard (Kstandard) evaluated the 

agreements of the two maps (actual and predicted 

2022) in TerrSet [3] [8] [31] and [32]. Kappa is 

always less than or equal to 1. The perfect agreement 

between the observed and modelled data has a value 

of 1 [33]. 

Furthermore, five statistics were estimated to 

indicate how well the comparison map agrees with 

the reference map: agreement due to chance 

(Agreement Chance), agreement due to quantity 

(Agreement Quantity), agreement due to location at 

the grid cell level (Agreement Grid cell), 

disagreement due to location at the grid cell level 

(Disagree Grid cell), and disagreement due to 

quantity (Disagree Quantity) [3] [20] and [29]. To 

evaluate the correlations between the different 

driving factors, the Cramer's V Coefficient (CVC), 

often known as the Cramer's V method [34], was 

applied. CVC can assist us in identifying the degree 

to which a component can affect LULC change, and 

it ranges from 0.0 to 1.0 [29]. The CVC value is a 

statistical indicator of the degree of dependence or 

correlation between variables [20]. 

 

2.5 LULC Change Detection 

Equations 1 to 3 were used to identify LULC changes 

based on three parameters: magnitude (degree) of 

change (C), percentage of change (P%), and rate of 

change (R) for each class [3] and [10]. 
 

i i iC L B= −  

Equation 1 

100i

i

i

C
P

B
=     

Equation 2 

i

i

C
R

T
=     

Equation 3 
  

Where 𝑖 indicates the LULC class, Bi and Li are the 

areas in km2 with the earliest and latter LULC, 

respectively. The period between Bi and Li is T in 

years. 

 

3. Results Analysis and Discussion 

3.1 Changes in Past LULC Classes 

Seven LULC classes were identified in the study area 

in 2016, 2020, and 2022 (Figure 3).  
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Figure 2: Methodology adopted in this study 

 

 
Figure 3: LULC distribution of Ajdabiya in 2016, 2020, 2022 

 

The combined algorithm is applied to determine the 

LULC change patterns in 2016, 2020, and 2022, as 

shown in Figure 3. Table 1 provides the 

quantification of LULC change for the studied 

categories. Over the course of the research period, the 

largest class, which was mostly distributed over all of 

Ajdabiya, was flat sand and sand dunes. As listed in 

Table 1, in 2016, most of the study area was covered 

by sand dunes (55.5%), flat sand (42%), salt marsh 

(1.87%), sand bars (0.33%), water (0.16%), and 

agricultural land (0.07%), with only a very minor part 

occupied by urban areas (0.05%). 
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Table 1: Details of LULC distribution of Ajdabiya in 2016, 2020, 2022 
 

LULC Type 
2016 2020 2022 

Area (km2) Area (%) Area (km2) Area (%) Area (km2) Area (%) 

Water 104.24 0.16 100.62 0.16 102.55 0.16 

Urban 30.32 0.05 27.84 0.04 31.12 0.05 

Agricultural land 42.00 0.07 70.97 0.11 183.81 0.29 

Salt marsh 1,194.92 1.87 908.67 1.42 1,018.61 1.59 

Flat sand 26,848.30 42.0 38,398.50 60.08 41,109.50 64.32 

Sand dunes 35,486.10 55.5 24,078.40 37.67 21,135.10 33.07 

sand bar 210.89 0.33 331.76 0.52 336.08 0.53 

Total 63,916.77 100 63,916.77 100 63,916.77 100 

 

Table 2: Accuracy of LULC classification for 2016, 2020, and 2022 
 

Year Accuracy 

LULC classes 

Water Urban 
Agricultural 

land 

Salt 

marsh 
Flat sand Sand dunes 

Sand 

bar 

2016 

PA (%) 100 100 91.67 93.33 87.5 86.6 92.86 

UA (%) 100 85.71 78.57 100 100 92.86 92.86 

OA (%) 92.86 

Overall Kappa 

statistics 
0.92 

2020 

PA (%) 100 100 100 100 76.47 81.25 100 

UA (%) 100 78.57 92.86 100 92.86 92.86 92.86 

OA (%)    92.86    

Overall Kappa 

statistics 
0.92 

2022 

PA (%) 100 100 100 93.33 92.86 93.33 100 

UA (%) 100 85.71 100 100 92.86 100 100 

OA (%) 96.94 

Overall Kappa 

statistics 
0.96 

 

