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Abstract 

This research was carried out as part of the "Copernicus assisted environmental monitoring across the Black 

Sea Basin – PONTOS" project, which aimed to support and enhance environmental monitoring in the Black 

Sea Basin region by utilizing Earth Observation products obtained from satellite, airborne, and ground sources. 

The project team evaluated the environmental monitoring system in pilot sites across Armenia, Greece, 

Georgia, and Ukraine. The current study focused on assessing changes in wetland and floating vegetation cover 

from 2009-2015 in Lake Sevan, the largest freshwater source in Armenia and one of the project's pilot sites. 

Monitoring spatio-temporal changes in aquatic vegetation is crucial for understanding the ecological and 

socioeconomic functions of lake ecosystems, and requires standardized methods. In order to identify floating 

aquatic vegetation in Lake Sevan, this study utilized Landsat TM and OLI imagery that were acquired during 

the main growing season from middle May to middle September of the years 2009-2015. To enhance the 

classification process, vegetation indices such as the Normalized Difference Vegetation Index (NDVI), 

Normalized Difference Aquatic Vegetation Index (NDAVI), and Normalized Difference Water Index (NDWI) 

were applied. The findings of this study indicate that medium-resolution Landsat and similar satellite images, 

which are freely available, can be effectively used to monitor spatiotemporal changes in lakes in a reproducible 

and continuous manner. However, it was also discovered that algal blooms can significantly hinder the accurate 

detection of floating vegetation from satellite imagery. 
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1. Introduction 

Aquatic vegetation is a diverse group of 

photosynthetic organisms that grow permanently or 

periodically in wetlands, the shoreline of lakes and 

along streams [1] [2] [3] and [4]. They are a natural 

part of every lake ecosystem and serve many 

purposes in a lake, can help the migration and 

circulation of elements, purify water quality, and 

limit the growth of algae [5]. They are an integral part 

of aquatic ecosystems and play an important role in 

immobilizing pollutants, regulating oxygen 

production and global carbon cycle, stabilizing 

sediments and protecting shore erosion [4] [6] and 

[7]. 

Aquatic vegetation can be classified into four 

functional groups as emergent (EAV), floating-

leaved (FAV) and rooted, free-floating, and 

submerged (SAV), based on their growth form, 

morphology, and adaptation to the environment [8] 

and [9]. Figure 1 shows classification schemes for 

aquatic vegetation types. The impact of 

anthropogenic stressors and climate change on water-

level and aquatic vegetation has been evident in 

recent decades. The interaction between 

anthropogenic stressors, land-use change, and water-

level variability affects aquatic macrophytes to a 

great extent [10]. Therefore, it plays a critical role in 

protecting the biodiversity and ecological balance of 

freshwater ecosystems such as lakes and rivers [11]. 

Distribution and composition of macrophyte 

communities are influenced by nutrient load, and 

climatic and hydrological conditions such as spatial 

and temporal variations of water level [4] [12] and 

[13]. Lake water level changes provide an opening 

for seedling recruitment for perennial emergent 

aquatic plants [14] and [15].  
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Figure 1: Classification of different types of aquatic vegetation [16] 

 

Climatic conditions such as temperature and rainfall 

fluctuations also affect germination rates of aquatic 

vegetation [4] [17] and [18]. Timely recording and 

mapping of spatio-temporal distribution and 

composition of macrophytes is necessary to 

understand factors which influence distribution and 

composition of macrophytes [19]. Conventional field 

survey approaches for macrophyte monitoring can 

give good estimates and provide reliable and 

reproducible taxonomic information [20] [21] and 

[22]. However, these methods cannot capture whole-

lake macrophyte cover or their patchy distribution 

and are hindered by technical and logistical 

limitations [23] and [24]. Alternative approaches 

such as remote sensing techniques and the use of 

satellite imagery can provide data covering large 

areas in space and time [19] [25] and [26]. 

Different remote sensing techniques have been 

developed to systematize the identification and 

change detection of aquatic vegetation from satellite 

data [27] and [28] and recent advances in satellite 

image resolution make it possible to classify multiple 

species with higher accuracy level [29] [30]. Recent 

developments in specifically designed vegetation 

indices for aquatic vegetation have improved 

identification and detection of macrophytes from 

medium resolution satellite images [26] [28] [31] and 

[32]. 

