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Abstract 

Floods are one of the most extensively dispersed risks all over the world.  The aim of this research is to 

map out potential flood susceptible zones and analyse the risk using integrated Remote Sensing (RS) and 

Geographic Information System (GIS) Technology. RS techniques present inexpensive and quicker decisions 

for retrieving spatial data about the flood occurrence in the actually unreachable areas. On the other hand, 

GIS techniques enable hydrological demonstrations in data gathering, examination, querying, and 

demonstration of information in a further easy layout. This research focused on the flooding problem in the 

Busu River basin and demonstrated a detailed geospatial mapping of inland flood susceptibility based on 

Multi-Criteria Analysis (MCA) approaches like Pairwise comparison, ranking and weight, and Boolean logic. 

Different flood factors namely slope, elevation, flow accumulation, soil drainage, soil texture, surface runoff, 

distance to the active channel, land use land cover, and lithological characteristics were considered for the 

flood hazard assessment in the lower catchment of the Busu River.  Storm rainfall data were used to calculate 

surface runoff, while the population layer was used for flood vulnerability analysis by overlaying them on the 

flood hazard map. These flood susceptibility maps especially from Pairwise comparison and ranking 

approaches can be used for flood mitigation and flood hazard preparedness, as they are more accurate than 

the Boolean logic approach. 
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1. Introduction 

Floods cause damage to natural resources and the 

quality of the environment and indirectly contribute 

to increasing poverty, which consequently increases 

the vulnerability of both natural and human systems 

[1]. The effect and rates of natural disasters are on 

the rise each year. More than 18% of all-natural 

disasters occur in developing countries and 50% to 

60% of these countries are extremely vulnerable [2]. 

Flood remains highly a customary natural disaster 

and the size and the economical approach to flood 

disasters are at their peak in the affected area around 

the world. The terms “floods”, “flood hazard”, and 

“flood risk” cover a broad range of phenomena. The 

terms such as “flood risk” and “flood losses” are 

essentially our interpretation of the negative 

economic losses and social consequences of natural 

events. Flood risk may increase due to human 

activity and may decrease through appropriate flood 

management and planning [3].  

Flood is a general temporary condition of partial 

or complete inundation of normally dry areas from 

overflow of inland or tidal waters or from unusual 

and rapid accumulation or runoff [4]. Floods are a 

natural phenomenon that results in temporary 

submerging with water and destructs agricultural 

lands, built environment, and infrastructure and may 

result in casualty, loss of lives, and economic loss 

[5] [6] [7] [8] [9] [10] and [11]. Flood does not 

occur under normal conditions and cannot be 

prevented causing displacement of people [12]. 

Floods pose a threat to environmental and socio-

economic effects [13] [14] [15] and [16]. A number 

of factors trigger inland flooding. 
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Heavy precipitation is a major contributing factor to 

flood disasters when the normal waterway cannot 

transport the extra water from the rain due to the 

unavailability of a proper drainage network [17]. 

Nonetheless, heavy rainfall is not the only factor to 

flood disasters; floods can also be triggered by dam 

failures, tsunamis, storm surges, etc. that may have 

resulted from geological activities. Floods may 

occur due to anthropogenic activities and human 

interventions in the natural processes such as the 

increase in settlement areas, population growth, and 

economic assets over low-lying plains prone to 

flooding leading to alterations in the natural 

drainage and river basin patterns, deforestation, and 

climate change [18]. 

Lae, the second largest city of Papua New 

Guinea had experienced two major flood and 

mudslide disasters. In both cases, hundreds of 

people lost their homes. The 1983 floods remain the 

worst since the establishment of the town in the late 

1920s. These floods left hundreds of people 

homeless particularly those living along the banks 

of the Bumbu River [18]. Many houses were 

damaged and hundreds of people at the Five Mile 

settlement along the Highlands Highway were 

affected by mudslides. The Busu River in the 

Naweb District of Morobe Province is one of the 

most flood-problematic rivers. The basin is 

classified as one of the most devastating flooding 

rivers in Papua New Guinea. Reviewing the past 

records and oral histories of the Busu River, the area 

near the basin encountered a lot of flood 

occurrences which led to the loss of lives and 

properties [18]. Today Busu River is still a threat to 

the people living around and near the river. This is 

endorsed by the climate changes and other major 

flood factors that made adjustments in 

sedimentation weight and water capacity. The river 

flows wide due to the flatness of the landforms in 

the floodplain zone. These are the consequences of 

the flooding of the extremely huge region and there 

are many additional channels established which do 

not connect to the major channel. The rivers 

geomorphology changes due to the additional 

streams, which presents a clear understanding about 

the river and causes of flooding.  The geomorphic, 

hydrological, and topographic features along the 

river with other persuasive factors aid in the flood 

hazard examination for Busu River that revealed 

information for governmental departments, 

planners, settlers, and other benefactors to make 

better decisions that will minimize the flood 

damages in terms of properties, farms, and even 

lives. It is important to create flood hazard maps that 

are user-friendly that will help focus on the 

mitigation validities.  