In 2020, there was some decrease in urban areas, and 

the area covered by agricultural land was 0.11%. In 

2020, the urban percentage decreased compared to 

2016, as mentioned in Table 1, because of the war 

and destruction in the study area. In 2022, the area 

covered by agricultural land was 0.29%, the area 

covered by urban areas was 0.05%, and most of the 

area was flat sand (64.32%). The percentage of area 

covered by agricultural land (0.29%) increased in 

2022 compared to 2016 (0.07%). In all periods, 

according to the LULC maps, the percentage of flat 

sand increased and the percentage of sand dunes 

decreased. Flat sand underwent the largest increase 

(from 26848.30 km2 in 2016 to 41109.50 km2 in 

2022) during the entire research period. Analysis of 

LULC area changes in Table 1 indicates that from 

2016 to 2022, sand dunes areas decreased from 

55.5% to 33.07%. 

 

3.2 Accuracy Assessment for LULC 

The final phase in the classification process was 

comparing the results of the combined classification 

with the basic actual information from PA, UA, OA, 

and the Kappa accuracy statistic. To confirm the 

accuracy of the image classification, a confusion 

matrix in each LULC is constructed. The confusion 

matrices showed that the OA was 92.86%, 92.86%, 

and 96.94%, and the Kappa coefficients were 0.92, 

0.92, and 0.96 for the years 2016, 2020, and 2022, 

respectively, as presented in Table 2. The overall 

kappa results of this study show a high level of data 

reliability. Furthermore, the analysis of the PA shows 

that the highest PA was obtained for the water and 

urban classes in all periods.  

In 2020, the PA is the lowest for flat sand and 

sand dunes. The PA is the lowest for flat sand, sand 

dunes, and salt marsh in 2022. The analysis of the UA 

indicates that the highest UA was observed in water 

and salt marshes in all periods. The lowest UA was 

found in agricultural land (78.57%) in 2016, and the 

lowest PA was obtained in flat sand (76.47%) in 

2020. The statistics of LULC classification accuracy 

were excellent, showing extremely strong agreement 

between the classified maps and the reference 

information, as can be listed in Table 2. 
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3.3 LULC Change Analysis and Transition 

Probability Matrix 

Table 3 compares the three reference years: 2016, 

2020, and 2022. It is possible to observe the area of 

LULC change, Percentage of area changing, and the 

rate of LULC change (R) in Ajdabiya, as listed in 

Table 3. The research study identified slight changes 

in urban areas. It can be seen from Table 3 and Figure 

3 that the majority of this is flat sand and sand dunes, 

and over the period of 2016 to 2022, a large area of 

sand dunes was converted to flat sand. The positive 

value in percentage of change indicates an increase in 

a specific LULC class, while negative values indicate 

a decrease. The areas with the maximum increase in 

rate of change are flat sand and agricultural land.  

Between 2016 and 2022, sand dunes' LULC 

classes are expected to decline by 40.44%. The 

decrease in salt marsh LULC classes throughout the 

research period (2016-2022) was 14.75%. During the 

study period (2016–2022), the percentage of change 

of increase in the LULC classes of urban, flat sand, 

and sand bar were 2.65%, 53.12%, and 59.40%, 

respectively. The results of this study showed that 

Ajdabiya exhibited a considerable LULC shift 

throughout this period of time. Table 4 demonstrates 

the TPM from one class to another in 2022 utilizing 

MC analysis for the years 2016 and 2020. The off-

diagonal data show the potential for a shift from one 

phenomenon to another, while the data on the 

diameter of TPM show the likelihood of a 

phenomenon remaining the same [24] and [35]. The 

columns of the table represent the more recent LULC 

categories, and the rows represent the older LULC 

categories.  