Remote sensing is one of the most useful tools for 

mapping and studying vegetation because of the 

advantages of synoptic view (in time and space) 

compared to traditional in situ survey. Remotely 

sensed vegetation indices (VIs) derived from 

airborne and satellite images represent a powerful 

and effective way to monitor vegetation status, 

growth, and bio-physical parameters. This is 

especially true for aquatic ecosystems; whose 

characterization is extremely time-consuming and 

expensive. This work runs a comparison of different 

VIs in mapping floating vegetation and assesses the 

capabilities of three indices to analyze aquatic 

ecosystems: The Normalized Difference Vegetation 

Index (NDVI), Normalized Difference Aquatic 

Vegetation Index (NDAVI) and the Normalized 

Difference Water Index (NDWI). 

 

2. Study Area 

Lake Sevan is the largest water body in Armenia. It 

is an alpine freshwater lake situated at more than 

1,900 meters (6,234 ft) above sea level and is vital for 

Armenia’s economy, tourism, agriculture, and other 

industrial sectors. It also has a significant cultural and 

recreational value for the country. The water volume 

and surface area of Lake Sevan have varied 

significantly over the past century. Since the early 

1930s, Soviet authorities sought to exploit the lake to 

fulfill their ambitious plans for industrialization and 

modernization of agriculture. It was planned to 

implement the project in 2 stages. In the first phase, 

the water level of the lake would decrease by 50 

meters, and the surface of the water mirror would be 

reduced to seven times (Big Sevan would dry 

completely). In the second phase, the use of water 

resources to irrigate Ararat valley has been planned, 

as a result, the water outflow (around 700 million 

cubic meters per year) from the lake would be carried 

out.  
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After these, about 1000 sq.km of land would be 

vacated for agricultural purposes in the Gegharkunik 

region. Also, 130,000 hectares of agricultural land in 

Ararat Valley should be irrigated at the expense of 

Lake Sevan waters. 

Thus, in the 1930s, the reduction of Lake Sevan 

had begun. During the 1st stage, the scientists 

recorded that the lake’s ecological status suffered 

faster than it was supposed to be. The lake had been 

deprived of more than 40% of the water reserves 

within the next 10 years, with a maximum depth not 

exceeding 80 m (formerly 99 m). By the mid-1990s, 

the water level had decreased by around 19 meters 

and was subject to eutrophication, an increase in the 

concentration of phosphorus, nitrogen, and other 

plant nutrients.  

In addition, the vacated areas were not suitable for 

agricultural use, as well as the lake’s water was 

poorly suitable for irrigation due to the high 

concentration of magnesium and carbonate. There 

was a need to restore the lake's water reserves at the 

expense of other rivers being transferred to Lake 

Sevan. Since 1981, the Arpa-Sevan tunnel was built 

and part of Arpa River (South part of Armenia) water 

moved to the Sevan Lake. As a result of these 

fluctuations in the water level in the lake, the land 

cover of the area has changed significantly: the 

coastal zones of the lake were covered with water 

until the 1930s, then by land after the 1930s and, 

finally, to this day, they continue to be covered with 

water (after 1981s). As of 2019, the surface area of 

the Sevan Lake is 1 279 sq.km with 38.3 cubic km of 

water volume. The “blooming” of the Sevan Lake 

was continuing to be recorded, in 2018 covering the 

whole lake, due to the active eutrophication 

processes. 

 

2.1 Lake Vegetation 

Vegetation cover of the lake. Sevan has been 

repeatedly studied since the very beginning of 

hydrobiological studies on the lake [33] [34] [35] and 

[36]. As a result of these works, the species 

composition of macrophytes, distribution by water 

area and depth, production was identified, and 

changes due to a decrease in the water level in the 

lake were also shown. The flora of Lake Sevan basin 

is represented by 32 species from 27 genera and 21 

families of cryptogamous and vascular macrophytes. 

The first ones include microscopic green, yellow-

green siphon and char algae, mosses, 11 species in 

total from 9 genera and 7 families [33]. 