Many methods were used to study flood issues by 

different workers around the world with their own 

sets of parameters according to individual river 

situations. This flood assessment and flood risk 

mapping approach include geomorphology, 

hydrology, topography, demography, and 

meteorology as subsidiary parameters [19]. RS and 

GIS technology has become suitable platform that 

has the capability to deliver large bulks of 

information on a well-timed basis and cost-

effectively. Till now, a lot of recognized 

achievements have been encountered with the use of 

satellite data and geomorphology in flood risk 

assessment and mapping. Compound analyses, like 

flood susceptibility evaluation and flood loss 

evaluation, are still active issues to work on.  

The GIS-based models with varying numbers 

and types of flood-influencing factors have been 

successfully utilized in the mapping of inland flood 

hazard areas by several studies [19] [20] [21] [22] 

[23] [24] [25] [26] [27] [28] and [29]. In the recent 

past, different geospatial methods were used in 

flood analyses, which have proven themselves much 

more effective and realistic. Hydrological models 

are the first category which includes SWAT [29], 

WetSpa and HYDROTEL [30], and hydrodynamic 

approaches based on the shallow water equations 

initialized by rainfall [31] [32] and [33]. Statistical 

and knowledge-based methods were also proven to 

be much more effective in flood analysis, which 

includes weights of evidence (WoE) [29] [34] and 

[35], logistic regression (LR) [35] [36] and [37], 

analytic hierarchy process (AHP) [38] [39] [40] and 

[41], frequency ratios (FR) [28] [42] and [43]. 

Machine learning models can handle complex 

nonlinear problems such as neuro-fuzzy logic [44], 

artificial neural networks (ANNs) [45] and [46], 

decision trees (DTs) [47], support vector machines 

(SVMs) [48] and [49], adaptive neuro-fuzzy 

inference system (ANFIS) [50], biogeography based 

optimization and BAT algorithms [51], reduced 

error pruning trees [50], multivariate adaptive 

regression splines [52]. Multi-Criteria Decision 

Analysis (MCDA) approach can employ the 

combination of socioeconomic, environmental, and 

technical objectives to achieve the most favorable 

decision [19] and [53] and has proven to be the best 

model in flood analysis [54] and [55]. 

The study aims to focus on flood susceptibility 

mapping using various spatial models like Pairwise 

comparison, ranking, and Boolean logic. The core 

assignment of this research is to the identification of 

flood hazard zones in the lower catchment area of 

the Busu River. Three objectives were considered to 

achieve the aim of this study.  
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First objective was to identification and preparation 

database on different input parameters for flood 

susceptibility mapping in the lower catchment area 

of Busu catchment. Secondly, to develop potential 

flood risk zones through multi-criteria decision 

approaches and establishes the best method after the 

validation process. Finally, to perform flood 

vulnerability assessment after overlaying flood risk 

zone database and population information and other 

infrastructure. 

 

2. Study Area 

Busu River is considered one of the fast-flowing 

rivers in Morobe Province and is located just outside 

of Lae City, the capital of Morobe Province. Busu 

River is made up of all the tributaries in the 

Sankwep catchment (Figure 1). Sankwep is one of 

the many catchments in Morobe Province. Sankwep 

catchment mostly takes up Nawae and Lae Districts 

with the lower portion of the Kabwum district. This 

study only concentrates on the Busu flood plain 

zone. This area is situated in the Ahi Local Level 

Government in Lae District, situated between the 

longitudes of 147º03′00′′ E and 147º01′12′′ E and 

the latitudes of 06º39′52′′ S to 06º43′30′′ S. Morobe 

is one of the provinces with well-known rivers with 

Markham the largest river with Busu the fast-

flowing river. Busu originated from the Gain, 

Boana, Lambaip, and Kwapsanek mountain ranges 

and it is named based on the famous Busu 

Mountain, which is the main tributary. Along with 

its tributaries, the river drains a large amount of area 

in Morobe Province, particularly in the Naweb and 

Lae Districts. Mountains and ridges in the source 

zone bound Busu River to flow faster and it is the 

fastest flow in the country. The river is merged by 

main tributaries in Kwapsanek range north of the 

Revival Centers of Papua New Guinea 

Headquarters, the other major tributaries joined 

from the Gain, Boana, and Kwalan areas, which are 

east of the Nazab Airport. 

  

 
Figure 1: Location map of the study area: (a) Papua New Guinea, (b) Morobe province and  

(c) Longitudinal structure of the Sankwep catchment 
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The river has built a mega-fan of some 25,000 

square kilometers in extent breaking into two 

districts, mostly the Naweb District, all with 

changing passages due to the flooding. The 

Sankwep, Busip, and Gobadik are the major 

tributaries of the Busu River with other minor 

tributaries.  The watercourse often changes the path 

and affects the local settlement [56]. This shift of 

the channel happens due to the flood, which is 

repetitive because of rainy weather all year round. 

The flood related damages caused by the Busu River 

have extreme effects on the people and the 

environment in the flood-prone areas. The 

longitudinal structure of the Sankwep catchment 

showed the source, transitional, and flood plan zone, 

where the flood plain zone is taken into account for 

flood susceptibility analysis using different GIS 

models (Figure 1). The sediments carried during 

flood return to the old channel (paleo) which causes 

the river stream to divert in a different direction 

each year. The main settlements and villages that 

are assembled near the flood-challenging river are 

Bumeng, Malanhang, Bumayong, Situm, and other 

smaller settlements. Settlements that are often 

affected by the floods were Second Seven, Pepsi, 

Nabak, and Wain-Busu. 

