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Abstract 

A flood is a natural catastrophe that causes heavy damage not only to people but also to properties. To 

prevent and mitigate flood damage, an accurate flood susceptibility map that reveals highly potential flood-

prone areas is essential. This study aims to construct flood susceptibility maps in the Huong Khe district using 

three machine learning algorithms, namely the K - Nearest Neighbour (KNN), the Support Vector Machine 

(SVM) and Artificial Neural Network (ANN). Training and testing datasets were extracted from Sentinel-1 

SAR images. Seven causative factors were selected as input for predictive models after removing high-

correlation factors and unimportant factors through a rigorous screening process by analyzing the Pearson 

correlation coefficient (PCC) and calculating the information gain ratio (InGR). The model's 

hyperparameters were found by grid search algorithm integrated 5-fold cross-validation. The three optimal 

flood susceptibility models showed excellent performance, with very high accuracy indices in the training and 

testing phases, over 90% of overall accuracy and UAC values. High and very high susceptibility classes on 

flood susceptibility maps accounted for around 18% of the total study area and were mainly located in 

residential and agricultural areas. Thus, there is a need to make proper land use planning for these areas to 

reduce damage in flood seasons.  
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1. Introduction 

Asia-Pacific is one of the most disaster-prone areas 

in the world. According to the United Nations 

Economic and Social Commission for Asia and the 

Pacific, from 1970 to 2020, this region recorded 

57% of global fatalities from disasters and 87% of 

the global population was influenced by natural 

hazards [1]. More detail, natural hazards influenced 

6.9 billion people and killed over 2 million people. 

Located in the Western Pacific, Vietnam frequently 

suffered intense storms, especially in the Central 

provinces. These storms resulted in severe floods, 

destroyed houses and infrastructures, caused crop 

failure, and killed many residents. For example, in 

the year 2020, from October 6 to November 15, this 

region was struck by nine consecutive storms. It 

caused severe and widespread flooding in eight 

provinces, including Nghe An, Ha Tinh, Quang 

Binh, Quang Tri, Thua Thien Hue, Da Nang, Quang 

Nam, and Quang Ngai.  According to the Viet Nam 

Red Cross report, these provinces suffered heavy 

losses of people, shelters, and properties. 357 

residents were killed, 876 residents were injured, 

511,172 houses were submerged, over 360 schools 

were flooded, and 30,000 hectares of crops were 

devastated [2]. It was recorded as the worst disaster 

which hit Central Viet Nam in the past 100 years. 

To avoid severe flood damages, flood prevention 

and mitigation strategies must be pre-planned, 

whereby a flood susceptibility map is an essential 

document. This kind of map reveals flood-prone 

areas under specific conditions of topography, 

hydrology, land cover, rainfall, and artificial 

constructions.  

https://doi.org/10.52939/ijg.v19i7.2739
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There were various methods applied in flood 

susceptibility assessment (FSA), including 

hydrological and hydraulic models [3] [4] and [5], 

Analytic Hierarchy Process (AHP) [6] [7] and [8], 

the integration of Fuzzy Logic and Analytic 

Hierarchy Process (F-AHP) [9] [10] and [11], 

frequency ratio (FR) [12] [13] and [14], the weight 

of evidence (WoE) [12] [14] and [15], logistic 

regression (LR) [16] and [17]. Physically-based 

models, such as MIKE FLOOD and HEC-RAS, 

have proven their efficacies in developing flood 

susceptibility models. These models require 

complex data that is not easy to meet for large areas, 

such as river cross-section, meteorological and 

hydrological data in long duration [18] and [19]. To 

develop a flood susceptibility map using an expert-

based approach (such as AHP or F-AHP), experts 

evaluate the contribution of various influencing 

factors to the flood susceptibility index. However, 

these subjective judgments lead to predictive errors 

[20]. Flood susceptibility models constructed by 

statistical approaches, including FR, WoE, and LR, 

were rated as comprehensible and reliable. 

However, they require high-quality data on 

historical floods and influencing factors [21]. 