The second group of plants is more diverse - 21 

species from 18 genera and 14 families. The leading 

families in terms of the number of taxa are 

Potamogetonaceae Dumort, Cyperaceae Juss., 

Lamiaceae Martinov, Lemnaceae S.F. Gray, Poaceae 

Barnhart, Ranunculaceae Adans., genus 

Potamogeton L., Lemna L. (2). The water fraction 

(hydro-, hygro-/helo- and hydro-/hygro-helophytes) 

includes almost all macroalgae and mosses. In the 

ecological spectrum, the majority of flora species (25 

species, or 78.1%) belong to plants traditionally 

classified as aquatic. All species of macroalgae are 

typical hydrophytes. Almost all of the listed species 

of mosses are found in the waters of the lake and at 

considerable and even great depths [33] [34] and 

[35]. Among the vascular plants, the most diverse are 

the aquatic groups: hydrophytes and helophytes. 

Plants of waterlogged and humid habitats are 

represented by hygrophytes (6 species). The ratio of 

the number of hydrophytic species of vascular plants 

to the number of all their species is equal to 71.4% 

[33]. It shows the specifics of the reservoir - a 

mountainous, deep-water lake without overgrowing 

coastal shallow waters, which does not allow 

moisture-loving coastal species to penetrate into the 

water. 

 

3. Data and Methods 

3.1 Satellite Data Acquisition and Image Pre-

Processing 

Cloud free TM L2 and OLI L2 data with a resolution 

of 30 m were downloaded using QGIS Semi-

Automatic Classification Plugin (SCP) (the path/row 

is 169/032 respectively). Only images with less than 

10% cloud cover were selected for this study. A total 

of 5 OLI images and 2 TM without cloud coverage 

on AOI during warm season (May-September) from 

2009 to 2015 were selected to ensure throughout the 

entire growth period of floating vegetation (Figure 2). 

All acquired images were referenced in the World 

Geodetic System (WGS84) datum. Details and 

specifications of satellite images used in this study 

are presented in Table 1. All downloaded satellite 

images were imported into the Semi-automatic 

Classification Plugin (SCP) for QGIS. Radiance 

values were converted into surface reflectance based 

on the image-based dark object subtraction (DOS) 

atmospheric correction approach in the SCP [37]. A 

radiometric correction was also applied using the 

plugin (SCP) to remove radiometric defects, haze and 

to improve the visual impact of true and false color 

composites. 

The lake extent with aquatic and semi-terrestrial 

vegetation was delineated and digitized based on 

visible spectral-radiometric differences in the 

images. The Bing Satellite Map was used for the 

validation. The images were clipped using the 

digitized polygons shapefile (Figure 3). 
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Table 1: Landsat image data information 
 

Season Sensor Product ID Date 

Spring OLI/TIRS LC08_L1TP_169032_20140517_20170422_01_T1 17.05.2014 

Summer 

TM LT05_L1TP_169032_20090604_20161025_01_T1 04.06.2009 

TM LT05_L1TP_169032_20110728_20161009_01_T1 28.07.2011 

OLI/TIRS LC08_L1TP_169032_20130615_20170503_01_T1 15.06.2013 

OLI/TIRS LC08_L1TP_169032_20130701_20170503_01_T1 01.07.2013 

OLI/TIRS LC08_L1TP_169032_20150621_20170407_01_T1 21.06.2015 

Autumn OLI/TIRS LC08_L1TP_169032_20150909_20170404_01_T1 09.09.2015 
 

 
(a) 

 
(b) 

 

Figure 2: Landsat TM and OLI images in natural color composite: (a) 2011-07-28, (b) 2015-06-21 

 

 
 

Figure 3: Lake shoreline validation on Bing satellite map 
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3.2 Vegetation Indices 

Currently, it is a common method to use remote 

sensing data combined with various classification 

strategies to extract floating vegetation. 