Several attempts have been made to avoid 

forthcoming river penetration and flooding with 

local flood protection systems like the establishment 

of ridges, planting of the bamboo plant, and digging 

up to redirect the breaching flows to its main canal. 

Their previous protection schemes failed several 

times which steered them into great fear, according 

to the locals living along the river catchment. They 

feared that the course of the river near its main 

current will run to the flooding of the settlement if 

the height of the water increased. Although several 

works are done previously that considered 

mitigation measures, it is still uncertain, natural 

disasters are inevitable. Therefore, it is essential to 

reflect on the vulnerability and do risk assessments 

by analyzing the parameters that contributed to the 

inundations and do better validations upon the 

results produced using GIS and RS techniques. The 

Morobe provincial government and the Naweb and 

Lae Districts local government have raised this 

concern of risk assessments to do flood mitigations 

but not to the extent where they can fully mitigate 

the flood.  

 

3. Methodology 

The Busu River flood risk assessment and flood risk 

zonation database were developed after integrating 

all thematic layers (controlling factors) which are 

mandatory in flood susceptibility mapping. Data 

analysis was done in ArcGIS 10.5 with the use of 

the DEM to generate the slope map, elevation map 

and flow accumulation map, and other hydrological 

analyses. All the data obtained from several 

resource centers and organizations were converted 

to the grid or GIS-compatible format for the Busu 

flood assessment. All the data sets were combined 

through a multi-criteria analysis approach for the 

planning of inundation exposure and flood 

susceptibility map.  

 

3.1 Data used and their Description 

Satellite images, topographic maps, rainfall data, 

population data, digital elevation model (DEM), and 

historical flood inventory database were used to 

derive all mandatory input factors for flood 

susceptibility mapping. Some of these decisive 

factors include geomorphic features, elevation, 

slope, land use/land cover, drainage density, flow 

accumulation, flow direction, rainfall, soil texture, 

and soil drainage. The usable data with their 

descriptions for this study are listed in Table 1. 

Elevation data is essential in any flood risk 

assessment within a designated drainage basin and 

Busu is not an exception. Elevation layers explain 

elevation values from corner to corner of the extent 

of maps depicting the real world. 
 

Table 1: Data sets and input parameters for flood susceptibility modeling 
 

Type of Data  

Resolution 

 

Source Data Output Layer 

Lidar Image (Orthophoto) Land Use layer 20 cm PNG University of Technology, 

Surveying and Land Studies Department Digital Elevation Model  Elevation, Slope, Flow 

Accumulation 

30 m 

 

Rainfall Strom Rainfall, Total rainfall Stationed data 

250 m 

PNG Resource Information System [57] 

Soil Texture, Drainage 250 m The PNG Geobook [58] 

 Geology Lithological description 500 m 

Flood Flood points Point Location Field Survey using hand held GPS and 

other historical flood inventory 

Population  Population Density 5 people per 

house 

National Population and Housing 

Census of Papua New Guinea, 2011. 
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Many other researchers discovered that good 

elevation data must be included in any analysis 

relating to elevation to generate improved outcomes 

with minimal inaccuracy, which have a great ability 

to implement. The advanced space-borne thermal 

emission and reflection radiometer (ASTER) DEM 

is one of the topographic data sets (spatial resolution 

of 30m) used as the input raster. For regional or 

local assessments, the 30m ASTER DEM is 

available for the required topographic information to 

project potential impacts on the flooding area. The 

elevation, slope, and flow accumulation layers were 

generated from the 30m ASTER DEM. Elevations 

layers are also helpful in 3D visualization in terms 

of creating watershed delineation. Slopes have 

greater impacts on hydrology studies. Slope decides 

whether water is concentrated or isolated [59]. The 

slope tools under surface analysis of spatial analyst 

tool bar helps to develop the slope in degree through 

the simple logic ‘the inverse-tangent of the rise 

divided by the run’ from DEM data. The water runs 

faster when the river source zone has a steep and 

lengthy slope. In this case, the catchment has a 

bigger or higher chance of erosion, which leads to 

flooding in the floodplain zone. The length and the 

steepness of the slope also affected the flooding of 

the Busu River [60]. The lowland area with low 

slope approach floods first as contrasted to the high 

slope area throughout flood inundation. The regions 

of the sheer slope indicate excessive topmost flux 

contrasting to the low-lying region and trigger 

storage reduction throughout the upper catchments. 

Flow direction is the direction in which the stream 

water flows from one pixel to its neighboring pixels 

and gradually accumulated into each down slope 

cell called Flow accumulation. Both parameters are 

very essential for flood modeling [61]. Flow 

accumulation layer was generated through the 

navigation of ‘Spatial Analyst Tools’ followed by 

‘Hydrology’ and ‘Flow Accumulation tool’. Before 

flow accumulation analysis, flow direction layer 

was prepared using DEM by the fill method. 

