
17 

International Journal of Geoinformatics, Vol.19, No. 6, June 2023 

ISSN: 1686-6576 (Printed)  |  ISSN  2673-0014 (Online) | © Geoinformatics International 

Flood Event Detection and Assessment using Sentinel-1 

SAR-C Time Series and Machine Learning Classifiers 

Impacted on Agricultural Area, Northeastern, Thailand 
 

 

Khamphilung, P.,1* Konyai, S.,2 Slack, D.,3 Chaibandit, K.4 and Prasertsri, N.5  
1Digital Innovation Research Cluster for Integrated Disaster Management in the Watershed, Mahasarakham  

 University, Kantharawichai, Maha Sarakham 44150, Thailand, E-mail: phuist.k@msu.ac.th 
2Department of Agricultural Engineering, Faculty of Engineering, Khon Kaen University, Muang sub- 

 District, Muang district, Khon Kaen, Thailand, E-mail: supako@kku.ac.th 
3Department of Civil and Architectural Engineering and Mechanics, 1209 E. Second St. P.O. Box 210072  

 Tucson, AZ 85721, USA, E-mail: slackd@arizona.edu 
4Faculty of Engineering and Architecture, Rajamangala University of Technology Isan Nakhon Ratchasima,  

 Thailand, E-mail: ak.chaibun@gmail.com 
5Department of Geoinformatics, Faculty of Informatics, Mahasarakham University Khamriang sub-district,  

 Khantarawichai District, Maha Sarakham, Thailand, E-mail: prasertsri_so@hotmail.com 

*Corresponding Author 

DOI:   https://doi.org/10.52939/ijg.v19i6.2691 

 

 

Abstract 

This study presents image classification techniques using Sentinel-1A microwave SAR-C imagery to detect 

agricultural vulnerability area resulting from a massive flood in Ubon Ratchathani province, Thailand, which 

occurred in 2019. Two time series of selected images were used in analytical processes: namely 

S1A_IW_GRDH acquired on August 10th, 2019, representing the pre- flood event, and S1A_IW_GRDH 

acquired on 9th September 2019 represents the massive flood in this area. Prior to the classification, these data 

were preformed pre-processing processes, such as calibration, speckle filtering and terrain correction. The 

preprocessed data were then classified using 3 machine learning classifier algorithms, namely, Random Forest 

(RF), K-Dimensional Tree (KDTree KNN), and Maximum Likelihood for comparing classification accuracy 

derived from each classifier. There are 4 land use/land cover (LULC) classes derived from the dataset, i.e., (1) 

paddy rice, (2) water body, (3) residential area, and (4) vegetation, respectively. The second map was used to 

determine the extent of flooding and non-water area based on backscattering coefficient derived from 

Sigma0_VV polarization using band math calculation obtained from the histogram. The extracted flooded area 

aimed at creating the flooded water mask for overlaying with the classified LULC maps derived from each 

classifier. Finally, the LULC maps were overlaid with flooded event map that occurred on September 9, 2019, 

for quantifying affected area. The results indicated that paddy rice was damaged by flooded with the area of 98 

km2 classified by RF achieving the overall accuracy of 94.60%. The KDTree KNN classifier identified the 

affected area of 85 km2 with the overall accuracy of 93%, while the Maximum Likelihood classifier detected the 

flooded area of 91 km2 with the overall accuracy of 93.36%, respectively. 
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1. Introduction 

Rice is an important economic crop of Thailand 

exported to different regions to the world market, and 

has long been a staple food for Thai people in 

traditional of living and survival [1] and [2]. It is 

obvious that the physical properties of rice 

plantations that contribute to the quality and 

production of rice in each area. There are spatial 

factors based on natural conditions that affect rice 

yields, such as droughts, floods, etc., especially flash 

flood that occur frequently in Northeast Thailand. As 

a result, rice fields can be damaged, which effect on 

rice production in terms of the quantity and quality 

lead to significant decreased quality of life among 

farmer societies [3]. Therefore, farmers have to re-

cultivate new crops cycle dismissed from annual crop 

calendar after natural disasters with higher expenses.  
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In addition, government agencies can use such 

natural disasters information to manage affected area 

by benefit providing and assistance offering to 

farmers. Nowadays, to monitor natural environment 

can be made easily by using real time or near real 

time from Earth Observation System (EOS) 

information since remote sensing technology 

presented to the real world with various sensors for 

the earth phenomenon monitoring missions [4]. 

