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Abstract 

Using satellite imagery, this study investigates the spectral reflectance characteristics of crops at the OHMK 

farm in Eastern Kazakhstan, focusing on wheat and barley. The analysis reveals significant differences in 

spectral re- flectance, particularly in the visible and near-infrared regions, and tracks change over time during 

different growth stages. Employing principal component analysis (PCA), strong correlations are observed 

between specific spectral bands and principal components, providing insights into crop variability. Derived 

equations enable the estimation of principal component values based on spectral information. These findings 

have implications for crop monitoring, management, and precision agriculture, offering potential yield 

optimization and resource allocation improvements. The study highlights the potential use of spectral 

reflectance analysis for crop health assessment and yield prediction, with implications for agricultural 

decision-making and enhanced productivity. Further research is needed to expand the application of this 

approach to other crops and conditions. 
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1. Introduction 

Remote sensing technology, especially satellite 

imagery, has revolutionized monitoring, managing, 

and predicting crop performance, leading to a more 

sustainable and productive agricultural sector. A vital 

component of this techno-logical revolution is the 

study of crop reflectance, a non-invasive and highly 

informative method to assess crop health and predict 

yields [1] and [2]. Crop reflectance refers to how 

crops absorb, transmit, and reflect light across 

different wavelengths. By analyzing the light 

reflected from crops, scientists can infer valuable 

information about the plant’s health, growth stage, 

and productivity. This light can range from the 

visible spectrum to near and far infrared, with 

different crops and conditions altering the specific 

reflectance patterns [3] and [4]. 

In the visible light range, healthy vegetation 

typically absorbs most blue and red light due to 

chlorophyll, essential for photosynthesis. This light 

absorption causes healthy plants to reflect more green 

light, making them appear green to the human eye. 

On the other hand, in the near-infrared region, 

healthy plants reflect a lot of light, a characteristic 

known as the ’red edge.’ This high reflectance is due 

to the plant’s cellular structure, which scatters light 

in the near- infrared [5]. The Normalized Difference 

Vegetation Index (NDVI) is a popular measure used 

in remote sensing. It captures the difference between 

near-infrared (which vegetation strongly reflects) and 

red light (which vegetation absorbs) to assess plant 

health and vigor [6]. Tasseled Cap Transformation 

(TCT) is another technique developed explicitly for 

Landsat data, yielding three components- brightness, 

greenness, and wetness-representing soil brightness, 

vegetation cover, and moisture content, respectively 

[7]. 

In remote sensing, PCA is often used for data 

reduction when dealing with multi-band images. It is 

a statistical procedure that transforms a set of 

observations of possibly correlated variables into 

values of linearly uncorrelated variables called 

principal components [8]. Each principal component 

explains a certain percentage of the total variation in 

the dataset, with the first few components typically 

explaining the majority of the variation. PCA can 

help reduce the complexity of multi-dimensional 

data, making it easier to interpret spectral reflectance 

patterns across different crops and growth stages [9]. 
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Remote sensing data can also be used to predict crop 

yields. By correlating historical yield data with 

spectral characteristics of the crops at different 

growth stages, machine learning algorithms can be 

trained to predict future yields based on remote 

sensing data [10]. Time-series analysis of remote 

sensing data can monitor the phenological stages of 

crops, providing crucial information about the timing 

of key growth stages, such as flowering or maturity 

[11]. 

By measuring and analyzing these reflectance 

patterns, remote sensing applications can detect 

subtle changes in plant health long before they 

become visible to the human eye [12]. For instance, 

a stressed plant might reflect more light in the visible 

spectrum and less in the near-infrared, indicating 

potential issues such as disease, nutrient deficiency, 

or drought stress [13]. This capability to ’see’ the 

unseeable makes crop reflectance studies using 

remote sensing a powerful tool in modern agriculture. 

By enabling early detection of plant stress, it allows 

for timely intervention, ultimately leading to better 

crop management and improved yields [14]. 

Furthermore, farmers and policymakers can make 

informed decisions about crop marketing and food 

supply logistics by predicting crop yields based on 

reflectance data, contributing to a more efficient and 

sustainable agricultural system. 

Combined with data processing and machine 

learning advances, these methods hold significant 

potential for enhancing crop management and 

increasing agricultural productivity [15]. While this 

technology holds immense promise, it is essential to 

consider local crop types, growth stages, and 

environ- mental conditions when interpreting 

reflectance data. As such, studies like the one on 

wheat and barley at the OHMK farm in Eastern 

Kazakhstan are crucial in expanding our 

understanding of spectral reflectance across different 

crops and environments. 