Upon examining Table 4, it is apparent that the 

most important changes that occurred in the LULC 

simulation in 2022 are as follows: The probability to 

switch from water to sand bar is 0.02; from urban to 

flat sand is 0.27; from agricultural land to flat sand is 

0.19; from salt marsh to flat sand is 0.16; from flat 

sand to sand dunes is 0.09; from sand dunes to flat 

sand is 0.34; and from sand bar to flat sand is 0.19, as 

revealed in Table 4. The CA-Markov model uses the 

TPM findings as input data to produce a simulated 

map of 2022. Figure 4 summarizes the "from-to" 

changes as LULC's loss and gain change. The 

investigation of gains and losses made by various 

categories employing change analysis in LCM 

showed how the LULC analysis changed, as 

presented in Figure 4. The study area lost 14351 km2 

of sand dunes (the largest loss) and gained 14261.20 

km2 (the largest gain) in flat sand from 2016 to 2022. 

Figure 4 shows that the majority of the classes have 

both gains and losses.  

 

Table 3: Past LULC changes for Ajdabiya 
 

LULC 

classes 

2016-2020 2020-2022 2016-2022 

Area 

(km2) 

Area 

(%) 

R 

 (km2/year) 

Area 

(km2) 

Area 

(%) 

R 

(km2/year) 

Area 

(km2) 

Area 

(%) 

R 

(km2/year) 

Water -3.62 -3.47 -0.90 1.92 1.91 0.96 -1.69 -1.62 -0.28 

Urban -2.48 -8.17 -0.62 3.28 11.79 1.64 0.80 2.65 0.13 

Agricultural 

land 
28.98 69.00 7.24 112.84 158.99 56.42 141.82 337.68 23.64 

Salt marsh -286.25 -23.96 -71.56 109.94 12.10 54.97 -176.31 -14.75 -29.39 

Flat sand 11550.2 43.02 2887.55 2711 7.06 1355.50 14261.20 53.12 2376.87 

Sand dunes -11407.7 -32.15 -2851.93 -2943.3 -12.22 -1471.65 -14351.00 -40.44 -2391.83 

sand bar 120.92 57.35 30.23 4.32 1.30 2.16 125.24 59.40 20.87 

 

Table 4: Transition probability matrix in 2022 
 

Class Water Urban 
Agricultural 

Land 

Salt 

Marsh 
Flat sand 

Sand 

dunes 
Sand bar 

Water 0.9591 0 0.0036 0.0136 0.0024 0.0001 0.0211 

Urban 0.0024 0.3357 0.1665 0.1361 0.2669 0.0693 0.0232 

Agricultural Land 0.0118 0.0627 0.5526 0.1618 0.1881 0 0.023 

Salt Marsh 0.0011 0.0007 0.0035 0.7696 0.1576 0.0597 0.0077 

Flat sand 0 0.0003 0.0014 0.0033 0.8988 0.0943 0.0018 

Sand dunes 0 0 0 0 0.3382 0.6572 0.0045 

Sand bar 0.0006 0.0199 0.0099 0.0298 0.1915 0.1081 0.6402 
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Figure 4: Gain and loss of LULC classes of the study periods: (a) from 2016 to 2020;  

(b) from 2020 to 2022; (c) from 2016 to 2022. The x-axis represents the area in km2 
 

Table 5: Validation of the model accuracy for the year 2022 

 

 

 

 

 

 

 

 

 

 

 