Remote sensing sensors technology; however, 

divided into passive and active instruments. The 

acquisition system based on EMR radiated from the 

sun has known as passive sensor, which scan and 

retrieve reflected energy from the earth surface 

characteristics. The active sensor, on the other hand, 

platforms carried EMR on board providing certain 

energy intensity transmit to surfaces and collect some 

portions of backscattered energy interacted with 

various earth surface properties [5]. One of the most 

limitation of passive remote sensing is to detect the 

earth information in time of the sun illuminating to 

the earth surface. Thus, most of these earth 

observation systems are sun-synchronized orbit, 

which some crucial information, such as thermal 

infrared can only be detected in daytime. Moreover, 

the image qualities are usually fluctuated from 

weather conditions comparing between wavelengths 

and particles diameter (natural and man-made 

particles) in the air, such as water droplets, snow, and 

hails. Obviously, microwave remote sensing 

technology provided active sensors avoiding and 

improving the limitations of passive sensors, 

especially unstable weather conditions described 

above. The reflectance energy emitted from surface 

and sub-surface derived from microwave remote 

sensing has known as backscattering coefficient (0). 

Backscattered energy to sensor varies from several 

factors, such as dielectric constant of each surface 

properties, including specific wavelength () from 

higher frequency and narrower lambda (K-band: 0.86 

cm.) to lower frequency and larger lambda (P-band: 

68.0 cm.), including polarization characteristics. 

There are two polarizations: dual-pol and quad-pol. 

The dual-pol instrument provided VV, VH 

polarizations, such as the Sentinel-1 (Synthetic 

Aperture Radar: SAR-C) available for free from ESA 

(European Space Agency) collecting the data in 

active antenna SAR-C band. The qual-pol data; for 

example, are usually retrieved from ALOS PALSAR 

providing of HV, HH, VH, VV polarizations, and 

HV, HH, VH, VV polarizations from RADARSAT-

2 imageries. The intensity of backscattering 

coefficient consists of physically relevant factors, 

namely, nadir, azimuth flight direction, look 

direction, depression (), incident () and slant range. 

Some of these factors are physically uncontrollable 

conditions interacted with each land cover type. 

Additionally, using SAR imagery are more likely 

advantages in some phenomenon, such as rapid flood 

in monsoon season comparing with archived data 

collected from similar sensors or some different 

optical data. It is obvious that the intensity of 

backscattered energy from flooded area are slightly 

decreased compared with other land cover types. 

Therefore, to discriminate of flooded and non-

flooded area can easily be achieved by using this 

data, especially SAR-C band instrument interacted 

with surface echo the portion of low backscattered in 

flooded area.  Land use/ land cover classification in 

remote sensing tradition has involved unsupervised 

and supervised classification algorithms, such as 

maximum likelihood and minimum distance 

classifiers. SAR imagery classification: however, 

there are also deployed this approach into analytical 

algorithms, such as, Random Forest, KDTree KNN 

and Maximum Likelihood classifiers. Moreover, 

there is parametric SAR acquiring in Single Look 

Complex (SLC) data comprises complex imagery 

with amplitude and phase provided by Sentinel-1 

satellite sensor system, which allow to classify from 

H- and Entropy depending on the relevant intensity 

of backscattering values from each land cover type. 

Therefore, this research aims at utilizing the time-

series of Sentinel-1 imageries for paddy field 

monitoring corresponding to unexpected of natural 

disasters, especially annual flood that can be an 

important assistance tool for public and private 

sectors for planning and recovering on affected area 

by utilizing the potential emerged modern technology 

for life quality improvement and agricultural 

sustainability in this region. 