Furthermore, they do not examine the correlation 

between influencing factors. So redundant data may 

exist in the influencing factor database.  

Machine learning algorithms (MLAs) have 

brought high accuracy in natural disaster prediction 

fields. Compare to expert-based and statistical 

approaches, MLAs have produced better results [22] 

[23] and [24]. It is because the input data for MLAs 

typically has the non-existence of highly correlated 

factors and low contribution factors by the feature 

selection process. Besides, the performance of 

machine learning models depends not only on input 

data and learning algorithms but also on 

hyperparameters. Previous studies on flood 

susceptibility assessment using MLAs used the 

"trial and error" method to find the best 

hyperparameters [25] and [26]. This method is 

unreasonable and needs to be improved by a better 

search algorithm. 

In conclusion, the main objective of this study 

was to use MLAs for constructing FSMs in Huong 

Khe district, the most frequently flooding district of 

Ha Tinh province, Vietnam. To achieve this 

objective, sub-objectives were implemented: (1) 

building a historical flood database using Sentinel-1 

SAR satellite images, (2) generating influencing 

factors database from original geospatial data, (3) 

eliminating highly correlated and low contribution 

influencing factors through the feature selection 

process, (4) tuning hyperparameters by Grid Search, 

(5) developing FSMs using selected MLAs, and (6) 

Assessing the accuracy and comparing the 

performance of the developed FSMs. 

 

2. Methodology  

The overall methodology of the study is represented 

in Figure 1. It includes developing a historical flood 

database, causative factor preparation, constructing 

optimal flood susceptibility models, and models’ 

performance assessment, flood susceptibility 

mapping.  

 

 
 

Figure 1: Methodology of the study 
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2.1 Study Area 

Huong Khe is a border district of Ha Tinh province. 

It shares about 50km borderline with Lao People's 

Democratic Republic to the West and borders Tuyen 

Hoa district (Quang Binh province) to the South. 

The North and the East are bordered by Vu Quang, 

Thach Ha, and Can Loc districts of Ha Tinh 

province, respectively. This mountainous district 

ranges in height from 3m to 1440m. It is covered by 

forest land, agricultural land, specially used land, 

and residential land with a corresponding percentage 

of 78.58%, 14.22%, 2.65%, and 0.75%, respectively 

[27]. The three latter land-use types are distributed 

in low lands and are often seriously flooded.  

Every year, this district receives high rainfall 

amounts. According to the statistical data from 2010 

to 2020 at Huong Khe meteorological station, the 

average annual rainfall was 2560mm. Among 

months of the rainy season, September and October 

were the wettest months in terms of rainfall amount, 

with 641mm and 586mm. The corresponding 

figures in the three remaining months of the rainy 

season (including July, August, and November) 

were 268mm, 223mm, and 247mm, respectively. 

Because of the high rainfall amount, this district has 

frequently suffered natural disasters, such as floods 

and landslides. The location of the study area is 

represented in Figure 2. 

 

 

 

2.2 Historical Flood Database 

In Ha Tinh province, historical flood data has been 

not recorded as geospatial data, such as points or 

polygons. In practice, the flood situation is stored in 

the reports with simple descriptive information 

about where the flood occurred, how large it 

extended, and how deep it was. Therefore, 

collecting historical flood data from flood control 

departments for training and testing flood 

susceptibility models is not feasible. Researchers 

and scientists have used synthetic aperture radar 

(SAR) images to extract geo-information about past 

floods to solve this difficulty. In the period 2006-

2011, ALOS PALSAR provided L-band SAR 

images that were useful for flood mapping [28] [29] 

and [30].  Recently, free Sentinel-1 SAR images 

have been effectively utilized in flood detecting and 

monitoring [31] [32] and [33]. Flood information 

extracted from SAR images has been used as 

training and testing data for flood susceptibility 

mapping models [34] [35] and [36]. Hence, SAR 

satellite images are a crucial data source for 

developing flood susceptibility models. To prepare 

training and testing data for flood susceptibility 

models, three Sentinel-1 SAR data images were 

used to extract historical flood data. These images 

included two images acquired in May and October 

2020, and one image acquired in September 2019, 

and were preprocessed using the flowchart proposed 

by Filipponi [37]. Table 1 displays the detailed 

information of the Sentinel-1 images. 