 

2. Methods 

The research area is located in the Eastern 

Kazakhstan province north of Ust-Kamenogorsk city 

and is a farmland area with various crops (Figure 1). 

The relief of the study area refers to the variations in 

elevation across the landscape. The statistical 

analysis reveals essential characteristics of the relief. 

The maximum elevation of 612 meters indicates the 

highest point in the area, while the minimum 

elevation of 296 meters represents the lowest point. 

The mean elevation of 400.1 meters provides an 

average value, representing the typical height of the 

terrain. The standard deviation of 45.5 meters 

indicates the degree of variation or spread of the 

elevation values around the mean. We created the 

dataset using the Google Earth Engine web service 

[16]. It included elevation [17], soil bulk density [18], 

rainfall data [19], spectral reflectance data captured 

by Landsat-8 [20] on 21.06.2022, 08.08.2022, 

24.08.2022, also Land use data with exact crop 

species information collected on August 9th, 23rd, 

and October 20th, 2022 by our group under this 

Research grant (Table 1). This table provides an 

overview of the input dataset details used in the 

study. It includes information on the type of data, the 

product/source name, and specific details such as 

spatial resolution and layers.  
 

 
 

Figure 1: The study area 
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Table 1: Input dataset details 
 

No. Data Product Details 

1 Elevation NASADEMHGT v001 Spat. Res. 30 m 

2 Spectral reflectance LANDSAT-8 (CO2, T1L2) Spat. Res. 30 m (R, G, B, NIR, SWIR1-2) 
3 Soil bulk density OpenLandMap, v02 0-30 cm layer, Spat. Res. 250 m 

4 Rainfall data OpenLandMap, v01 Spat. Res. 250 m 

5 Field data Land use information Under Research Grant in 2022 
 

 
 

Figure 2: The research design 
 

Table 2: The tasseled cap transformation coefficients for Landsat-8 [21] 
 

Blue Green Red NIR SWIR1 SWIR2 

0.3029 0.2786 0.4733 0.5599 0.508 0.1872 

-0.2941 -0.243 -0.5424 0.7276 0.0713 -0.1608 

0.1511 0.1973 0.3283 0.3407 -0.7117 -0.4559 

-0.8239 0.0849 0.4396 -0.058 0.2013 -0.2773 

-0.3294 0.0557 0.1056 0.1855 -0.4349 0.8085 

0.1079 -0.9023 0.4119 0.0575 -0.0259 0.0252 

The research workflow included data collection and 

preprocessing (the data clipping, NDVI calculation, 

and the Tasseled Cap Transformation), the PCA 

transformation, the data correlation, and the crop 

mapping (Figure 2). Tasseled Cap Transformation 

(TCT) and Principal Component Analysis (PCA) are 

widely used remote sensing techniques for image 

interpretation and data reduction. Tasseled Cap 

Transformation is a linear transformation developed 

for Landsat satellite data (Table 2). The 

transformation involves converting the original 

satellite bands into new components that are easier to 

interpret regarding physical vegetation 

characteristics. The three primary TCT components 

are brightness, greenness, and wet- ness, representing 

soil brightness, vegetation cover, and moisture 

content. In the context of crop reflectance, TCT can 

provide valuable insights into the crop’s health and 

growth stages. Principal Component Analysis (PCA) 

was applied [22], and it consisted of the following 

steps: 

1. The dataset was standardized. 

2. The covariance matrix C of the data was 

computed using equation 1. 

1

1

TC X X
n

=
−

 

Equation 1 

 

where X is the data matrix, XT represents the 

transpose of matrix X, and n is the number of data 

points. 

3. The eigenvalues and eigenvectors of the 

covariance matrix were computed. 

4. The eigenvalues and corresponding 

eigenvectors in decreasing order were sorted. 
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After the Tasseled cap transformation, correlation 

(Pearson’s coefficient) and statistical significance 

(p-values) for all data were tested.  In the context of 

the study on wheat and barley at the OHMK farm in 

Eastern Kazakhstan, TCT and PCA are valuable 

tools. TCT helps interpret the spectral reflectance 

data regarding physical crop characteristics. At the 

same time, PCA simplifies the multi-dimensional 

reflectance data, making it easier to identify key 

patterns and differences between the crops. At the 

final stage, multiple linear regression equations were 

formulated to map the selected crops in the study 

area. 

