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Abstract 

Improving the quality of positioning for safe navigation has been investigated over the last two decades by 

multi-sensor integration techniques. Although considerable improvements have been obtained, occurring of 

faults in measurement or dynamic models could degrade the performance of such integrated systems. These 

faults are un-modeled and may occur with different magnitudes and directions throughout the navigation 

time. In this study, the magnitude and direction under the presence of single and double faults in tight 

GPS/INS measurement and dynamic model were analyzed using the detection, identification, and adaptation 

method (DIA). Furthermore, the influence of the correlation between fault tests when single and double faults 

occur has also been investigated. The results show that under the presence of single faults, the fault test 

correctly identifies the faulty measurement/state. However, since there is a correlation between the fault tests, 

the faulty measurement/state pulls other measurements/states in different directions. When multiple faults test 

is implemented, several wrong identifications occur. This results from the correlation between the fault test 

for measurements/states pair and causing fault separability impossible when elements intersect between two 

measurements/state pairs.  
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1. Introduction 

Integration of Global Navigation Satellite Systems 

(GNSS) with Inertial Navigation Systems (INS) is 

widely utilized as the best navigation solution in 

various applications such as military and civil 

aircraft, aerial photogrammetry, and Mobile 

Mapping Systems (MMS) [1]. Such integration is 

necessary to overcome the shortcomings of a 

standalone GNSS or INS System because both 

systems have complementary error characteristics. 

Therefore, a GNSS/INS integrated navigation 

system offers improvements in the availability and 

reliability of the full navigation solutions [2]. As 

GNSS/INS integration is usually performed using an 

Extended Kalman Filter (EKF), the outcomes of 

EKF may include large errors due to different faults 

in either GNSS or IMU system. Due to different 

sources, these faults have different characterizations 

in terms of magnitude, direction, and occurrence 

(prompt or slow growing). Over the last two 

decades, several Fault Detection and 

Exclusion/Identifications (DE/FDI) schemes have 

been developed to localize and exclude faults either 

in measurement or system state models of the 

GNSS/INS system. These schemes evolved from 

hypotheses testing for deciding the accepted region 

where a fault does not influence the navigation 

solution. Otherwise, the rejected region is decided if 

the size of the fault exceeds the predefined critical 

value. Receiver Autonomous Integrity Monitoring 

method RAIM which is used to check the reliability 

and integrity of the GNSS/INS system [3], 

Autonomous Integrity Monitoring by Extrapolation 

(AIME) [4], Innovation-based, and residuals-Based 

methods [5], Solution Separation (SS) method [6] 

and [7], Quality Control (QC) [8], Extended RAIM 

(ERAIM) [9] are examples of these schemes.  

https://doi.org/10.52939/ijg.v19i7.2745
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Faults in measurement and system state models of 

the GNSS/INS system have distinctive 

characteristics in terms of size, direction, and 

sudden or slowly growing faults. The size of the 

faults can be represented as a scaler and obtained 

from fault test statistics whereas the direction is an 

angle between two fault vectors [10] and [11]. 

Additionally, prompt faults may occur in IMU 

dynamic model due to sudden changes in vehicle 

trajectory while ramp faults are tiny fault that 

cumulates in GNSS pseudorange observations or 

system states with time propagation. Therefore, 

investigating the behavior of the faults is necessary 

to detect, identify, and remove them using a suitable 

algorithm that guarantees continuity and availability 

throughout the navigation time.  

Intensive research works e.g., [2] [9] [12] [13] 

and [14] have already been performed to detect, 

identify, and exclude faults in integrated GNSS/INS 

systems. To do that, the detection, identification, 

and adaptation method (DIA) based on a single 

epoch was used. In this method, a global test is 

initially used to detect the faulty epoch and if an 

abnormality is detected in a certain epoch, the local 

test is conducted to identify the faulty 

measurement/measurements in that epoch. Then, the 

faulty measurements are removed in the last step 

(adaptation step). Another research group e.g., [15] 

[16] [17] [18] and [19] assumes that any fault that 

occurs in the past continuously influences the 

current-time innovations and state estimation of the 

extended Kalman filter (EKF). An example of these 

methods is the autonomous integrity monitoring by 

extrapolation (AIME) method [15]. The AIME 

methods are based on chi-square detection in which 

the measurements used are not limited to a single 

epoch. 