Unfortunately, methods based on classifications need 

to rely on numerous measured samples to obtain 

satisfactory results, and such methods have proven to 

be inefficient [38]. Therefore, scholars have 

attempted to design various vegetation indices that 

are sensitive to aquatic vegetation. In addition, many 

vegetation indices for identifying and enhancing 

aquatic vegetation based on the spectral differences 

of aquatic vegetation types and different sensor 

features have been promoted, such as the Normalized 

difference vegetation index (NDVI) [39] and [40], 

perpendicular vegetation index (PVI) [41], modified 

normalized water index (MNDWI) [42], floating leaf 

vegetation sensitive spectral index (FVSI), 

planktonic algae vegetation index (floating algae 

index, FAI), macro aquatic vegetation index [28] and 

[43] (Macro Algae Index, MAI), submerged aquatic 

vegetation sensitive spectral index (SVSI), 

normalized difference aquatic vegetation index 

(NDAVI) [32] and water adjusted vegetation index 

(WAVI) [17] and [32]. Most of these involve ratios 

between differences and sums of the visible and near-

infrared (NIR) spectral bands [44]. However, the 

relatively weak differences in NIR band range 

between EAV and FAV make it difficult to further 

distinguish them, and also, it is difficult to eliminate 

the interference caused by algal blooms. 

Furthermore, several types of aquatic vegetation have 

similar spectrum curves [45], which makes it hard to 

distinguish different vegetation accurately using only 

the spectral index. To overcome these difficulties, 

phenological features have been combined to identify 

various aquatic vegetation [17].  In summary, 

although the existing methods can extract the aquatic 

vegetation above the water surface, but few methods 

are able to the further distinguish between EAV and 

FAV. In fact, it is necessary to further distinguish 

EAV and FAV because the dissimilar roles in water 

ecological environment. 

One of the most commonly used is the 

Normalized Difference vegetation Index (NDVI) 

which has been mostly used to capture terrestrial 

vegetation characteristics including growth and 

above ground biomass [39]. In addition to NDVI, we 

have applied the Normalized Difference Aquatic 

Vegetation Index (NDAVI) and the Normalized 

Difference Water Index (NDWI) which are designed 

to capture aquatic vegetation spectral response [28] 

[32] and [46]. The extracted water surfaces were also 

visually inspected and validated. The equations of 

different vegetation and water indices (Table 2) were 

calculated using the band calculation tool in SCP. 

 

4. Results and Discussion 

4.1 Floating Vegetation Extraction and Mapping 

In recent years, the floating vegetation of Lake Sevan 

has experienced significant changes due to various 

factors. Using the three different vegetation indices 

proposed in this report and the TM and OLI images 

to extract the annual distribution range of floating 

vegetation cover in the Lake Sevan from 2009 to 

2015 (Figure 4), we analyzed the spatial distribution 

patterns and trends of floating vegetation. As 

demonstrated in the Figure 5, the floating vegetation 

above the water surface of Lake Sevan in case of all 

tree vegetation indices exhibited an overall trend of 

slowly from decline 2009 to 2013. A slight decrease 

in AW in Lake Sevan can be associated with an 

intensive increase in the lake level over the period 

2007-2013. However, after that, the trend changes 

slightly. 

Vegetation Indices values were selected from 10 

random points from areas away from the coastal zone 

(where the concentration of floating vegetation is 

mainly observed) of lake Sevan to compare the 

ability of different floating vegetation indices to 

distinguish floating vegetation during algal blooms. 

Among the floating vegetation indices, it can be seen 

from the chart (Figure 7) that NDAVI, NDVI, and 

NDWI have significant differences between 

distribution of the values.  

 

Table 2: Vegetation indices for identifying aquatic vegetation 

Indices (abbreviation) Formula Reference 

Normalized difference vegetation index  

(NDVI) 

Re

Re

NIR d
NDVI

NIR d

−
=

+
 [39] 

Normalized Difference Aquatic Vegetation Index 

(NDAVI) 

NIR Blue
NDAVI

NIR Blue

−
=

+
 [32] 

Normalized Difference Water Index  

(NDWI) 

Green NIR
NDWI

Green NIR

−
=

+
 [46] 
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Figure 4: Examples of the VI maps (a) NDVI, (b) NDAVI, (c) NDWI 

 

 

 
 

Figure 5: Dynamics of change in floating vegetation 2009-2015 
 

 
 

Figure 6: The natural-color composite OLI image - 09.09.2015 

 

The NDAWI values are mostly distributed within the 

range of values that are typical for the water surface. 