Rainfall is a major factor in flood and flood-related 

disasters [62]. Local water accumulation and river 

overflowing are the core sources of flood-associated 

catastrophes. Lae is known as ‘Rainy-Lae’ because 

of unpredictable and heavy rainfall in this area all 

year round. The continuous heavy downpour has a 

higher chance of flood. Rainfall data is necessary 

for considering the water depth in a flood risk 

assessment. Rainfall has a major impact on the 

depth of water. Soil type also stimulates rainfall 

when it reaches the ground. Impermeable soils and 

rocks such as clay restrict water to infiltrate and 

increase the chances of long-term water logging and 

flooding. Therefore, soil data is another important 

factor to consider in flood assessment [63]. Two 

separate layers were extracted from the soil data. 

These layers are soil texture and soil drainage 

layers. Soil texture describes the amount of sand, 

silt, and clay-sized units that compose the soil 

mineral portion. They are classified as loam, sandy 

loam, or clay.  Soil drainage is a regular practice in 

which water shifts past, within, and away from the 

soil which results from the gravitational force. 

Surface runoff is one parameter to understand the 

flood in any area that is generally derived using the 

storm rainfall, soil, and land use/land cover based on 

the Soil Conservation Service (SCS) model. The 

population is another significant factor in flood risk 

assessment [43]. Population data enable the authors 

to calculate the magnitude of the populace exposed 

to the flood hazard. Better risk assessment is done 

when accurate and updated data is available. The 

population data were collected by field survey and 

interview. The population data was used for 

vulnerability assessment only.  

 

3.2 Multi Criteria Analysis 

Multi-criteria analysis was practiced with the 

contributing factors of a flood occurrence. The 

susceptibility areas were demarcated by numerically 

overlaying all the flood factor layers. Based on the 

expert's opinions and the availability of data the 

criteria were selected, compared, and ranked. Three 

methods were used in this study to identify the 

inland flood susceptibility zone. These three 

methods are (i) the Pairwise comparison method, (ii) 

the Ranking method, and (iii) the Boolean logic 

method. Furthermore, the resulted outputs were 

compared to identify the best method after the 

verification and validation of each using historical 

flood occurrences (Figure 2). 

The Pairwise comparison method was 

introduced in 1980 [64] to determine the weight of 

every criterion. This method is the popular method 

being used by researchers successively [38] [39] 

[40] and [41]. This method can convert subjective 

assessments of relative importance into a linear set 

of weights. This method involves the comparison of 

the criteria and allows the comparison of two 

criteria at a time. The values obtained from the 

weighting of the criteria are entered into the pair-

wise comparison matrix. The values in the Pairwise 

comparison entirely depend on the author’s 

knowledge based on the understanding of the flood 

factors, the flood history, and the flood 

characteristics in the study area. Table 2 is filled by 

comparing one flood factor with another until all 

factors are compared to each other. 
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Figure 2: The overall methodological flowchart for inland flood susceptibility mapping 

 

Table 2: Pairwise comparison matrix of the flood factors 
 

Flood Factors SR DAC EL SL LULC FA ST SD LIT 

SR 1 2 3 3 5 6 7 9 9 

DAC 0.5 1 2 2 3 5 7 8 9 

EL 0.33 0.5 1 2 3 5 4 5 6 

SL 0.33 0.5 0.5 1 4 6 5 5 7 

LULC 0.2 0.33 0.33 0.25 1 7 5 4 6 

FA 0.17 0.2 0.2 0.17 0.14 1 3 2 5 

ST 0.14 0.14 0.25 0.2 0.2 0.33 1 2 4 

SD 0.11 0.125 0.2 0.2 0.25 0.5 0.5 1 3 

LIT 0.11 0.11 0.17 0.14 0.17 0.2 0.25 0.33 1 

SUM 2.89 4.905 7.65 8.96 16.76 31.03 32.75 36.33 50.00 

 

These factors are shown in the table with their short 

form, namely Surface runoff (SR), elevation in 

meters (EL), distance to active channel (DAC), 

slope in degree (SL), land use/ land cover (LULC), 

flow accumulation (FA), soil texture (ST), soil 

drainage (SD), and lithology (LIT). 

After the Pairwise comparison matrix is filled, 

the criteria are normalized to obtain the normalized 

matrix. The normalized values were obtained by 

dividing the value in each column by the sum in 

each column (Table 3).  The priority vector is 

calculated by dividing the row total of the flood 

factor by the number of flood factors (Table 4). For 

example, the priority vector of Surface Runoff is 

2.59/9 = 0.29. In the next step, lambda (λ) values of 

each criterion were calculated by multiplying the 

Priority Vector (PV) with the criteria sum. The λmax 

(Lamdamax) was calculated as 10.299. The 

Consistency Index (CI) was calculated as 0.162 with 

the help of lamdamax. The consistency analysis was 

done through consistency ratio (CR) calculations to 

check whether the weights are accepted or not and it 

was recommended that CR should be definitely 

below 0.2 [65].  