Identifying the actual faulty measurements and 

excluding them is a crucial step because wrong 

identification may cause discontinuity/unavailability 

of the navigation solution. On some occasions, 

wrong identification occurs due to the high 

correlation between the actual faulty measurement 

and other measurements. Thus, the correlation 

between fault test statistics is deemed as a measure 

of separability as such a high correlation means a 

low probability of fault separability and vice versa. 

Correlation between fault test statistics when the test 

is executed to identify a single fault at a time has 

been investigated [9] [10] and [11]. For multiple 

simultaneous faults, the multi-dimensional 

correlation was pioneered by Fortner [10] and then 

developed by Li [20]. Wang et al., [21] and 

Almagbile [11] investigated multi-dimensional 

correlation for multiple faults in GNSS/INS system. 

However, more detailed analysis is required to 

understand the probability separability when 

multiple faults occur in GNSS/INS measurement 

and/or dynamic models. In this research, the 

behavior of multiple faults in pseudorange 

measurement and predicted states of tight GPS/INS 

system is investigated. More specifically, this 

research aims to (i) analyze the magnitude and 

direction of multiple faults in both measurement and 

dynamic models, and (ii) develop correlation 

coefficients to analyze the cases of faults 

separability. The rest of this paper is organized as 

follows. Section 2 describes the snapshot approach 

for fault detection and identification in GPS/INS 

system. This includes hypotheses testing, 

Identifiability, and separability with multiple 

directions and magnitude. Section 3 provides 

developed correlation coefficients between fault test 

statistics. Simulation, results, and analysis are 

presented in Sections 4 and 5 respectively. Section 6 

includes the concluding remarks.  

 

2. Snapshot Approach for Fault Detection in 

GPS/INS system 

For tight GPS/INS integration, an extended Kalman 

filter (EKF) is normally used. After the linearization 

of EKF, the dynamic and measurement model of the 

linear discrete-time system can be described [2] and 

[22]:  

 
 

Equation 1 

k k k kz H x v= +  

Equation 2 

Where: 

                  
kx is state vectors at time k 

   
1kx −

1n is state vectors at time k-1 

1k−
n n  is transition matrix  

 
kz  

1m    is observation vector at time 𝑘 

 
kH  

m n  is observation matrix 

 
1kw −

1n  is uncorrelated white process 

   
kv

1m is and measurement noise with 

                             zero mean with covariance  

                             matrices 
kQ and

kR  

 

To utilize the snapshot approach for quality control 

in an integrated GPS/INS system, the Kalman filter 

is converted into least squares. The least squares 

navigation solution consists of the measurements 

and the predicted states of the Kalman filter and can 

be written as [23] [24] and [25]: 
 

1 1 1k k k kx x w− − −=  +
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k k k kl v A x+ =  

Equation 3 

, ,
zkk k

k k k

xk

vz H
l A v

vx I

    
= =     
     

 

Equation 4 

 

Where: 

The observation vector lk is formed by combining the observation
kz and predicted states

kx vectors.  

The design matrix Ak is formed by the 

measurement matrix Hk and identity matrix 

I(n×n),  
k

v  is the residuals vector contains the 

residuals vectors of measurements 
zk

v  and 

predicted states 
xk

v . The variance-covariance 

matrix Dk of the measurement vector
kl can be 

written as [21]: 

 

1
0

0

k

k k

k

R
D P

P

− 
= = 
 

 

Equation 5 

 

Where Dk is formed from the measurement noise 

covariance matrix Rk and the predicted states 

covariance matrix kP of Kalman filtering,
1

kP−
is the 

weight matrix. The optimal estimate of the state 

parameters ˆ
kx and error covariance matrix 

x̂kQ can 

be written as [14]: 
 

( )
1

ˆ T T

k k k k k k kx A P A A P l
−

=  

Equation 6 

 

( )
1

ˆ

T

xk k k kQ A P A
−

=  

                                                                   Equation 7 

 

The residuals vector
kv and cofactor 

vkQ can be 

written as: 

ˆ
k k k kv A x l= −  

Equation 8 

 

ˆ

T

vk k k xk kQ D A Q A= − −  

Equation 9 

 

The least squares approach can be then used for 

fault detection and identification of the integrated 

GPS/INS system. For simplification, the symbol k 

which represents the epoch number is omitted from 

the subsequent equations. 