3.4 Model Validation 

The purpose of the validation process was to evaluate 

the predicted map. The LULC map of 2022, predicted 

from the 2016 and 2020 data, has been validated with 

the classified LULC map of the same year (Table 5), 

demonstrating how well the LCM model can 

effectively predict LULC changes with an average 

accuracy of 97.61%. Table 5 lists the prediction 

model accuracy, which varied between 95.76% and 

99.06%, with an average accuracy of about 97.61% 

for different LULC. Kappa indices and other 

statistics in TerrSet were used to evaluate LCM's 

potential to forecast the 2022 LULC, as compiled in 

Table 6. Klocation equals 0.777 and Kstandard 

equals 0.772, as listed in Table 6. All the calculated 

K-index values (>75%) show good agreement 

between the predicted and actual LULC maps. For 

evaluating the simulation's accuracy, Kno is the most 

crucial parameter. As observed in Table 6, Kno 

equals 0.8315, which means that the CA-Markov 

model has the ability for future prediction with 

sufficient accuracy. As far as the authors are aware, 

the performance of the CA-Markov in LCM for the 

LULC pattern has never been evaluated in this study 

area. 

 

Class 

Area in km2 

Actual 

(2022) 

Predicted 

(2022) 
Difference 

Percentage 

difference 

Accuracy 

(%) 

Water 102.55 101.02 -1.53 -1.49 98.51 

Urban 31.12 30.24 -0.88 -2.83 97.17 

Agricultural land 183.81 178.10 -5.71 -3.11 96.89 

Salt marsh 1,018.61 1,041.85 23.24 2.28 97.72 

Flat sand 41,109.50 41,495.40 385.90 0.94 99.06 

Sand dunes 21,135.10 20,748.40 -386.70 -1.83 98.17 

sand bar 336.08 321.84 -14.24 -4.24 95.76 
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Table 6: Statistical verification of the CA-Markov model for predicting LULC in 2022 
 

Statistics Value 
Kno 0.8315 

Klocation 0.7773 

Kstandard 0.7716 

Agreement Chance 0.1250 

Agreement Quantity 0.2296 

Agreement Grid cell 0.4980 

Disagreement Grid cell 0.1427 

Disagreement Quantity 0.0047 

 

Table 7: Cramer’s V coefficients of driving forces 
 

Driving Force Cramer’s V Value 

Distance to Agriculture  0.0714 

Distance to Urban  0.1022 

Elevation 0.1609 

Aspect 0.0626 

Slope 0.0506 

Distance to River 0.0871 

Distance to Road 0.0586 

Road Density  0.1347 

Distance to Hospital 0.1493 

 

Table 8: Transition probability matrix in 2030 
 

Class Water Urban 
Agricultural 

Land 

Salt 

Marsh 
Flat sand 

Sand 

dunes 
Sand bar 

Water 0.81 0.00 0.01 0.04 0.07 0.02 0.05 

Urban 0.01 0.02 0.06 0.14 0.59 0.16 0.02 

Agricultural Land 0.02 0.02 0.09 0.19 0.53 0.12 0.03 

Salt Marsh 0.00 0.00 0.01 0.30 0.52 0.16 0.01 

Flat sand 0.00 0.00 0.00 0.01 0.78 0.20 0.01 

Sand dunes 0.00 0.00 0.00 0.01 0.70 0.28 0.01 

Sand bar 0.00 0.01 0.01 0.05 0.58 0.20 0.14 

 

The LULC change maps for later dates were 

predicted when the LULC map for 2022 was 

correctly forecast. In particular, the disagreement 

grid cell and disagreement quantity parameters are 

essential when evaluating the model's simulated 

outcomes [29]. According to the findings in Table 6, 

the disagree grid cell is larger than the disagree 

quantity. This indicates that the model can better 

forecast changes in the study area's LULC quantity 

than its location. 

 

3.5 Future LULC Simulations for 2030, 2040 and 

2050 

To predict future LULC changes, it is required to 

consider the most crucial driving forces listed in 

Table 7. The table summarizes the Cramer’s V 

coefficients of driving forces. The decision whether 

to accept or reject a driver variable was based on 

Cramer's V values [23]. Very low Cramer's V 

variables can be removed from the model.  