37 

International Journal of Geoinformatics, Vol.19, No. 6, June 2023 

ISSN: 1686-6576 (Printed)  |  ISSN  2673-0014 (Online) | © Geoinformatics International 

Table 3: Normalizing the criteria column to obtain the normalized matrix 
 

Flood Factors SR DAC EL SL LULC FA ST SD LIT Row 

Total 

SR 0.34 0.4 0.39 0.33 0.3 0.19 0.21 0.25 0.18 2.59 

DAC 0.17 0.2 0.26 0.22 0.18 0.16 0.21 0.22 0.18 1.8 

EL 0.11 0.1 0.13 0.22 0.18 0.16 0.12 0.14 0.12 1.28 

SL 0.11 0.1 0.07 0.11 0.24 0.19 0.15 0.14 0.14 1.25 

LULC 0.06 0.07 0.04 0.03 0.06 0.23 0.15 0.11 0.12 0.867 

FA 0.05 0.04 0.03 0.02 0.008 0.03 0.09 0.06 0.1 0.428 

ST 0.05 0.03 0.03 0.02 0.01 0.01 0.03 0.06 0.08 0.32 

SD 0.04 0.03 0.03 0.02 0.01 0.02 0.02 0.03 0.06 0.26 

LIT 0.04 0.02 0.02 0.02 0.01 0.006 0.008 0.009 0.02 0.153 

SUM 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
 

Table 4: Priority vector and weighted percentage 
 

Flood Factors Row Total Priority Vector (PV) 

SR 2.59 0.288 

DAC 1.8 0.200 

EL 1.28 0.142 

SL 1.25 0.139 

LULC 0.867 0.096 

FA 0.428 0.048 

ST 0.32 0.036 

SD 0.26 0.029 

LIT 0.153 0.017 

 

In case the number of parameters exceeds 7; the 

consistency can be expected to be poor [64]. In this 

research, the CR value was calculated as 0.11 with 

the help of ratio index (RI) value of 1.46 for nine 

parameters. Although the CR value is marginally 

higher, logically it was considered as the acceptable 

consistency with the use higher numbers of (nine) 

parameters. 

The ranking method is one of the most 

comfortable operative assessment techniques 

[66]. In the Ranking Method, multiple conflicting 

factors are ranked with various importance. The 

factor ranking of the flood conditioning factors was 

selected based on the author’s preferences and 

interviewing with the respective local experts. The 

ranking method is used in a matter where every 

criterion under consideration was ranked in the 

order of the decision maker’s preference. Each 

factor is rated according to the estimated 

significance of causing flooding and ranked using 

the inverse ranking method [19]. For example, 

the least influential criterion is ranked 1, then 2 for 

the next least. Weights in numbers were generated 

in order to do the criteria ranking [62] and [63]. The 

criterion values generated for each factor, every 

factor was weighted according to the predictable 

implication for flood triggering (Table 5). 

A Boolean logic method is an overlay method, 

where logical operators combine all the criteria [68]. 

Boolean method is a helpful and commonly 

practiced analysis operator in GIS [68]. Boolean 

logic centered on fundamentals of binary logical 

operations, and its mathematical structures only 

centered on the values 1 for true and 0 for false. GIS 

Boolean operators for criteria selections are AND, 

OR, XOR, and NOT. Most GIS codes Boolean 

operations precisely are compatible with existing 

functions and have the same name. Intersect (AND), 

Union (OR), and Erase (NOT) are familiar operators 

in GIS. Boolean logic operates in the sense that one 

searches for areas that come across specific 

conditions. When the condition is specified or met, 

it is given the value 1 and when it is not, given zero 

(0). In the Boolean method, all the nine layers (flood 

factors) were reclassified in order to convert to 

integer values of 0, 3, 4 and 5. The non-zero values 

represent the areas of moderate risk (3), high risk (4) 

and very high risk (5) respectively and on the other 

hand, the very low risk and low risk were converted 

to zero (0). The Boolean AND operations were used 

to analyse four paired flood factors except surface 

runoff. The pair factors were (i) Elevation & Slope, 

(ii) LULC & Distance to active channel, (iii) Soil 

texture & Soil drainage, and finally (iv) Flow 

accumulation & Lithology. In the final step, these 

four pair of intermediate resulted factors and surface 

runoff factor (five layers) were summed in the raster 

calculator under spatial analyst tool in ArcGIS10.5 

to generate the flood risk map (Figure 3). 
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 Table 5: Rank and weighted of flood factors for the ranking method 
 

Flood factors Class Rank Risk vulnerability weighted 

Surface runoff (in mm) 0-25 

25-106 

106-157 

157-189 

187-229 

1 

2 

3 

4 

5 

Very Low risk 

Low Risk 

Moderate Risk 

High Risk 

Very High Risk 

 

 

9 

Distance to active 

channel (in meter) 

Less than 200 

200-400 

400-600 

600-800 

More then 800 

5 

4 

3 

2 

1 

Very High Risk 

High Risk 

Moderate Risk 

Low risk 

Very Low Risk 

 

 

8 

 

 

Elevation in meters (in 

meter) 

Less than 15.6 

15.7 – 31.8 

31.9 – 47.5 

47.6 - 65.5 

More than 65.6 

5 

4 

3 

2 

1 

Very High Risk 

High Risk 

Moderate Risk 

Low risk 

Very Low Risk 

 

 