 

3. Detection, Identification and Separability of 

Multiple Faults 

3.1 Fault Detection  

In this step, potential faults are detected using the 

global model test to check whether the system 

includes faults or not. To do that, hypothesis testing 

is carried out by testing a null hypothesis against an 

alternative hypothesis as follows [12] and [26]:  

 

𝐻0 = 𝛦 (
𝜎̂0

2

𝜎0
2) = (𝑛 − 𝑢) 

  

𝐻1 = Ε (
𝜎̂0

2

𝜎0
2) ≠ (𝑛 − 𝑢) 

Equation 10 

Where: 

0H  and
1H are the null and alternative 

hypotheses respectively,
2

0̂ and
2

0 are the 

posteriori and priori variance respectively. n
and u are the known and unknown parameters 

where the difference between them is known 

as the degree of freedom ( f ).  

 

The global model test is then can be computed as: 
 

2
20
1 ( )2 2 2

0 0 0

ˆ TT

v
gf

f l PQ Plv Pv





  
−= =  

Equation 11 

 

Where 2  is the Chi-Square distribution, ( )gf is 

the critical value of the global model test based on a 

significant level and degree of freedom1 − .  

 

3.2 Fault Identification  

In the case that the global model test detects an 

abnormality in a certain epoch, a local test is 

employed to identify the measurements that hold 

faults. Once again, the null and alternative 

hypotheses are tested [10]:  

 

0 0( | ) ( ) 0H l H Ax v =  =  

Equation 12 

1 1( | ) i iH l H Ax h = +   

Equation 13 

 

Where 
i is the estimated size of an outlier in the ith 

observation, hi=[0, …0, 1, 0]T is a fault vector in 

which the ith element is equal to one and all other 

elements are equal to zero. Assuming that there is an 

outlier in the ith observation, the alternative 

hypothesis is accepted and the residual vector can be 

written as: 
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ˆ
i iv Ax h l= +  −  

Equation 14 

 

To identify a fault in the ith observation, a test 

statistic is implemented based on a data snooping 

approach which means testing each observation 

individually to identify the observation that holds a 

fault. This test is written as [27] and [29]: 
 

( )

( )

1

1

0 0

T T T
i v i i vi i v

i
T

T
i v ii i v i

h PQ Ph h PQ Pl h PQ Pl
w

h PQ Phq h PQ Ph 

−

−


= = =



 

Equation 15 

 

Where
iw is the test statistics, ( )

1
T

i i v iq h PQ Ph
−

 = . In 

the case that the null hypothesis is accepted,
iw has a 

standard normal distribution. However, if the 

alternative hypothesis is accepted, this means that 

there is a fault in ith observation and
iw is thus has a 

non-centrality as follows:  
 

i
i

T

i v ih PQ Ph



=  

Equation 16 

 

For one tail test, the critical value can be determined 

from the significant level 1- α as: 
 

1 (0,1)
2

| |iw N 
−

  

Equation 17 

 

With a given power of the test (1-β) and false alarm 

(1- α), the minimal detection bias (MDB)
0 i can 

be computed as [13] and [26]: 
 

0
0 i

T

i v ih PQ Ph


 =

 

Equation 18 
 

Where δ0 is a non-centrality parameter 

 

For multiple faults, the test
iw in Equation (15) is 

generalized [11] [12] and [26] as: 
 

 

𝑇𝑖
𝜃 =

𝑙𝑇𝑃𝑄𝑣𝑃𝐻𝑖(𝐻𝑖
𝑇𝑃𝑄𝑣𝑃𝐻𝑖)

−1𝐻𝑖
𝑇𝑃𝑄𝑣𝑃𝑙

𝜎0
2 ~𝜒1−𝛼

𝑇𝑖
𝜃

2  

Equation 19 

 