 
Figure 2: Location of study area 

 

Table 1: Sentinel-1 images used to construct flood database 
 

ID Satellite Date of Acquisition Pass Direction Condition 

1 S1-A 06-Sep-2019 Ascending Flood Event 

2 S1-B 18-May-2020 Descending Dry Season 

3 S1-A 18-Oct-2020 Ascending Flood Event 
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Figure 3: Historical flooded points 

 

Among the three images, the image taken in May 

2020, before the rainy and storm season, was used 

as the pre-flood event image, while the remaining 

images collected at flood times were used as flood 

event images. To detect and delineate floodwater, 

the image ratioing method was applied, resulting in 

ratio images by calculating the ratio of digital 

number value of corresponding pixels on pre-flood 

event images and flood event images. Floodwater 

was delineated by an Otsu’s threshold method. 250 

flood points were randomly created from inundated 

flood areas over the two years 2019 and 2020 and 

250 non-flood points were also randomly generated 

from non-flood sites. Finally, the entire dataset of 

500 points was divided into two subsets, namely 

training and testing, in a ratio of 2 to 1. The location 

of flooded points is represented in Figure 3. 

 

2.3 Causative Factors and Data 

Through a careful review of previous studies on 

flood susceptibility assessment and the own 

characteristics of the study site, fourteen causative 

factors were chosen for developing flood 

susceptibility models in the Huong Khe district. 

They consist Elevation (ELE), Slope (SLO), Aspect 

(ASP), Curvature (CUR), Stream Power Index 

(SPI), Topographic Wetness Index (TWI), Land Use 

(LU), Normalized Difference Vegetation Index 

(NDVI), Normalized Difference Buit-up Index 

(NDBI), Rainfall (RAI), Distance to River (DITRI), 

Density of Drainage (DEODR), Distance to Road 

(DITRO), Density of Road (DEORO). ELE, SLO, 

CUR, ASP, SPI, and TWI were derivatives of DEM 

with a spatial resolution of 10m. This DEM was 

created from topographic maps provided by the 

Center of Survey and Mapping Data (Department of 

Natural Resources and the Environment of 

Vietnam). NDVI and NDBI were calculated from 

Sentinel-2B satellite images freely provided by 

European Space Agency. LU map was generalized 

from land use maps of all communes of Huong Khe 

district. The average rainfall amount of eleven flood 

events from 2010-2020 of 10 rainfall stations was 

used to interpolate the rainfall map by the Kriging 

method. DITRI and DEODR were established based 

on river networks extracted from topographic maps. 

DITRO and DEORO were made from road 

networks collected from OpenStreetMap. All 

causative factors maps were converted to raster with 

a spatial resolution of 10m and normalized to the 

range [0,1] by the min-max method (Equation 1). 

ArcGIS 10.8 software was utilized to create and 

normalize all causative factor maps (Figure 4). 

 

𝑉𝑁𝑜𝑟𝑚 =
𝑉𝑖 − 𝑉𝑚𝑖𝑛

𝑉𝑚𝑎𝑥 − 𝑉𝑚𝑖𝑛

 

Equation 1 

Where:  

VNorm is normalized value 

  Vmin is minimum value 

  Vmax is maximum value  

      Vi is input value 



5 

International Journal of Geoinformatics, Vol.19, No. 7, July, 2023 

ISSN: 1686-6576 (Printed)  |  ISSN  2673-0014 (Online) | © Geoinformatics International 

 
Figure 4:  Causative factors: (a) Elevation; (b) Slope; (c) Curvature; (d) Aspect; (e) Stream power index; 

(f) Topographic wetness index; (g) Normalized difference vegetation index; 