 

3. Results and Discussion 

The p-values for each crop and parameter 

combination indicate the statistical significance of 

the difference between the sample mean and the null 

hypothesis mean (zero). A p-value less than the 

significance level (e.g., 0.05) indicates that the 

difference is statistically significant. Based on the 

provided p-values, here are some conclusions:  

 

For Spring wheat, most parameters (Red, Green, 

Blue, NIR, SWIR1, SWIR2, Brightness, Greenness, 

TCT4, TCT5, TCT6, NDVI, PC1, and PC2) have 

extremely low p-values close to zero, indicating a 

significant difference from the null hypothesis mean 

of zero. Wetness also has a very low p-value, 

suggesting a significant difference. 

 

For Barley, like Spring wheat, most parameters have 

extremely low p-values close to zero, indicating a 

significant difference from the null hypothesis mean 

of zero. For Sainfoin, most parameters have very low 

p-values close to zero, indicating a significant 

difference. PC1 has a higher p-value (1.34), 

suggesting less statistical significance than other 

parameters. 

 

For Alfalfa (2nd year), most parameters have p-

values equal to zero, indicating a significant 

difference from the null hypothesis mean of zero. 

PC1 has a higher p-value (0.85), suggesting less 

statistical significance than other parameters. For 

Sunflower and Soybean, like Spring wheat and 

Barley, most parameters have extremely low p-

values close to zero, indicating a significant 

difference from the null hypothesis mean of zero. 

 

These results suggest that for most parameters, there 

is a significant difference in the mean values 

between the crops, indicating potential 

discriminative power in distinguishing the crops 

based on those parameters.  

However, interpreting the results should consider 

other factors, such as the data distribution, sample 

size, and specific research objectives. Due to a low 

statistical significance, results do not include 

elevation, Slope, Soil density, and Rainfall data. 

 

After that, Pearson’s correlation tests were applied to 

the research dataset, and the results demonstrated 

specific strong values according to the Table 3. 

Observed correlations between PC1, PC2, and the 

listed parameters for each crop demonstrated 

positive and negative values described below: 

a) Spring wheat [23]: PC1 shows high positive 

correlations with Greenness data (TCT), 

Green, Blue, and SWIR2 bands, while it has a 

strong negative correlation with NDVI and 

TCT4. PC2 has no significant correlations. 

b) Barley [24]: PC1 exhibits significant 

positive correlations with Red, Green, and 

SWIR2 bands and strong negative with NDVI. 

PC2 shows negative correlations with SWIR1 

and SWIR2. 

c) Sainfoin [25] : PC1 positively correlates with 

Greenness data, Green, SWIR2, Red bands, 

and NDVI. PC2 shows negative correlations 

with the Red, SWIR1, and SWIR2 bands. 

d) Alfalfa [26] (2nd year): PC1 is positively 

correlated with TCT6 and negatively with 

SWIR2. PC2 positively correlates with NIR, 

Greenness and has a moderate correlation with 

NDVI. 

e) Sunflower [27]: PC1 exhibits positive 

correlations with SWIR1, SWIR2, and NIR, 

strongly correlates negatively with NDVI. PC2 

positively correlates with SWIR2, SWIR1, and 

NIR and has a moderate negative correlation 

with NDVI. 

f) Soybean [28]: PC1 shows a negative 

correlation with Greenness data and NDVI and 

positive correlations with SWIR1, SWIR1, NIR, 

and Red. PC2 does not show any significant 

correlations with the listed parameters. 

 

These correlations provide insights into the 

relationships between the principal components 

(PC1, PC2) and the corresponding parameters for 

each crop. We plotted the strongest values to 

visualize some of the described correlations for 

crops (Figure 3). This figure demonstrates the 

negative correlation values of vegetation-related 

information (NDVI) for Barley, Sainfoin, Spring 

wheat, Soybean, and Sunflower. At the same time, 

Alfalfa showed high positive values between 

principal component 2 and NIR reflectance band.