Where θ is the number of faults Hi is the fault 

matrix with rank θ, containing zeros with a one in 

each column corresponding to the number of faults 

in the observation vector, 1 − 𝛼
𝑇𝑖

𝜃  is the level of 

significance for multiple faults. If on some 

occasions the alternative hypothesis is accepted, 
iT

become non-central normal distribution and then the 

non-centrality parameter λ can be written as [10] [28] 

and [29]: 

2

0

T T

i v iH PQ PH 




 
=  

Equation 20 

 

Where  is the true fault vector. The minimal 

detection bias (MDB) in this case can be computed 

by determining the multiple correlation 

coefficients. The multiple correlation coefficients 

are equivalent to the correlation coefficients 

between two single-fault test statistics. The 

multiple correlation coefficients ij

 and MDB 

0 i

 can then be written respectively as [11] and 

[26]: 
 

( )
1

T T T

i v j j v j j v i

ij T

i v i

h PQ PH H PQ PH H PQ Ph

h PQ Ph



−

=  

Equation 21 

 
2

0 0
0

(1 )
i T

i v i ijh PQ Ph





 



 =

−
 

Equation 22 

 

with bounds of
ij

 are: 0 1ij

   

 

3.3 Faults Separability  

When one rejects the null hypothesis in favor of the 

alternative hypothesis, this means that the test 

statistic is larger than the critical value. This is 

normal when single or multiple faults occur in the 

observation. However, a wrong decision may 

happen when one rejects a proper alternative 

hypothesis and accepts the other and this lead to 

type III error [10]. The reason behind accepting the 

wrong alternative hypothesis and rejecting the true 

one is due to the correlation between fault tests. This 

correlation can be considered as a measure of 

separability as when the correlation is high, the 

probability of correctly identifying the true fault 

position is low, and vice versa. The correlation ij

between
iw and jw can be written as [10] and [30]: 

( , )i j

T

i v j

w w
T T

i v i j v j

h PQ Ph

h PQ Ph h PQ Ph
 =

 

Equation 23 
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Likewise, the correlation between
iT and

jT can be 

generalized from the nonsquare matrix [10] and [21]:  
 

T

ij i v iH PQ PH =  

Equation 24 

 

From Equatiom (24), the correlation coefficients 

between the two tests can be expanded as: 
 

1 1

12 21 11 12 22( )( ) ( )( )M    − −=  

Equation 25 

 

Where: 

12 1 2

T

vH PQ PH =  

Equation 26 

 

11 1 1

T

vH PQ PH =  

                                                               Equation 27 

 

21 2 1

T

vH PQ PH =  

                                                               Equation 28 

 

22 2 2

T

vH PQ PH =  

Equation 29 

 

When double outliers test is conducted, the matrix 

M12 is a quad matrix that includes multi-dimensional 

correlation between test Ti and Tj.  Now the 

correlation is equal to the maximum eigenvalue λ of 

M12 as [10]: 
 

2

12 12max ( )M =  

Equation 30 

 

The correlation presented in Equation (26) can be 

rewritten with the geometric form [10] and [11]: 
 

2

12 cos( , ) cos( )i jH H = =  

Equation 31 

 

Where ε is the angle between two fault vectors, and 

it can be calculated as: 
 

1 2

12cos ( ) −=  

Equation 32 

 

The angle ε behaves oppositely to the
2

12 as such a 

high correlation between tests reflects a small 

angle and vice versa. 

 

4. Simulation and Experimental Scenarios 

4.1 Simulation of Tight GPS/INS System 

In this research, tightly coupled GPS/INS 

integration was simulated using GPSoft ® Toolbox 

software. The simulation started by creating a 

reference trajectory with zero (0,0,0) initial values 

of position, velocity, and attitude. The ground truth 

of INS data was created without errors. Errors in 

gyros, accelerometer, initial alignment, and velocity 

were then added to the INS data (Table 1). GPS 

pseudo-range observations were derived from five 

visible satellites during the navigation time (649 

seconds) (Figure 1).   