(h) Normalized difference built-up index 
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Figure 4: Causative factors: (i) Land Use; (j) Rainfall; (k) Distance to road; (l) Density of road;  

(m) Distance to river; (n) Density of river 

 

2.4 Causative Factor Selection 

2.4.1 Correlation analysis 

Studies on disaster susceptibility assessment 

typically used Pearson's correlation coefficient 

(PCC) to analyze the correlation between causative 

factors [38] and [39]. Assuming that X and Y are 

two causative factors, the Pearson's correlation 

coefficient (r) is computed by following equation: 
 

𝑟 =
∑ (𝑋𝑖 − 𝑋̅). (𝑌𝑖 − 𝑌̅)𝑛

1

√∑ (𝑋𝑖 − 𝑋̅)2𝑛
1 . √∑ (𝑌𝑖 − 𝑌̅)2𝑛

1

 

Equation 2 

Where: 

Xi and Yi are samples of causative factors 

  𝑋̅̅ ̅ and 𝑌̅ are means of X and Y 

             n is number of samples  

The absolute value of r ranges from 0 to 1. Two 

factors that have an absolute value of r greater than 

0.6 are considered to have a strong correlation [40]. 

Then one factor will be eliminated. 

 

2.4.2 Information Gain Ratio 

Information Gain Ratio (InGR) is utilized to 

measure the information contribution level of 

causative factors to prediction models. It has been 

widely applied in disaster forecasting models [41] 

and [42]. Assuming that training dataset T consists 

of n samples and m factors (Fi). Output class C 

consists of two classes: flood and non-flood. The 

GR of causative factor Fi is defined as following 

equation: 
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𝐼𝑛𝐺𝑅(𝑇, 𝐹) =
𝐼𝑛𝑓𝑜𝑟(𝑇) − 𝐼𝑛𝑓𝑜𝑟(𝑇, 𝐹)

𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜𝑟(𝑇, 𝐹)
 

Equation 3 

 

Where: 

                Infor (T) is information entropy for the  

                                  dataset 

            Infor (T, F) is amount of information (T1,   

                                      T2,…, Tm) split from T  

                                      regarding the  causal  

                                   factor F 

SplitInfor (T, F) is the potential information  

                                      generated by dividing the  

                                      training data T into m  

                                   subsets. 

 

2.5 Machine Learning Algorithms 

2.5.1 Support Vector Machine 

The Support Vector Machine (SVM) was firstly 

introduced in 1992 by Boser et al., [43]. It is a 

robust supervised learning algorithm that can be 

applied for both classification and regression. It has 

been effectively used for natural disaster prediction, 

including landslides [44] and [45] and floods [46] 

and [47]. The powerful algorithm aims to find an 

optimal hyperplane to correctly distinguish data 

points, with the hyperplane being considered 

optimal when it has the widest margin. For the SVM 

algorithm, kernel function, penalty (C), and gamma 

() are hyperparameters that directly affect its 

performance. The penalty parameter (C) controls the 

trade-off between achieving a low training error and 

maintaining a wider margin. It determines the level 

of misclassification that the SVM classifier is 

willing to tolerate. The gamma (γ) is a parameter of 

the kernel function, it defines the influence of each 

training example and affects the shape of the 

decision boundary. In this study, the default kernel, 

Radial Basis Function (RBF), was used because it 

producted higher accuracy compared to other 

kernels. 

 

2.5.2 K-Nearest Neighbour (KNN) 

To be considered the most straightforward algorithm 

in the machine learning field [48], KNN calculates 

the distance from the candidate point to K neighbor 

points. K is an integer and should be an odd number 

[49]. The distance can be calculated by Euclidean 

distance, Manhattan distance, or Minkowski 

distance. And then, the candidate point will be 

assigned to the class for which the number of 

neighbors is maximum. KNN is highly 

recommended for real-time applications because it 

is speedy [50]. However, it does not work well with 

large datasets and high dimension data. 