Therefore, this index has the smallest deviation. In 

the case of NDVI and NDWI, the values are 

distributed very unevenly, but with a distinct 

deviation towards the ranges where vegetation is 

reflected. It worth also empathize that the algal 

bloom and floating vegetation can be accurately 

distinguished based on the adoption of the SWIR 

band. Previous studies have determined that EAV 

and FAV usually contain high concentrations of 

cellulose and lignin, which have a significant impact 

on the reflectance in the NIR and SWIR bands, with 

sensitive bands appearing at wavelengths of 930, 

1,075, 1,275, 1,650, and 2,220 nm [47] and [48].  

 

 
(a) 

 
(b) 

 
(c) 
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Figure 7: Distribution of values for different VIs 
 

 
Figure 8: The Comparison of NDVI Maps of the North-Western Shore of Lake Sevan: 

 (a) GeoEye-1, (b) Landsat OLI 

 

Although algal contain high concentrations of 

chlorophyll, they almost do not contain cellulose and 

lignin; therefore, algal bloom present significant 

differences in the SWIR bands than those of EAV 

and FAV. Furthermore, due to the high concentration 

of water content in the leaf components of EAV and 

FAV, the reflectance exhibits a characteristic peak at 

the central wavelengths of 1,200, 1,450, 1,650, 1,850, 

and 2,015 nm which are not observed in the algal 

blooms [48] [49] and [50]. 

 

4.2 Validation 

Available very high-resolution (VHR) satellite 

imagery purchased from Maxar Technologies Inc. 

was used to verify the results. For the target time 

period, only one image tile was available for the pilot 

site of Armenia captured by GeoEye 1 satellite. 

GeoEye-1 simultaneously captures 0.41m 

panchromatic (black & white) and 1.65m 

multispectral (color) digital imagery.  

 

 

It has 5 spectral band - Pan: 450-800 nm; Blue: 450-

510 nm; Green: 510-580 nm; Red: 655-690 nm and 

Near IR: 780-920 nm. Overall accuracy is estimated 

< 3m CE90 at nadir․ The used image was captured on 

August 02, 2014. The area is the north-west coast of 

the Lake Sevan between Sevan town and Norashen 

village. Landsat OLI image dated August 12, 2014 

was chosen for comparative analysis. Landsat OLI 

image extracted by GeoEye-1 image borders.  

The statistical comparison of vegetation index 

maps shows that Landsat images provide up to 67% 

of the result of GeoEye-1 images for highlighting 

floating vegetation (Figure 8). Considering the 

resolution of Landsat images is approximately 18 

times lower than that of images suitable for high-

detail studies, it is important to note that while 

Landsat images may not be optimal for determining 

the species composition of floating vegetation, they 

can still yield results of sufficient precision for 

evaluating changes in objects and phenomena over 

time. 
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5. Conclusion 

This study demonstrated the potential of combining 

remote sensing imagery with field data to examine 

the long-term spatio-temporal changes in floating 

vegetation within Lake Sevan. The use of moderate-

resolution images and various vegetation index 

analyses yielded moderate results. These findings 

suggest that medium-resolution Landsat and similar 

satellite images can be utilized to effectively monitor 

the spatio-temporal changes of lakes in a 

reproducible and continuous manner. Furthermore, 

the study highlights the role of anthropogenic 

disturbances and fluctuations in water levels in 

driving changes in the cover of floating vegetation in 

Lake Sevan. It is worth noting that the vegetation 

indices obtained from medium-resolution satellite 

images primarily identify EAV, which 

predominantly grows in the coastal zone rather than 

in deep lagoons. The dominant species in Lake Sevan 

were found to be Butomus umbellatus and 

Potamogeton pectinatus. One of the key takeaways 

from this study is that algal blooms can pose a 

significant challenge when attempting to accurately 

detect floating vegetation using satellite imagery, 

particularly when using automatic or semi-automatic 

machine learning algorithms. To overcome this issue, 

it is recommended to either avoid using images 

captured during the blooming season (mid-summer 

to mid-autumn) or utilize more advanced scientific 

approaches, such as developing algorithms that adopt 

the SWIR band. 
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