 

Table 1: Simulated INS error sources 
 

Error Source Error Magnitude 

Initial East and North Velocity Errors 0.2 m/s 

Initial Up Velocity Error 0 m/s 

Initial X and Y Misalignment Errors 0.1 milli-radians 

Initial Misalignment Error (Z) 0 milli-radians 

Accelerometer Bias (X) Std. Dev 50 μg 

Accelerometer Bias (Y) Std. Dev. 40 μg 

Accelerometer Bias (Z) Std. Dev. 0 μg 

Gyroscope Bias (X) Std. Dev. 0.010°/hr 

Gyroscope Bias (Y) Std. Dev. 0.015°/hr 

Gyroscope Bias (Z) Std. Dev. 0.008°/hr 
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Figure 1: Skyplot of visible satellites 

 

The GPS pseudo-range and INS data with and 

without errors were integrated using an extended 

Kalman filter. The dynamic model of the Kalman 

filter consists of 17 states: 
 

E N U E N U E N U X Y Z X Y Z b fx r r r v v v x x      =    
 

 

Equation 33 

Where: 

rE, rN and rU are east, north, and up  

                                       position, respectively 

   vE, vN and vU are velocity in east north  

                                      and up, respectively 

     ϕE, ϕN and ϕU are altitude in east, north,  

                                      and up, respectively 
         εx, εy and εz are gyros errors X, Y, and  

                                     Z, respectively 

        ∇x, ∇y and ∇z are the accelerometer errors  

                                    X, Y, and Z, respectively 

                          
bx  is  receiver clock bias       

                          fx is  receiver clock drift 

 

The INS output rate was 200 Hz and it was updated 

every 1 Hz with pseudo-range observations.  To 

show the performance of the integrated system, 

position errors in East, North, and Up components 

were computed from the difference between the 

GPS/INS integration and the ground truth data. The 

INS-unaided, and INS/GPS relative to the ground 

truth trajectory are shown in Figure 2. The 

magnifier window illustrates the difference between 

the INS-unaided, GPS/INS, and ground truth vehicle 

trajectories in detailed scale.  

 

 

 

4.2 Faults Simulation and Experimental Scenarios 

After performing the GPS/INS integration, faults 

with different magnitudes were injected in 

pseudorange observations as well as in XYZ 

position predicted states. These simulated faults are 

presented in Table 2. The experiments were 

conducted to illustrate the magnitude and direction 

of faults using these scenarios: 

• A fault of 15m was injected in a single 

pseudornage observation and X position state. 

Likewise, a fault of -15m was injected in a single 

pseudornage observation and X position state.  

• Two faults of 15m were injected in two 

pseudornage observations and X and Y position 

states. Then two faults of -15m were injected in 

the same pseudornage observations and position 

states.  

 

5. Results and Discussion 

5.1 Single Fault Test in The Measurement Model 

Single fault test along with single correlation 

coefficients are depicted in Figure 3(a) and Figure 

3(b). From Figure 3(a), one can notice that when a 

fault of 15m was injected in pseudorange 1 the fault 

test values identified this measurement as faulty 

measurement. Also, the influence of the outlier on 

other measurements can be noticed particularly in 

measurement 3. Unexpectedly, the fault test value of 

measurement 3 when a fault occurs in measurement 

1 becomes less than those without an outlier. This 

explains that some measurements do not necessarily 

follow the same fault direction. It can also be 

noticed that the influence of the fault on 

measurements 2, 4, and 5 is tiny. The correlation 

between the fault test of measurement 1 and all 

other measurements is attached to Figure 3(a). 
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Figure 2: 2D and 3D vehicle trajectories include INS-unaided, GPS/INS relative to the ground truth trajectory 

 

 

Table 2: Simulated faults scenarios in pseudorange and predicted states 
 

Number of 

faults 

Fault magnitude and 

direction 
Observations 

Test 

statistics 

Single 
+15 m/-15m 

 

All SVs (one by one) 

XYZ position Predicted states (one by one) 

Single 

fault test 

Double 
+15 m/-15m 

 

SV-1 and SV-3 

X and Y position predicted states 

Multiple 

fault test 
 

 

 
 

Figure 3: Single fault of +15m and correlation analysis for (a) pseudorange 1 and (b) pseudorange 2 
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Figure 4: Single fault of -15m and correlation analysis for (a) pseudorange 1 and (b) pseudorange 2 

 

As can be seen, all correlation values are less than 

0.2 and this means that the influence of the faulty 

measurement on other measurements is tiny. In 

Figure 3(b), a fault was injected in measurement 2 

and it is clear that the fault test value of this 

measurement is the highest among others but it is 

still less than the critical value (10.82) [13]. This 

means that the value of the fault test varies in 

accordance with the precision of the measurements. 