 

2.5.3 Artificial Neural Network (ANN) 

Artificial neural network (ANN) has been a 

powerful model to predict disaster susceptibility. It 

can solve the complex relationships between 

causative factors and natural disasters [51]. ANN 

simulates the behavior of the human brain to process 

input information [52]. This research used the multi-

layer perceptron (MLP) model, which has been 

proven to be effective for landslide susceptibility 

mapping and flood susceptibility mapping. MLP 

model contains three layers: one input layer, one or 

more hidden layers, and one output layer. The input 

layer is responsible for preparing the data for the 

model, and it consists of nodes for the input 

variables. The function of the hidden layer is to 

process the data, and the number of hidden layers 

needed depends on the complexity of the problem 

being solved. Finally, the output layer consists of 

nodes that represent the output results. 

The ANN has several hyperparameters, 

including the activation function, solver, learning 

rate, and learning rate initialization. The activation 

function is a crucial component of the MLP as it 

introduces non-linearity into the network. It is 

applied to the output of each neuron, enabling the 

modeling of complex relationships between inputs 

and outputs. The solver determines the algorithm 

used to optimize the weights and biases of the MLP 

during training. It controls how the network adjusts 

its parameters to minimize the error between 

predicted and actual outputs. The learning rate 

governs the step size taken during each iteration of 

the optimization process, influencing the extent to 

which the weights and biases are adjusted based on 

the calculated gradient. The learning rate 

initialization parameter establishes the initial value 

of the learning rate. The three selected algorithms 

have showcased their impressive abilities in 

modeling landslide susceptibility mapping and flood 

susceptibility mapping in different regions over the 

world. In this study, we aim to evaluate their 

abilities in developing flood susceptibility models 

specifically for Huong Khe district, the mountainous 

region of central Vietnam. 

 

2.6 Tuning Hyperparameters 

The performance of machine learning algorithms 

mainly depends on data quality and hyperparameter 

configuration. The optimal hyperparameters are 

typically found through the hyperparameter tuning 

process. This process can be done by a manually or 

automatically. In the first method, different 

hyperparameters are experimented with through a 

"trial and error" approach [53] and [54]. In the 

second method, the optimal set of hyperparameters 

can be come out by algorithms, such as Grid Search 
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[55] and [56], Bayesian Optimization [57], 

Genetic Algorithm [58], or Whale Optimization 

[59]. Grid Search is the simplest among automatic 

searching methods but typically gives reliable 

results. It generates combinations of 

hyperparameters' values and calculates the model's 

performance corresponding to each variety. The 

results are tracked and the optimal combination is 

released at the end of the calculating process. This 

study used the Grid Search algorithm and 5-fold 

cross-validation to find the best hyperparameters to 

optimize the models' accuracy. 

 

2.7 Accuracy Assessment 

There are a lot of metrics to assess the performance 

of machine learning models. This study used some 

primary statistical metrics, containing Precision 

(Equation 4), Recall (Equation 5), and Overall 

Accuracy (Equation 6) are extracted from the 

confusion matrix. Furthermore, the receiver 

operating characteristics curve (ROC) and area 

under the ROC curve (AUC) were also applied to 

indicate the algorithms' performance. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Equation 4 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Equation 5 

 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁
 

 

Equation 6 

Where: 

TP is short for True Positive 

TN is short for True Negative 

FP is short for False Positive 

FN is short for False Negative 
 

3. Results and Discussion 

3.1 Causative Factor Selection 

Figure 5 describes the InGR values of the causative 

factors and shows that there is a significant 

difference in their importance. ELE and LU are the 

most critical factors, with the highest InGR values 

of 0.577 and 0.449, respectively. NDVI is also an 

essential factor with an InGR value of 0.409. 

DITRO and TWI are equally important, as indicated 

by their identical InGR values of 0.292 and 0.291, 

respectively. The InGR values of seven other factors 

(DEORO, DITRI, SLO, NDBI, CUR, RAI, and 

DEODR) decrease from 0.239 to 0.078. Notably, 

the InGR values of SPI and ASP are both equal to 0, 

indicating that these two factors do not contribute 

any valuable information to the prediction model. 