7 

Slope (in Degree) Less than 3 

3-7 

7-15 

15-30 

More than 30 

5 

4 

3 

2 

1 

Very High Risk 

High Risk 

Moderate Risk 

Low risk 

Very Low Risk 

 

6 

 

 

 

LULC Active Channel 

Flood Plain 

Mix Vegetation 

Agricultural Land 

Barren Land 

Settlement 

Road 

Sea 

5 

5 

4 

4 

3 

2 

1 

0 

Very High Risk 

Very High Risk 

High Risk 

High Risk 

Moderate Risk 

Moderate Risk 

Low Risk 

 

 

 

5 

 

 

Flow accumulation 

(Value) 

Less than 51 

51-102 

102-153 

153-204 

More than 204 

5 
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3 

2 

1 

Very High Risk 

High Risk 

Moderate Risk 

Low risk 

Very Low Risk 

 

 

4 

 

 

Soil texture Silty Clay Loam 

Sandy Loam 

Sandy 

5 

2 

1 

Very High Risk 

Low Risk 

Very Low Risk 

 

3 

Soil drainage Well Drained 

Moderately Well 

Drained 

Poorly Drained 

5 

3 

1 

Very High Risk 

Moderate Risk 

Very Low Risk 

 

2 

Lithology Alluvial Deposits 3 Moderate Risk 1 

 

4. Results and Discussions 

Database on nine different flood contributing 

factors, namely surface runoff, distance to the active 

channel, elevation, slope, land use/land cover, flow 

accumulation, soil texture, soil drainage, and 

lithology were selected based on the nature of the 

flood in the study area. These data sets were derived 

with the help of a digital elevation model, satellite 

image, rainfall, geology, Geobook, and PNGRIS 

GIS database of Papua New Guinea. ArcMap 10.5 

was used to create these maps with the help of 

geographic data. Finally, a vulnerability assessment 

was performed with the help of local infrastructure 

and population distribution data sets, which were 

derived from the high-resolution LiDAR data sets of 

the area. The altitude database was prepared to 

utilize the 30m ASTER DEM data of the area. The 

maximum elevation is 93 meters above sea level 

observed in the northern part of the study area and 

the minimum altitude of 0 meters (close to the mean 

sea level) which is very prone to flood, found in the 

southern part of the basin where the Busu River 

empty into the Huon Golf (Figure 4a). 
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Figure 3: Methodological flowchart of Boolean logic for flood modeling 

 

A flat slope, 0 to 3 degrees is identified in the 

middle part and the final section of the Busu 

catchment, which is demarked as a floodplain area. 

The maximum slope, more than 30 degrees is 

mapped in the northern part of the study area 

(Figure 4b). Rainfall is one of the major factors 

triggering surface runoff, which steers flood 

disasters in Papua New Guinea. As soon as rain 

strikes steeped ground it starts to stream overland 

downward. The surface runoff supplements the 

maximum amount of water in the river. A watershed 

is defined as a land area that generates runoff 

draining to a joint point. Based on the SCS model 

and curve number (CN) can estimate the surface 

runoff as a function of storm rainfall, hydrological 

soil group, and land use/land cover [69]. A three 

days (21/10/2012 to 23/10/2012) storm rainfall of 

229.6 mm was considered as the input for surface 

runoff calculation. The SCS model derived a mean 

surface runoff of 191.59mm in the study area 

(Figure 4c). Supervised Classification was done 

with ERDAS Imagine 8.5 with the use of the high-

resolution LiDAR satellite image to extract land use 

land cover characteristics of the study area. Through 

this classification, eight (8) different land use/land 

cover classes were extracted in the study area. These 

classes are active water channels, sea areas, mix-

vegetation, agricultural land, floodplain, road, 

barren land, and settlement areas (Figure 4d). The 

lithological characteristics are an essential criterion 

for flood vulnerability assessment because it 

intensifies or makes less the degree of flood 

outcomes. Rocks with higher permeability 

coefficient devise minute resistance to water which 

permits excessive infiltration velocity and the rocks 

with lower permeability devise a greater resistance 

to water, which permits a smaller infiltration 

velocity. Only alluvial deposit is found in the study 

area (Figure 4e). The distance to the active channel 

was computed using the Euclidean distance method 

by 200 meters equally on each bank of the current 

channel with the help of spatial analyst tools in 

ArcMap10.5. After the distance to active channel 

analysis with Euclidean distance, the values were 

distributed into five classes concerning risk 

calculation (Figure 4f). 