Figure 4(a) shows a single fault test when a fault 

of -15m is injected in measurement 1. As can be 

seen, measurement 1 is identified as a faulty 

measurement but its value is less than those in the 

previous fault case (+15m). It can also be noticed 

that all measurements are influenced by the fault 

and almost all of them have a fault value less than 

those without fault. In Figure 4(b), when a fault of -

15m was injected in measurement 2, the situation 

becomes different from those in Figure 3(b) because 

the test value exceeds the critical value.  

 

5.2 Single Fault Test in the Dynamic Model 

In this scenario, a fault of 15m and -15m is 

simulated in the X position state and Y position 

state as can be seen in Figures 5(a), (b), (c) and (d) 

respectively. When the magnitude of the fault is 

15m, the test can identify that the X position (Figure 

5(a)) and Y position (Figure 5(c)) are faulty states. 

In Figure 5(b), a fault of -15m occurs in the X 

position and the test reflects a large value. 

Additionally, both the X position and Y position 

influence each other more than the Z position state. 

This is due to the higher correlation coefficients 

between the tests for the X and Y states compared to 

that between the X and Z states and also between 

the Y and Z states (Figure 6(a), (b) and (c)).  

 

5.3. Double Fault Test in the Measurement Model 

In this scenario, a fault test is implemented under 

the presence of two faults simultaneously. Figure 7 

illustrates the situation of double faults in the 

combined pseudorange (1 and 2) and compared it 

when these measurements do not have any faults. 

As can be seen, the fault test value of the 

measurement pair (1,2) before and after 15m faults 

was injected in both measurements is approximately 

1.5 and 34 respectively. This confirms that the fault 

test was successful in identifying the faulty pair. 

Additionally, it can be seen that the combinations 

(1,3), (1,4), and (1,5) exceed the critical value 

(13.82) too [13]. This was because those 

combinations include one faulty measurement, and 

thus, the faulty measurement adversely affects all 

the measurements that are combined with it. 

Nevertheless, despite that the combinations (2,3), 

(2,4), and (2,5) include a faulty measurement, they 

pass the test because their values are less than the 

critical value. 
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Figure 5: Single fault of 15m and -15m in X, Y, and Z position states respectively 

 

 

 
Figure 6: Single correlation analysis for (a) X position, (b) Y position and (c) Z position states 
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Figure 7: Double faults of +15m (a) and -15m (b) in combined pseudorange 1 and pseudorange 2 

 
Figure 8: Double fault of 15m (a) and -15m (b) in combined X and Y position states 

 

This situation is found earlier in this research when 

a single fault does not identify measurement 2 as a 

faulty measurement even when a fault of 15m was 

injected in this measurement. The test for the pair 

(3,4) becomes less than that without faults in the 

pair (1,2). When a fault of -15m was simulated in 

the pair (1, 2), the fault test identifies those pairs as 

faulty pairs but with higher values than that of the 

+15m fault case. Notably, the values of all the 

measurements which are combined with 

measurement 1 become less than in the previous 

case. Furthermore, it can be seen that the fault test 

for the pairs (2, 3), (3, 4), (3, 5), and (4,5) reveals 

the opposite situation to the +15m case.  

 

5.4. Double Fault Test in The Dynamic Model 

Similar to the previous scenario, two cases of faults 

were injected in X and Y position states. From 

Figure 8, it can be seen that all combined states (X, 

Y), (X, Z), and (Y, Z) exceed the critical value. 

Additionally, in the case of a -15m fault, all the 

combinations values are higher than that of a +15m 

fault case. 