 

2. Materials and Methods 

2.1 Study Area 

The study area located at 15.08 N to 15.60 N and 

104.22 to 105.26E in Muaeng district, Ubon 

Ratchathani Northeastern, Thailand. The subset 

image covered the area of 406.4 km2 surrounding by 

various LULC types. Ubon Ratchathani province was 

affected by the flood situation in 2019. A total of 25 

districts, 184 sub-districts, and 1,724 villages were 

damaged, along with 18,790 houses. Additionally, 

21,691 people were evacuated, and farmland 

covering an area of 1,023.28 km2 was affected. The 

study area located at along the Mun river (Figure 1). 
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Figure 1:  The location of study area 

 

2.2 Data Preparation and Collection 

This study uses the Sentinel-1 dual polarizations: VV 

and VH Interferometric Wide Swath (IW) mode with 

GRD product type for evaluation and classification 

the physical changes focuses on the affected land use/ 

landcover in Ubon Ratchatani and Yasothorn 

provinces, Northeast Thailand during the massive 

flood in 2019. The main objectives of the study are 

for land use/ land cover classifying focused on before 

and after the massive flood occured in this area by 

comparing of the image classification algorithms 

provided by SNAP platform namely, Random Forest 

(RF) K-Dimensional Tree KNN ( KDTree KNN), 

and Maximum Likelihood classifiers [6]. Prior to 

classification, the subset of Sentine-1A data were 

performed preprocessing processes, namely terrain 

correction, calibration and speckle filtering by using 

Sentinel toolbox [7]. The data were arranged in 

Sigma0_VV and Sigma0_VH data format and 

converting to the flooding area by using Linear to 

from dB algorithm for converting the virtual VV and 

VH bands into backscatter coefficients (0) by using 

the equation [8]: 

 
0 0

1010logdB =  

Equation 1 

Where: 

σ 0 (dB) = backscattering image in dB 

        σ 0  = Sigma naught image  

 

Then, these data were stacked to the images time 

series for RGB combinations. The training area were 

derived based on backscattering properties, visual 

interpretation, and high-resolution supplement data, 

such as Google map and the reference land use map 

collected from LDD, Thailand.  The processed data 

represents flooded was on September 10, 2019, and 

before flooded acquired on October 8, 2019, 

respectively. The first image used for water bodies 

extraction from lower backscattering ranges from the 

image histogram, and the second image the days 

before flooded was used for landcover classification 

for damaged quantifying from affected area [9] [10] 

and [11]. Water bodies extraction derived from 

Sigma0 VH using band math calculation. Land 

use/landcover classification divided into 3 main 

approaches described above using the same vector 

data set evaluated and compared with google maps 

and other existing referenced source collected from 

LDD, Thailand. These vector data applied to Random 

Forest, KD Tree KNN, and Maximum likelihood 

classifiers, respectively. 
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Table 1: The dates of Sentinel-1A time series 
 

Data Date of Acquisition Polarization Acquisition MODE 
Sentinel-1A 10/8/2019 VV, VH  IW GRD 

Sentinel-1A 9/9/2019 VV, VH IW GRD 

STACKING 10/8/2019 VV, VV-VH, VV/VH 

(R,G,B) 

IW GRD 

 

Table 2: Land cover and training data description 
 

Class Name Training AOIs Validation Masks Training Pixels Class Description 
Waterbodies 21 30 2,500 Lakes, rivers, pond, 

and reservoirs 

Paddy rice 31 80 2,500 Paddy field, cropland 

Vegetation 12 50 756 Trees, shrubs 

Residential area 29 70 2,500 Buildup area, rural 

and urban 

Total 93 160 8,256  

 

2.3 Image Classification 

2.3.1 Random forest classifier 

Each stacked image layer was classified individually 

from the same selected training area data set 

compared with the existing LULC vector data, 

including visual interpretation from supplement 

information [12]. The training data set details are 

shown in Table 2. Paddy field sample set were 

derived from visual interpretation corresponded to 

prior spatial patterns knowledge, including existing 

vector data from Land development Department 

(LDD) of Thailand and ESA 10 m global LULC 

provided by Google Earth Engine [13] [14] [15] and 

[16]. Paddy field is the main target class due to the 

primary crop cultivation by traditional subsistence 

crop in this region. The subset imageries were created 

new vector data containers represented for each 

LULC classes [17]. For Random Forest classification 

method, there were 5,000 training samples created by 

random stratified sampling method, and 50 trees, 

respectively. The advantages of this classifier are 

quick prediction, handles unbalanced data, and each 

decision tree has a high variance, but minimum bias 

[18] [19] [20] and [21]. The random forest classifier 

uses the Gini Index as an attribute selection measure, 

which measures the impurity of an attribute with 

respect to the classes [22] and [23]. For a given 

training set T, selecting one case (pixel) at random 

and saying that it belongs to some class Ci, the Gini 

index can be written as:  
 

( ) ( )ji

j i

f C Tf C T

T T


  
  

    


 

Equation 2 

 

where f (Ci, T)/ T is the probability that the selected 

case belongs to class Ci.  