Consequently, these factors are removed from the 

flood susceptibility models. Figure 6 displays the 

PCC between the causative factors, revealing six 

pairs of factors that have a strong correlation, with 

absolute PCC values higher than 0.6. Among these 

pairs, the DITRI-DITRO and TWI-SLO pairs have 

the highest PCC values of 0.73 and -0.70, 

respectively. The remaining four pairs, DITRI-ELE, 

NDBI-NDVI, DITRO-ELE, and DEORO-ELE, 

have PCC values of 0.68, 0.65, 0.61, and -0.61, 

respectively. To create an optimal input dataset, the 

factors with an InGR value of 0 are eliminated. 

Additionally, when there are two factors with a PCC 

greater than 0.6, the factor with the lower InGR is 

removed. As a result, seven factors were removed, 

including ASP, SPI, NDBI, SLO, DITRI, DEORO, 

and DITRO. The seven remaining factors used for 

developing the FSMs are ELE, LU, NDVI, CUR, 

TWI, RAI, and DEODR. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Information Gain Ratio 
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Figure 6: Pearson correlation matrix between 14 causative factors 

 

3.2 Tuning Hyperparameters 

Table 2 shows default values and tuned values of 

hyperparameters for the three chosen machine 

learning models. The results reveal that tuned 

hyperparameters slightly improved models’ 

performance. The overall accuracy (OA) of KNN, 

SVM, and ANN increased from 0.91642, 0.91045, 

and 0.91940 to 0.92239, 0.91642, and 0.92239, 

respectively. 

 

3.3 Assessing FSMs’ Accuracy 

Table 3 and Figure 7 reveal information on the 

accuracy of the developed models. From an overall 

perspective, all accuracy metrics are very high. In 

the training phase, the ANN model performed the 

best with overall accuracy and AUC values of 

0.92239 and 0.92727, respectively, followed by the 

KNN model with corresponding figures of 0.92239 

and 0.90428. The SVM model performed the worst 

with an overall accuracy of 0.91642 and an AUC 

value of 0.90873. On the other hand, in the testing 

phase, the SVM model was the best performer with 

overall accuracy and AUC values of 0.92727 and 

0.94312, respectively. The KNN model, by contrast, 

performed the worst with overall accuracy and AUC 

values of 0.91515 and 0.91329, respectively. The 

corresponding figures for the ANN model were 

0.92727 and 0.93416. 

3.4 Flood Susceptibility Mapping 

The flood susceptibility maps for the Huong Khe 

district were generated based on the three optimal 

flood susceptibility models (FSMs). Each pixel of 

these raster maps is assigned a digital number that 

represents the flood probability value, ranging from 

0 to 1. The susceptible level was then classified into 

5 categories: very low, low, moderate, high, and 

very high. The corresponding range of values for 

each category are 0-0.2, 0.2-0.4, 0.4-0.6, 0.6-0.8, 

and 0.8-1, respectively. These maps are shown in 

Figure 8. As shown in Figure 8, high and very high 

susceptibility areas are mainly distributed in low-

lying agricultural and residential areas. On the other 

hand, low susceptibility areas are located in higher 

areas covered by forest. The total percentage of high 

and very high susceptibility areas calculated by the 

KNN, SVM, and ANN models are 18.9%, 17.3%, 

and 17.6%, respectively, while the corresponding 

figures for low and very low susceptibility areas are 

80.1%, 80.7%, and 81.0%. The moderate 

susceptibility class accounts for a small percentage 

of the area, only 1.1%, 2.0%, and 4.5%, 

respectively. Thus, there is a significant difference 

in the proportion of area under various susceptibility 

levels. 
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Table 2: Default and optimal hyperparameters of algorithms 
 