5.5. Fault Direction and Multi-Dimensional 

Correlation  

5.5.1 Measurement model 

For a better understanding of the influence of the 

measurement that holds fault on other pure 

measurements, fault test vectors before and after 

injecting a fault of +15m in measurement 1 along 

with the correlation coefficients between fault tests 

for each measurement are shown in Figure 9. It is 

clear that when a fault occurs in measurement 1, the 

direction of the fault vector becomes different from 

that without fault. The faulty measurement pulls 

each measurement in a different direction and this 

depends on the correlation between the faulty 

measurement and other measurements. For instance, 

while measurement 2 is pulled in the same direction 

as the faulty measurement, measurement 3 is pushed 

in the opposite direction. The direction which is 

represented by an angle between the x-axis and the 

correlation coefficient vector is shown in Figure 

9(c). The higher the correlation between fault tests 

is, the smaller the angle becomes and vice versa. 
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Figure 9: (a) Fault direction without fault, (b) with a single fault of +15m in SV1 and (c) the corresponding 

angle of the correlation vector between fault test  

 

Thus, the maximum correlation between the fault 

tests for the measurements 2 and 4 reflects the 

smallest angle. The correlation vector between 

measurements 1 and 2 as well as measurements 1 

and 4 did not appear because they are hidden behind 

the correlation vector between measurements 2 and 

3. Figure 10 shows the situation when two faults of 

+15m occur in measurements 1 and 2. From the 

Figure it can be seen that the combination (1, 2) 

pulled all the measurements that have common 

observations with either 1 or 2. It is clear that the 

combinations (1, 3), (1, 4), (2, 3), and (2, 4) have 

higher values compared with that of the (3, 4) 

combination.  

To clarify the relationships between fault tests 

for the measurement combinations, the correlation 

coefficient, and the corresponding angle under three 

fault cases are depicted in Table 3. The correlation 

coefficient includes a quad matrix (M) (refer to 

Section 3.3) which represents the interaction 

between two parts: 

• The general relationship between the 

combinations indicates the magnitude and 

direction of any combination related to the faulty 

ones.  

• The specific relationship between the 

combination elements itself and also between the 

elements of different combinations. 

 

Three correlation cases can be seen as follows:  

• Case 1:  The correlation between the 

combination (1, 2) and itself is always equal to 1. 

However, when this combination was divided 

into four relationships as the relation between (1 

and 1), (2 and 2), (1 and 2), and (2 and 1), their 

correlation values are 1, 1, 0.102, and 0.102 

respectively. Thus, the corresponding angles are 

equal to 0°, 0°, 90°, and 84.14°. Notably, the 

angle is 90° and 0° when the correlation is 0 and 

1 respectively.  

• Case 2: The two fault vectors include one 

common measurement. As the combination (1, 

2) and (2, 3), the measurement 2 is common 

between those combinations and thus the 

correlation is 1 with a corresponding angle equal 

to 90°. It can be noticed that the correlation 

between (1 and 2), (1 and 3), (2 and 2), and (2 

and 3) is 0.102, 0.063, 1, and 0.065 respectively. 

The corresponding angles are 84.15°, 86.42°, 0°, 

and 0, 86° respectively.   
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Figure 10: (a) Fault direction without fault and (b) double faults of +15m in SV1 and SV2  

 

Table 3: Correlation and the corresponding angle for individual and combined measurements 
 

 Individual Observations Combined Observations 

  Correlation Angle  Correlation Angle 

  1 2 1 2  (1,2) (1,2) 

Case 1 
1 1 0.102 0° 84.14° 

(1,2) 1 0° 
2 0.102 1 84.14° 0° 

  2 3 2 3  (2, 3) (2,3) 

Case 2 
1 0.102 0.063 84.15° 86.42° 

(1,2)  1 0° 
2 1 0.065 0° 86.30° 

  3 4 3 4  (3,4) (3,4) 

Case 3 
1 0.063 0.061 86.42° 86.51° (1,2)  0.126 82.74° 
2 0.065 0.097 86.30° 84.41°  

 

Case 3: when no common measurements occur 

between two combinations. For example, the 

combination (1,2) and (3,4) have no common 

elements and thus the correlation and the 

corresponding angle are 0.126 and 82.74° 

respectively. Tiny correlation values (ranges 

between 0.06 and 0.09) can be seen between (1 and 

3), (1 and 4), (2 and 3), and (3 and 4) with high 

corresponding angles range between 84.51° and 

86.41°. The direction of the fault vectors is 

visualized in Figure 12. 