 

 

2.3.2 KDTree KNN classifier 

The training data set derived from the same method 

was input to the algorithm. The KDTree KNN 

classifier is a machine learning algorithm based on 

the k-nearest neighbors (KNN) algorithm. It uses a 

data structure called a KD tree to speed up the 

computation of distances between data points. This 

algorithm is very simple to understand and 

implement. The key benefit of the classifier is that 

splits a large 3D space into small regions [24] and 

[25]. The algorithm begins by searching the KD tree 

for the k nearest neighbors of the data point [26]. This 

is done by starting at the root of the tree and 

recursively traversing the tree, choosing the subtree 

that is on the same side of the hyperplane as the query 

point [27]. Once the k nearest neighbors is found, the 

algorithm assigns the class label of the majority of the 

neighbors to the query point.  

 

2.3.3 Maximum likelihood classifier  

In the SNAP (Sentinel Application Platform) 

software package, the Maximum Likelihood 

classifier is available as a built-in tool for image 

classification [28]. It is used to classify pixels in a 

remotely sensed image into different land cover 

classes based on their spectral characteristics. The 

ML classifier in SNAP works by first computing the 

statistical properties of the training data for each 

class. This method can be developed for a large 

variety of estimation situations, including provided 

statistical information to evaluate training set [29] 

and [30]. This involves calculating the mean and 

covariance matrix of the training samples for each 

class in the feature space. The feature space is defined 

by the spectral bands of the remotely sensed image, 

such as the red, green, and blue bands.  The ML 

classifier in SNAP allows the user to specify the 

number of classes to be classified, as well as the 

training data for each class. 
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2.4 Flood Area Delineation 

Flooded extend area was derived from Sentinel-1 

SAR-C band acquiring on 9/9/2019. This image was 

subset for creating the area of interest (aoi). Then, it 

was performed pre-processing processes, such as 

calibration, speckle filtering, and terrain correction. 

Then, the binary threshold was determined for 

separating water and non-water area from Sigma0 VV 

band processed histogram based on logarithmic 

(Log10) information [31] [32] and [33]. The 

histogram indicated that the water area corresponds 

to Sigma0 VV by the values of backscattering 

coefficient less than 6.38E-2. Therefore, the band 

math expression was figured out from the formula:  

 
0 26.38 10 1,if Sigma vv then else Non water−  −  

 

Equation 3 

 

If this condition is true, then the flooded area turned 

into white, otherwise showed in black represented for 

non-water area. In order to avoid false positive 

detection, the extracted flooded area was subtracted 

from existing surface waterbodies classified from the 

first date data (8/8/2019). As the results, hazard flood 

area was significantly discriminated from surface 

water resources area. The flooded data was exported 

to QGIS and evaluated LULC affected area. 

 

2.5 Affected Area 

The water mask area derived from the process 

described above was erased from the water bodies 

figured out from classification methods. Then, this 

data was overlaid by classified LULC data from each 

classifier aimed at affected area determination using 

GIS software. The results will be shown in qualitative 

and quantitative aspects compared with image 

classifications. 

 

2.6 Accuracy Assessment 

The classified maps were evaluated individually 

comparing with the vector data collected from LDD, 

Thailand, the information from Google map, 

including visual interpretation data from optical 

sensors. The referenced vector data from LDD was 

converted from polygon data representation into 

point data for performing accuracy assessment. There 

were 160 masks, and 8,256 pixels represent 4 LULC 

classes prepared for this process. The objective of 

this process was to compare the classified map with 

the reference data for correctness evaluation between 

classified data and reference data as it has presented 

in remote sensing and image classification traditional 

method [34] and [35].  

 

The results can be shown in user’s accuracy, 

producers’ accuracy, overall accuracy, and kappa 

statistics, respectively. Flooded area; however, was 

compared with 3 referent flood mapping data 

sources; namely, Thailand Flood Monitoring System 

provided by GISTDA, Thailand, mean annual world 

flood map data using MODIS time series maintained 

by Dartmouth flood observatory, and NRT global 

flood mapping by NASA. The study process 

illustrated in the Figure 2. 