 



 

International Journal of Geoinformatics, Vol.19, No. 11, November, 2023 

ISSN: 1686-6576 (Printed)  |  ISSN  2673-0014 (Online) | © Geoinformatics International 

49 

Table 3: Correlation values for PC1 and PC2 
 

Crop PC1 PC2 

Spring wheat 
Greenness (0.98), Green (0.9), Blue (0.89),  

SWIR2 (0.96), TCT4 (-0.97), NDVI (-0.98) 

- 

Barley Red (0.9), Green (0.77), SWIR2 (0.8), NDVI (-0.92) SWIR1 (-0.88), SWIR2 (-0.83) 

Sainfoin 
Greenness (0.87), Green (0.89), SWIR2 (0.87),  

Red (0.85), NDVI (-0.92) 

SWIR1 (-0.91), SWIR2 (-0.91),  

Red (-0.79) 

Alfalfa (2nd year) TCT6 (0.89), SWIR2 (-0.96) 
NIR (0.99), Greenness (0.98),  

NDVI (0.75) 

Sunflower 
SWIR1 (0.97), SWIR2 (0.98), NIR (0.93),  

NDVI (-0.97) 

SWIR1 (0.88), SWIR2 (0.88),  

NIR (0.79), NDVI (-0.85) 

Soybean 
Greenness (-0.8), SWIR1 (0.92), SWIR2 (0.91), NIR 

(0.89), Red (0.92), NDVI (-0.97) 

- 

 

 
Figure 3: The correlation between principal components and vegetation-related data  

(a) barley sainfoin and spring wheat (b) alfalfa (c) soya and sunflower 

 

The next step of this research included formulating 

multiple linear equations based on the observed 

correlations. Therefore, the principal components 

(PC1, PC2) are considered dependent parameters, 

while others are independent as illustrates in 

equations 2 to 5:  

Spring wheat: 

 

PC1 =157.3Greeness − 15.4Blue + 10.6SWIR2  

           − 22.4Green − 9.7TCT 4 −10.9 NDVI + 7.6  

Equation 2 

 

This regression equation represents the relationship 

between PC1 and the Spring wheat crop’s input 

features (Greeness, Green, Blue, SWIR2, TCT4, and 

NDVI). The coefficients indicate the magnitude and 

direction of the impact of each input feature on PC1.  

Barley: 

 

PC1 = −206.2Red + 177.73Green + 12.85WIR2  

             − 103.37NDVI + 86.12 

Equation 3 

 

This equation represents the relationship between 

PC1 and the Barley crop’s input features (Red, 

Green, SWIR2, and NDVI).  

 

The coefficients indicate how changes in each input 

feature influence PC1. 

Sainfoin: 

 

PC1 = 198.33Red + 62.31Green + 51.11SWIR2  

              − 39.33Greenness + 35.53NDVI − 32.64 

 

Equation 4 

 

This equation represents the relationship between 

PC1 and the input features (Red, Green, SWIR2, 

Greenness, and NDVI) for the Sainfoin crop. The 

coefficients indicate the strength and direction of the 

influence of each input feature on PC1. 

Alfalfa: 

 

PC2 = 105.02NIR − 82.63Greenness + 19.48NDVI   

            − 30.6 

Equation 5 

 

This equation represents the relationship between 

PC2 and the Alfalfa crop’s input features (NIR, 

Greenness, and NDVI). The coefficients indicate the 

impact of each input feature on PC2 are presented in 

equation 6 and 7. 
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Sunflower: 

 

PC1 = −15.27NIR + 57.16SWIR1 − 11.87SWIR2 

             − 15.25NDVI + 7.0 

Equation 6 

 

This equation represents the relationship between 

PC1 and the Sunflower crop’s input features (NIR, 

SWIR1, SWIR2, and NDVI). The coefficients 

indicate the strength and direction of the influence of 

each input feature on PC1. 

Soybean: 

 

PC1 = 97.38 Red − 17.74NIR + 12.24SWIR1  

              + 20.61SWIR2 + 2.24NDVI − 5.25 

Equation 7 

  

This equation represents the relationship between 

PC1 and the input features (Red, NIR, SWIR1, 

SWIR2, and NDVI) for the Soybean crop. The 

coefficients indicate the impact of each input feature 

on PC1. These regression equations provide a 

mathematical representation of the relationship 

between the principal component PC1 and the input 

features for each crop. Using the coefficients, we 

estimated the PC1 and PC2 based on the given input 

features using input raster data. We derived the 

principal components map that mainly exposes 

vegetation growth in the study area croplands 

(Figure 4). The description of the PCA values for 

each crop is provided in Table 4, which includes the 

maximum, mean, minimum, and standard deviation 

of the PCA values for each crop. It overviews the 

distribution and variation in PCA values across the 

crops. These values provide insights into each crop’s 

distribution and variation of PCA values. The 

maximum PCA value represents the highest level of 

variability, while the mean PCA value indicates the 

average level of variability. The standard deviation 

shows the spread of PCA values around the mean. 