K - Nearest Neighbour 

ID Hyperparameter Default value Optimal value 

1 n_neighbors 5 7 

2 weights uniform uniform 

Model’s accuracy 0.91642 0.92239 

Support Vector Machine Algorithm 

ID Hyperparameter Default value Optimal value 

1 C 1 100 

2  scale 1 

Model’s accuracy 0.91045 0.91642 

Artificial Neural Network 

ID Hyperparameter Default value Optimal value 

1 activation relu 'logistic' 

2 solver adam sgd  

3 learning rate constant constant 

4 Learning rate init 0.001 0.1 

Model’s accuracy 0.91940 0.92239 

 

 
 

 
 

Figure 7: ROC curve of: (a) Training phase, (b) Testing phase 
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Table 3: Accuracy metrics of three models in training and testing phases 
 

ID Metric Training Testing 

KNN SVM ANN KNN SVM ANN 

1 Accuracy 0.92239 0.91642 0.92239 0.91515 0.92727 0.92727 

2 Precision 0.91828 0.91759 0.92564 0.89412 0.91566 0.90588 

3 Recall 0.92906 0.91729 0.92299 0.93827 0.93827 0.95062 

4 AUC 0.90428 0.90873 0.92727 0.91329 0.94312 0.93416 
 

 
Figure 8: Flood susceptibility maps developed by three models 

 

 
Figure 9: Percentage of susceptibility classes by two models 

 

3.5 Discussion 

The InGR values of the causative factors indicate 

their importance in the flood susceptibility model. 

The study found that ELE and LU were the most 

critical factors, followed by NDVI. These findings 

suggest that topography, land use, and vegetation 

cover significantly influence flood susceptibility. On 

the other hand, factors such as SPI and ASP did not 

contribute valuable information and were therefore 

removed from the models. Strong correlations were 

observed between certain factors, such as DITRI-

DITRO and TWI-SLO. These findings indicate that 

some factors provide redundant or overlapping 

information. To optimize the input dataset, factors 

with lower InGR values were eliminated when there 

were strong correlations between two factors. This 

process helped refine the selection of factors used in 

developing the flood susceptibility models. The 

hyper-parameter tuning process showed that tuned 

hyper-parameters slightly improved the models' 

performance in terms of overall accuracy. This 

finding highlights the importance of optimizing 

model parameters to achieve better results. The 

accuracy assessment results indicated high overall 

accuracy for all three models. In the training phase, 

the ANN model performed the best, followed by the 

KNN model, while the SVM model had the lowest 

accuracy. However, in the testing phase, the SVM 

model outperformed the other models. These 

findings suggest that different models may exhibit 

varying performance in different phases, 

highlighting the importance of evaluating models on 

independent datasets. The flood susceptibility maps 

generated based on the three optimal FSMs 

provided valuable insights into the areas at risk of 

flooding. 
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The distribution of high and very high susceptibility 

areas was predominantly observed in low-lying 

agricultural and residential areas, while low 

susceptibility areas were mostly located in higher 

areas covered by forests. These findings 

demonstrate the ability of the models to effectively 

identify areas prone to flooding and provide useful 

information for flood risk management and 

mitigation. 

 

4. Conclusion 

This study aimed to develop flood susceptibility 

models using machine learning techniques and 

assess their accuracy. The results demonstrated that 

elevation, land use, and vegetation cover were 

significant factors influencing flood susceptibility. 

Through the selection and elimination of causative 

factors based on their importance and correlation, an 

optimal input dataset was constructed. 

Hyperparameter tuning was performed to enhance 

the models' performance, leading to slight 

improvements in overall accuracy. The accuracy 

assessment revealed that all three models achieved 

high overall accuracy, with variations observed 

between the training and testing phases. The SVM 

model performed the best in the testing phase, 

indicating its potential for accurate flood 

susceptibility prediction. The generated flood 

susceptibility maps provided valuable information 

for identifying areas at high risk of flooding. The 

maps highlighted the importance of factors such as 

topography and land use in determining flood-prone 

areas. These findings contribute to the 

understanding of flood vulnerability in the study 

area and can assist in implementing effective flood 

risk management strategies. 
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