 

3. Results and Discussion 

3.1 Image Classification 

The backscattering coefficients were consistent with 

the training areas used in the classification 

procedures showed in Figure 3 represented the σ0 VV 

and σ0 VH ranges for the water body mask area. The 

histogram shows that the σ0 VH can separate water 

sources better than σ0 VV due to higher data 

scattering values ranging from -22 dB to -19 dB.  The 

training area corresponding to the maximum 

reflection in each LULC class was selected, and band 

combinations were used to determine the radiometric 

information for selecting the sample groups before 

classifying with the classifiers. The results of 

classifying Sentinel-1 images using all three methods 

were showed in Figure 4. The 0 VV and VH for 

Residential mask area evaluation process found that 

0 VV showed better reflectance than 0 VH with 

data range between (-6 dB) to (-1 dB) whereas 0 VH 

graph shows instability and is quite difficult to isolate 

this type of land cover with values ranging from (-

16dB) to (-9dB). The 0 VV and VH for Paddy rice 

mask area showed that the 0 VV can distinguish this 

type of land cover better than 0 VH with a data 

ranging between (-8dB) and (-5dB), respectively. 

There was a clear normal distribution and a data 

clustered of compared to 0 VH ranged between (-

19.5dB) to (-15.5 dB), which was dispersed in a too 

wide range causing high error in classification. For 

0 VV and VH from vegetation target class 

evaluation, it appeared that the 0 VH has a higher 

discrimination potential than 0 VV used for 

classifying land cover in this layer, where 0 VH has 

a dispersion between (-13dB) to (-12.5 dB). The 

curve showed a normal distribution with the 0 VV 

values ranged from (-8dB) to (-6 dB). This property 

was clearly separated this class from each other 

resulting in lower accurate compared with other 

methods. The affected area from flooding were 

showed in Figure 5 and Table 3. The results from 

each classifier were overlaid with extracted water 

mask area. 
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Figure 2:  Image classification procedures 
 

    
(a)      (b) 

   
(c)       (d)  

  
(e)       (f) 

  
   (g)       (h) 

Figure 3: Backscattering coefficients compared with  0VV and 0VH for each LULC class, (a) 0VV of water 

mask area, (b) 0VH of water mask area, (c) 0VV of residential area, (d) 0VH of residential area, (e) 0VV 

of paddy rice, (f) 0VH of paddy rice, (g) 0VV of vegetation area, and (h) 0VH of vegetation area 
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Figure 4: Sentinel-1A classification results (a) Random Forest, (b) KDTree KNN, and  

(c) Maximum Likelihood 

(a) 

(b) 

(c) 
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Figure 5: Flood area overlaid with each classifier result (a) RF, (b) KDTree KNN, and  

(c) Maximum likelihood 

(a) 

(b) 

(c) 
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The flooded area overlaid with RF classifier showed 

an impact on paddy rice of 98 km2, residential area of 

30 km2, and vegetation of 78 km2. In the case of 

KDTree KNN classifier, the flooded area occurred on 

paddy rice covering 85 km2, 25 km2 for residential 

area, and 70 km2 impacted on vegetation. Lastly, the 

impacted area on paddy rice, residential area, and 

vegetation determined by Maximum Likelihood were 

91 km2, 22 km2, and 98 km2, respectively. 

 

3.2 Flooded and Affected Area Delineations  

The affected area was carried out by overlaying 

technique from the flood detection image [36]. Prior 

to overlaying, flood area was discriminated from 

existing water area. The process of classifying 

flooded areas described above, the results of the 

classification were showed in Figure 5. The flooded 

event map was used for a water mask extracted from 

the flooded event. Then, these data were overlaid by 

using QGIS to examine flood-affected areas by 

overlaying with land use data and existing natural 

water sources to reduce the redundancy LULC with 

flooded mask and water area [37]. The study found 

that most of the flooding was caused by overflows of 

the Moon River, which occurs annually in this area 

(Table 3).  

 

3.3 Accuracy Assessment 

Due to the fact that accuracy assessment has not been 

carried out in SNAP provided in this application. 

However, there are relevant published papers showed 

how to evaluate classification by comparing 

classification possibility enhanced from mask 

manager tool. The overall accuracy can be calculated 

by using the proposed method by components, 

namely True positive (TP), True Negatives (TN), 

False Positives (FP), False Negative (FN) [38] [39] 

and [40].  
 