Comparing the crops, Sunflower exhibits the highest 

maximum PCA value, indicating more significant 

variability compared to other crops. At the same 

time, Barley shows the lowest mean and standard 

deviation, suggesting relatively lower variability.

 

 
 

Figure 4: The map of the PC values distribution for crops in the study area 
 

Table 4:  PCA statistics for each crop 
 

Crop Maximum Mean Minimum Standard Deviation 

Spring wheat 0.0978 0.0152 0 0.0235 

Barley 0.0564 0.0085 0 0.0139 

Sainfoin 0.0733 0.0377 0 0.0125 

Alfalfa 0.0886 0.0434 0 0.0283 

Sunflower 0.1324 0.0181 0 0.0242 

Soybean 0.1203 0.0398 0 0.0474 
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We can gain insights into spectral characteristics and 

variability by comparing these statistical measures 

across different crops. For example, crops with 

higher maximum and mean PCA values exhibit 

more significant spectral variability, indicating 

diverse and distinct spectral signatures. Conversely, 

crops with lower maximum and mean PCA values 

have less spectral variability and may exhibit more 

uniform spectral characteristics. The standard 

deviation provides a measure of the variation within 

each crop, reflecting the degree of heterogeneity or 

similarity in the spectral properties of the crop 

pixels. The given PCA analysis, including the NDVI 

band, suggests that the analysis considered the 

spectral information related to vegetation health and 

density. The statistics provided for each crop, such 

as the maximum, mean, minimum, and standard 

deviation of PCA values, indicate the variability of 

NDVI values within each crop.  

By examining the statistics of NDVI within each 

crop, we can infer information about the vegetation 

health and density characteristics specific to that 

crop. For example, a higher maximum NDVI value 

suggests dense and healthy vegetation areas. In 

contrast, a lower mean or standard deviation of 

NDVI values may indicate less variability in 

vegetation health within the crop area. It is important 

to note that NDVI alone cannot expose crop yield 

potential [29]. Other factors, such as soil conditions, 

weather, management practices, and pest/disease 

pressures, influence crop productivity. However, 

NDVI is a valuable tool for monitoring vegetation 

health and can be used to indicate crop performance 

in conjunction with other agronomic data. 

 

4. Conclusions 

The main findings of the study can be summarized 

as follows: 

A. The principal component analysis (PCA) 

revealed strong correlations between specific 

spectral bands and each crop’s principal 

components (PC1 and PC2). These 

correlations indicate the importance of specific 

bands in capturing the variability and 

characteristics of the crops. 

B. Each crop showed distinct correlations 

between the spectral bands and the principal 

components. These correlations provide 

insights into each crop’s unique spectral 

signatures and vegetation characteristics, such 

as greenness, near-infrared reflectance, and 

other spectral properties. 

 

 

 

 

C. The equations derived from the PCA analysis 

provide a mathematical relationship between 

the spectral bands and the principal 

components for each crop. These equations can 

be used to estimate the values of the principal 

compo- nents based on spectral information, 

allowing for a better understanding of the 

crop’s characteristics and variability. 

D. The analysis of PCA values for each crop 

revealed variations in the principal 

components’ maximum, mean, min- imum, 

and standard deviation. These variations 

indicate differences in the spectral response 

and variability of the crops, which can be 

related to vegetation health, density, and 

productivity. 

 

The implications of these findings are: 

1. The study highlights the importance of spectral 

bands and their correlations with principal 

components in under- standing the 

characteristics and variability of different 

crops. This information can be used to develop 

crop-specific remote sensing models and 

monitoring techniques for accurate crop 

assessment and management. 

2. The derived equations provide a means to 

estimate the principal components based on 

spectral information. This can be useful for 

crop monitoring and assessment, allowing for a 

more comprehensive understanding of crop 

growth, health, and productivity. 

3. The variations in PCA values among crops 

suggest that each crop has unique spectral 

signatures and responses. This information can 

differentiate between crops, monitor their 

growth stages, identify stress conditions, and 

assess crop yield potential. 

4. The study underscores the value of remote 

sensing and spectral analysis in crop 

monitoring and precision agriculture. By 

integrating spectral information with other 

agronomic data, such as soil conditions and 

weather, more informed decisions can be made 

regarding crop management practices, resource 

allocation, and yield optimization. Overall, the 

findings of this study contribute to 

understanding crop characteristics, variability, 

and monitoring using re- mote sensing data. 

They have implications for improving crop 

management practices, optimizing resource 

allocation, and enhancing crop productivity in 

agriculture. 
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