A high value is seen as beneficial (often larger than 

0.1) [23]. Here, all Cramer's V for the nine-driving 

factor is greater than or equal 0.1 after the 

approximation. LCM uses past LULC maps and 

several driving variables (Figure 5) to map potential 

LULC scenarios in the future, as illustrated in Figure 

6. The maps presented in Figure 5 were used as input 

in TerrSet. The future LULC predictions for 2030, 

2040, and 2050 in Ajdabiya were obtained, followed 

by the same method used for the prediction of LULC 

for 2022 via LCM, as highlighted in Figure 6. Table 

8 demonstrates the TPM from one class to another in 

2030. Table 8 shows the most important changes that 

occurred in the LULC simulation in 2030. The CA-

Markov model uses the TPM results as input data to 

produce a predicted map for 2030. This study 

provides a better understanding of LULC changes for 

better resource management and decision-making. 

Tables 9 and 10 present the TPM from one class to 

another in 2040 and 2050, respectively.  
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Figure 5: Driving variables used in the LCM simulations: (a) elevation (b) slope (c) aspect  

(d) distance to urban (e) road density (f) distance to river (g) distance to road  

(h) distance to hospital (i) distance to agriculture 
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Figure 6: LULC prediction maps for (a) 2030 (b) 2040 (c) 2050 
 

Table 9: Transition probability matrix in 2040 
 

Class Water Urban 
Agricultural 

Land 

Salt 

Marsh 
Flat sand 

Sand 

dunes 

Sand 

bar 

Water 0.66 0.00 0.01 0.05 0.18 0.05 0.05 

Urban 0.01 0.00 0.01 0.07 0.70 0.20 0.01 

Agricultural Land 0.02 0.00 0.02 0.09 0.67 0.19 0.01 

Salt Marsh 0.00 0.00 0.00 0.10 0.68 0.20 0.01 

Flat sand 0.00 0.00 0.00 0.01 0.75 0.22 0.01 

Sand dunes 0.00 0.00 0.00 0.01 0.76 0.22 0.01 

Sand bar 0.00 0.00 0.01 0.03 0.71 0.21 0.03 
 

Table 10: Transition probability matrix in 2050 
 

Class Water Urban 
Agricultural 

Land 

Salt 

Marsh 
Flat sand 

Sand 

dunes 

Sand 

bar 

Water 0.54 0.00 0.01 0.05 0.28 0.08 0.04 

Urban 0.01 0.00 0.00 0.03 0.74 0.21 0.01 

Agricultural Land 0.02 0.00 0.00 0.04 0.72 0.20 0.01 

Salt Marsh 0.00 0.00 0.00 0.04 0.73 0.21 0.01 

Flat sand 0.00 0.00 0.00 0.01 0.76 0.21 0.01 

Sand dunes 0.00 0.00 0.00 0.01 0.76 0.21 0.01 

Sand bar 0.00 0.00 0.00 0.02 0.75 0.21 0.01 
 

 

Remarkably, during the previous two decades, the 

likelihood of turning urban land into agricultural land 

fell dramatically, from 1.06 to 0.4%. The value of the 

future LULC change and the annual rate of change of 

LULC classes for Ajdabiya were estimated to 

illustrate the changes of the LULC classes in different 

periods, as highlighted in Table 11. The value of the 

decrease in the LULC classes of sand dunes between 

2040 and 2050 is 49.22%. During the study period 

(2022–2050), the decrease in the LULC classes of 

sand dunes was 74.20%. 
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Table 11: Future LULC changes for Ajdabiya 
 

LULC classes 

2022-2030 2030-2040 2040-2050 2022-2050 

Area 

(km2) 

Area 

(%) 

Area 

(km2) 

Area 

(%) 

Area 

(km2) 

Area 

(%) 

Area 

(km2) 

Area 

(%) 

Water 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Urban 12.04 39.81 0.03 0.00 7.19 17.00 19.26 63.69 

Agricultural land 42.21 23.70 -15.16 -0.07 50.00 24.37 77.05 43.26 

Salt marsh 422.43 40.55 38.08 0.03 279.49 18.60 740.00 71.03 

Flat sand 13,298.40 32.05 -3,589.20 -0.07 4,847.60 9.47 14,556.80 35.08 

Sand dunes -13,768.07 -66.36 3,560.47 0.51 -5,188.17 -49.22 -15,395.77 -74.20 

sand bar -7.07 -2.20 5.71 0.02 3.97 1.24 2.62 0.81 

 

During the study period (2022–2050), the values of 

increase in the LULC classes of urban, agricultural 

land, salt marsh, flat sand, and sand bar were 63.69%, 

43.26%, 71.03%, 35.08%, and 0.81%, respectively. 