The rate and amount of water traveled through 

the soil are taken into consideration since they 

control the water movement. Soil textures, for 

example, loam, sandy loam, and clay made up the 

ratio of sand, silt, and clay number of particles that 

contribute to the mineral portion of the soil.  Sand 

does not grasp much water while clay soils grasp 

much water. Textures do changes corresponding to 

the depth and there are three categories of this soil 

textures; uniform (same texture all through), texture 

contrast (sudden change in texture), and gradational 

(textures increase down the soil profile). In the 

determination of the soil textures, GIS and RS 

technologies come to aid with the spatial analysis, 

and the soil texture layer was used for the flood risk 

assessment. There are three soil textures identified 

in the study area. They are silty clay loam, sandy 

loam, and sand (Figure 4g). The three-soil texture 

falls under two major hydrological soil group 

(HSG). The sandy loam and sand fall under Group-

A, and the silty clay loam under Group D. The soils 

within Group-A have a lower capacity for runoff, 

water passes freely by the soil, and the infiltration 

rate is greater than 0.3 inches/hr when wet. Group-A 

has less soil and more sand. Group D has a high 

capacity for runoff; the movements in water through 

the soils are much more constrained. The Group-D 

soils have more clay with sand associated and have 

clayey textures with a lower infiltration rate of 0 to 

0.05 inches/hr.  
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Figure 4: Spatial distribution of flood conditioning factors; (a)Elevation in meter, (b) Slope in degree, 

(c) Surface runoff through SCS model, (d) Land use/land cover characteristics, (e) Lithological 

characteristics, (f) Distance from active channels, (g) Soil texture, (h) Soil drainage and (i) Flow accumulation 

 

Soil drainage naturally talks about the occurrence 

and period of wet epochs under circumstances like 

those under which the soil developed. Fabricated 

adjustments to the water system through drainage or 

irrigation do not have much impact on the soil 

except a considerable change is made to the 

soil.  Four soil drainage classes are identified 

according to the water tables, their positioning in the 

landscape, their wetness, and their form and 

structures in the study area. These groups are well 

drained, moderately well drained, poorly drained, 

and waterlogged (sea) (Figure 4h). Flow 

accumulation is one of the flood factors considered 

in this flood risk assessment.  
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The water from a cell flows towards the nearest 

down slope cell. Flow accumulation tools easily find 

out the accumulated flow with the known flow 

direction. All these methods concerning hydrology 

were performed using the hydrology tool extension 

in ArcGIS 10.5. The calculated flow accumulation 

values range from 0 to 255 (Figure 4i). 

After the preparation of the input parameters 

different GIS models, like the Pairwise comparison, 

the ranking method, and the Boolean logic were 

used to develop flood susceptibility maps 

respectively. The resulting output through all the 

methods was reclassified into five (5) susceptibility 

zones, namely very high, high, moderate, low, and 

very low. Approximately 33.63% of the study areas 

are designated as very high susceptibility, 24.11% 

as high, 25.76% as moderate, 11.67% as low, and 

4.83% as very low respectively through the Pairwise 

method (Table 6). The resulting data sets through 

the ranking method show 28.96% of the study areas 

as very high susceptibility, 18.14% as high, 

23.40% as moderate, 21.22% as low, and 8.27% as 

very low respectively through the Pairwise method 

(Table 6). Most of the high susceptibility zones 

were identified in the middle portion and southern 

part of the study area where the active water 

channels are carrying water through it and empty 

into the Huon golf as per the resulting maps through 

the Pairwise method (Figure 5a) and Ranking 

method (Figure 5b) respectively. The Boolean logic 

derived a very significant result, which is very 

different from the first two methods. Only three 

classes were generated through the method, namely 

moderate (37.77%), low (39.95%), and very low 

(22.78%) respectively (Table 6 and Figure 5c). 

 

Table 6: Statistical distribution of resulted flood susceptibility zones through Pairwise,  

ranking and Boolean logic 
 

Flood susceptibility 

zones 

Pairwise method Ranking method Boolean logic 

Area (Km2) Percentage Area (Km2) Percentage Area (Km2) Percentage 

Very high 5.69 33.63 4.90 28.96 0 0 

High 4.08 24.11 3.07 18.14 0 0 

Moderate  4.36 25.76 3.96 23.40 6.39 37.77 

Low  1.98 11.67 3.59 21.22 6.76 39.95 

Very low 0.82 4.83 1.40 8.27 3.77 22.28 

Total 16.92 100.0 16.92 100.00 16.92 100.00 
 

 
Figure 5: Flood susceptibility zone based on (a) Pairwise comparison, (b) Ranking and (c) Boolean logic 
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Figure 6: Historical flood points and building footprints on the flood susceptibility map through  

Pairwise comparison method 

 

Table 7: Comparison of flood points against each flood susceptibility mapping technique 
 

Flood susceptibility zones Pairwise comparison Ranking Boolean logic 

Very high 17 12 None 

High 15 16 None 

Moderate 9 11 12 

Low 5 7 22 

Very low None None 12 

Total flood points 46 46 46 
 

Table 8: Population at risk based on vulnerability assessment 
 

Flood susceptibility 

zones 

Pairwise comparison Ranking Boolean 

Household Population Household Population Household Method 

Very high  11 55 17 85 None None 

High  226 1130 189 945 None None 

Moderate  1213 6065 1134 5670 340 1700 

Low  483 2415 667 3335 936 4680 

Very low 122 610 48 240 779 3895 

 

Flood validation is simply to check the authenticity 

of flood susceptibility analysis by using the existing 

flood point or through field verification by visiting 

the flood scene in the study area. Model validation 

is a key topic in flood risk analysis, as flood risk 

assessments are characterized by significant levels 

of uncertainty [70]. Validation is to evaluate risk 

valuation precision with the use of vulnerable 

parameters to higher susceptibility zones.  It is also 

important for decision-makers to make decisions. 