 

5.5.2 Dynamic model 

Figure 11 shows fault test vectors before and after 

injecting a fault of +15m in the X position state 

along with the corresponding angles of the 

correlation coefficients between fault tests. When a 

fault occurs in the X position state, the direction of 

the fault vector for all states (X, Y, Z position, and 

X velocity states) behave differently from that 

without fault. What is more, the correlation plays a 

crucial role in determining the magnitude and 

direction of the fault vectors. The faulty state (X 

position) pulled the Y position state to its direction 

because of the relatively high correlation between 

those states. On the contrary, the Z position and X 

velocity states have a tiny correlation with the faulty 

state and thus their directions and magnitude are 

different from that of the Y position state. The 

maximum correlation coefficient is equal to one as 

shown in the Figure 11. 

When two faults of +15m occur in the X and Y 

position states as shown in Figure 12 the faulty 

states pulled the X and Z position state and the X 

position and the X velocity states to their direction 

and magnitude. Note that the fault vector of the 

combination (X, Z) position states is hidden behind 

the vector of (X position, X velocity) states because 

both combinations have very close fault magnitude.  

Table 4 illustrates the nested correlation 

coefficient and the corresponding angle under three 

fault cases. As shown previously, it can be seen that 

the correlation between the states (X, Y) and itself is 

always 1 with an angle equal to 90°. However, the 

individual correlation between X and Y is around 

0.36 with an angle of 68.74°. From Table 4 and 

Figure 12, the correlation of the combination (X, Y) 

and (X, Z) is equal to 1 (maximum correlation) 

where the correlation between X and Y is 0.36, X 

and Z (0.11), Y and Y (1), Y and Z (0.02) with 

corresponding angle 68.74°, 83.52°, 0°, and 88.77° 

respectively. 
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Figure 11: (a) Fault direction without fault, (b) with a single fault of +15m the X position state and  

(c) the corresponding angle of the correlation vector between fault test  
 

 
Figure 12: (a) Fault direction without fault and (b) double faults of +15m in in X and Y position states  
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Table 4: Correlation and the corresponding angle for single and combined states 
  

Individual State Combined States 
  

Correlation Angle 
 

Correlation Angle 
  

X Y X Y 
 

(Y, Z)  (Y, Z) 

Case 1 x 1 0.36 0° 68.74° (X, Y) 1 0° 

y 0.36 1 68.74° 0°   
Y Z X Z 

 
(Y, Z) (Y, Z) 

Case 2 x 0.36 0.11 68.74° 83.52° (X, Y)  1 0° 

y 1 0.02 0° 88.77°   
Xv Yv Xv Yv 

 
(Xv , Yv) (Xv, Yv) 

Case 3 X 0.001 0 90° 90° (X, Y)  0.001 89.9° 

Y 0 0.001 90° 90° 
 

 

For the third case, it is obvious that there is no 

correlation exists between the combination (X, Y) 

and (X position, X velocity) because the values of 

correlation are nearly zero with the angle equal to 

90°.  

 

6. Conclusions  

In this research, single and double faults in tight 

GPS/INS measurement and dynamic models were 

investigated with a multi-dimensional correlation 

coefficient between fault test statistics. the direction 

and magnitude of faults have also been analyzed. 

The behavior of the fault was then analyzed before 

and after injecting faults in measurements and 

predicted states. The results showed that fault test 

statistics can identify faulty measurements under the 

presence of a single fault occurs. Additionally, the 

influence of the correlation between the faulty state/ 

measurement is prominent because the faulty 

state/measurement pull other pure states or 

measurement to their direction or in some cases to 

the opposite direction. Under the presence of double 

faults, the separation of the faulty measurements/ 

states becomes more complicated. This is because 

when one element (state or measurement) intersect 

with the faulty measurement or state pair, the 

correlation is always 1, and thus faults separability 

is impossible. The results furthermore showed that 

the correlation between elements of any pair could 

provide a realistic indication of the relationship 

more than the maximum correlation method. 

Future work can be for the detection, 

identification, and separation of multiple faults in 

real application of GNSS/INS integration algorithms 

and under the presence of three or more faults in 

both dynamic or measurement models.  
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