The findings of this study indicated that there was a 

significant LULC change in Ajdabiya during this 

period. The distribution of flat sand and sand dunes 

in the research region has been impacted by 

variations in LULC. The greatest portion of the 

LULC class, the flat sand region, has grown greatly, 

while the second-largest portion, the sand dunes area, 

has shrunk dramatically. Similarly, urban areas and 

agricultural lands increased from 2022 to 2050. The 

combined CA-Markov model using Sentinel satellite 

imagery effectively provides a better understanding 

of changes in LULC. As a result, the drivers of LULC 

dynamics were used in this study to analyze the 

LULC dynamics of the past and future LULC using 

Sentinel images and LCM. As a result, this research 

will also aid in evaluating the effectiveness of the 

CA-Markov strategy in the Ajdabiya region. 

 

4. Conclusions 

This study used Sentinel satellite images to identify 

and simulate the LULC changes in Ajdabiya, Libya. 

The goal of the current study was to investigate how 

past and predicted land use and land cover patterns 

will change between 2016 and 2050, with an 

emphasis on water, urban, agricultural land, salt 

marsh, flat sand, sand dunes, and sand bars. The 

multitemporal Sentinel satellite imaging data are 

utilized to support informed LULC change decision-

making by potentially supplying the data needed for 

LULC change monitoring and evaluation. The 

images are classified based on the combine method. 

All the classified LULC maps show excellent 

accuracy, showing more than 92% overall accuracy. 

To comprehend the spatiotemporal nature of LULC 

dynamics and forecast future LULC change, an 

integrated approach combining remote sensing, GIS, 

and a CA-Markov model was utilized. The LCM was 

implemented to predict LULC over the next three 

decades (years 2030, 2040, and 2050). By comparing 

the expected scenario with the actual one acquired 

from satellite images, the 2022 LULC map was 

utilized to validate the LCM technique, 

demonstrating that the employed CA-Markov has the 

capability to predict future LULC. The LULC maps 

for 2030, 2040, and 2050 are forecast following 

successful model validation. For modelling LULC 

change, combining the Markov model with CA is 

expected to produce predictions that are most 

accurate when utilizing the transition probability 

matrix. 

By estimating the Ajdabiya LULC for the ensuing 

three decades (2030, 2040, and 2050) based on past 

data (LULC in 2016, 2020, and 2022), the current 

work seeks to fill this gap and infer patterns that may 

be used in a variety of scenarios. However, Ajdabiya 

has not conducted similar research; therefore, this 

work is very significant. Sand dunes cover has been 

declining, while flat sand, salt marsh, urban, and 

agricultural areas are all rising rapidly, according to 

the analysis of LULC change from 2022 to 2050. 

According to this analysis, the sand dunes area, 

which makes up the second-biggest component of the 

LULC class, has drastically diminished, while the flat 

sand region, which makes up the largest amount, has 

expanded significantly from 2022 to 2050. 

As a result, in order to facilitate sustainable 

growth, policymakers must adopt appropriate and 

timely management measures. The methods and 

results of this study will be beneficial for the 

concerned authorities, government representatives, 

policymakers, and urban planners who can use the 

findings for thorough area planning to make the 

Ajdabiya livable by planting trees, conserving water 

bodies, and planning urban infrastructural 

development to make the Ajdabiya planned and 

environmentally sustainable. Additionally, this type 

of study has a strong potential to support regional and 

local sustainable development. 
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