There are many validation approaches to perform 

using the concerned parameters. Forty six (46) 

historical flood points were used to validate the 

susceptibility mapping through different GIS 

models. An attempt was taken to show the historical 

flood points on the resulted output through Pairwise 

comparison method (Figure 5). The overlay analysis 

suggests that thirty-two (32) flood points falls 
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within the very high and high susceptibility zones 

and nine (9) flood points on moderate and five (5) 

flood points on low flood susceptibility zone (Figure 

6 and Table 7). The similar analysis was performed 

for other two methods (Table 7). 

The population is the most important parameter 

when doing a flood risk assessment and flood 

validation, thus it is eminent to deliberate on the 

population in the flood hazard zone. The building 

footprints were captured from LiDAR 30cm spatial 

resolution data sets of the area. Population data were 

gathered from the country’s national census and the 

national statistics office of Papua New Guinea. 

Alternatively, a survey was done around the Busu 

Plain to estimate the average household 

population.  The survey suggests that on average 

five people are living in every household. The 

populations at risk were identified as per the degree 

of risk (Table 8). Figure 6 represents the building 

footprints on the resulted flood susceptibility zones 

derived through Pairwise comparison method. 

 

5. Conclusions and Recommendation 

The primary drive behind this work was to model 

inland floods using multiple approaches or multi-

criteria analysis. Such approaches are; the Pairwise 

Comparison, the Ranking, and the Boolean logic, to 

establish flood assessment maps that identified areas 

that are likely to be affected by flooding and the 

degree of harm that can be caused to the local 

population. By using all the available data with the 

use of GIS software and other supplementary 

software, a better flood risk assessment was done 

which is user-friendly. These flood risk maps 

especially from Pairwise and Ranking can be used 

for flood mitigation and flood hazard preparedness. 

The MCA techniques offer a practicable approach 

for analyzing and implementing the influences of 

different factors, including multiple levels of 

contingent, autonomous, analytical, and measurable 

data after combining high-resolution satellite data 

(LiDAR), demographic data, topographic datasets, 

national soil data, and weather data. The DEM was 

used to categorize the areas of threat in the study 

vicinity. The defined flood impact parameters are 

precipitation, elevation and slope, geology, land-use 

land cover, soil, and other geomorphic 

characteristics. Thematic maps were generated by 

using various image analysis methods including 

specific GIS analysis using several GIS software. 

Each one of the thematic layers was analyzed by 

using the weighted overlay, weighted sum, and 

Boolean and operations to generate the final flood 

susceptibility maps. The weights are assigned 

by taking into account the flood susceptibility and 

vulnerability of the region. The three flood 

assessment maps generated were done using three 

different methods, namely Pairwise comparisons, 

Ranking and Boolean. In the Pairwise Comparison 

method, the criteria weights were generated by 

filling the comparison matrix, normalizing the 

matrix, and then calculated the priority vector. In 

order for the criteria weights to be accepted, a 

consistency analysis is done. In the Ranking method 

approach, the flood factors were reclassified and 

ranked.  The ranking values are ranged from 1 to 5 

according to their relative importance to the flood, 

where 1 is the very low risk and 5 is the very high 

risk. In the final method, Boolean logic the flood 

factors were reclassified again after the first 

reclassification. The second reclassification was 

done since Boolean operations only interpret 

integers. Boolean and operation was used for paired 

flood factors except Surface runoff. The validation 

process suggests the level of acceptability of each 

model used for flood susceptibility mapping after 

overlaying historical flood points on the resulted 

flood susceptibility database. Very high, high and 

moderate susceptibility zones were considered as 

positive for flooding zone, while on the other hand 

low and very low susceptibility zones were ignored 

for flooding. The analysis (Table 7) represents 41 

(17 + 15 + 9) historical flood points falls within the 

positive flooding zone out of 46 historical flood 

points based on Pairwise comparison technique, 

which leads 89.13% accuracy. The accuracy of 

84.78% and 26.09% were calculated for Ranking 

and Boolean logic respectively. The Boolean logic 

method is found not to be an accurate method for 

flood risk assessment as per the result compared to 

Pairwise comparisons and Ranking method. 

Flood assessment maps are very vital as they 

generate a roadmap for the needed flood mitigation 

and preparedness methods. In all three approaches, 

the value of each factor was measured by 

determining how much each factor contributed to 

the flood. The monitoring and treatment of flood 

risk is fundamentally part of social and 

environmental growth, which targets reducing the 

loss of life, and natural and manmade resources that 

are of benefit to individuals. Flood Mitigation. Busu 

flood is real, real damages were done. The people 

living around the Busu River are victims of flood 

and have been living in fear for many years. The 

government authority must now consider both 

structural and non-structural flood mitigation 

measures. It is identified that even with considerable 

use of structural flood mitigation methods, the flood 

damages were still devastating due to the flood 

factors involved. The government must now initiate 

multifaceted flood management in Morobe Province 

as well as other parts of Papua New Guinea, by 
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stretching out the use of nonstructural means of 

flood risk management. This study suggests that 

MCA is a better decision-making method and must 

be considered for better solutions by the local 

authority. 
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