( )
TN TP

Overall Accuracy OA
TP FP TN FN

+
=

+ + +
 

 

Equation 4 

( )
TP

User Accuracy OA
TP FP

=
+

 

 

Equation 5 

Pr ( )
TP

oducer Accuracy OA
TP FN

=
+

 

 

Equation 6 
 

where: 

TP is the True Positives, which means that the 

actual class and the predicted class are both 

positive. 

 

 

TN is the True Negatives, which means that the 

actual and predicted class are both negative. 

 

FP is the False Positives, which means that the actual 

class is negative whereas the predicted class is 

positive. 

 

FN is the False Negative, which means that the actual 

class is positive, but the predicted class is negative. 
 

 

1

OA ECA
Kappa

ECA

−
=

−
 

Equation 7 

 
 

2 2

( )( ) ( )

( ) ( )

TP FP TP FN FN TN FP TN
ECA

TP TN FP FN TP TN FP FN

+ + + + +
= +

+ + + + + +

 

 

Equation 8 

 

Where: 

 ECA is estimated change agreement 

 

The evaluation of LULC classes is showed in Figure 

6. The figure presents class accuracy, precision, 

correlation, and error rate derived from equation 4 to 

7. From the image, it can be observed that Random 

Forest and KDTree KNN classifiers have similar 

accuracy values when classifying the vegetation 

class, with accuracies of 0.97, and error rate of 

0.0239, and 0.025, respectively. On the other hand, 

the Maximum Likelihood classifier achieves the 

highest accuracy of 0.96 and error rate of 0.038. 

However, for paddy rice class, the accuracy and error 

rates of all three classifiers are not significantly 

different. Regarding the residential area, Random 

Forest and KDTree KNN provided the best 

classification results, with an accuracy of 0.94, and 

error rate of 0.05. Interestingly, all classifiers perform 

similarly with high accuracy for water bodies class 

due to the low backscattering coefficient scattered 

from this particular land cover type compared with 

other classes. The overall accuracy, affected, and 

non-affected area are shown in Table 3. The overall 

accuracy after classification showed that the values 

obtained from Random Forest, KDtree KNN, and 

Maximum Likelihood were 94.60, 93.00, and 93.36, 

respectively. Additionally, Random Forest showed 

that the residential area had the largest flood-affected 

area among the classifiers by the area of 30 km2. This 

is because the Random Forest classifier can increase 

the number of forests during the classification 

process within the SNAP application, resulting in 

improved accuracy. However, this approach requires 

more computer resources and processing time.  
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Table 3: Accuracy assessment for each classifier and land use classes showing flooded and non-flooded area 
 

Classifiers OA (Overall 

accuracy) 

Kappa  Total(km2) Flooded (km2) Non-flooded 

(km2) 

RF 94.60 0.41 Water body 14 - - 

   Paddy rice 281 98 183 

   Residential 

area 

68 30 38 

   Vegetation 192 78 114 

       

KDTree 

KNN 

93.00 0.39 Water body 10 - - 

   Paddy rice 235 85 150 

   Residential 

area 

52 25 27 

   Vegetation 258 70 188 

       

Maximum 

Likelihood 

93.36 0.46 Water body 12 - - 

   Paddy rice 255 91 164 

   Residential 

area 

53 22 31 

   Vegetation 235 98 137 

 

 
 

Figure 6: The area of classification results from each classifier 

 

As a result, Random Forest achieves higher accuracy 

compared to other classifiers, while KDTree KNN 

and Maximum Likelihood show flood-affected areas 

of 25 km2 and 22 km2 respectively. It is also worth 

noting that Maximum Likelihood provided the most 

accurate classification for vegetation and shows a 

flood-affected area of 98 km2, while Random Forest 

covers 78 km2 and KDTree KNN covers the area of 

70 km2. 

4. Conclusion 

This study derived the LULC affected area from 

hazard flood in Ubon Ratchathani province, Thailand 

by using microwave remote sensing imageries 

focused on the vulnerability of paddy fields. The time 

series of Sentinel-1A with SAR-C band were utilized 

for supervised classification by comparing of 

Random  Forest (RF), KDTree KNN, and  Maximum  
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Likelihood classifiers on pre-flood and on flood 

events, including water area extraction based on 

backscattering coefficient corresponded to flooded 

area after the massive risk phenomenon. The 

classification results indicated that the RF classifier 

showed the highest accuracy assessment at 94.60% 

overall accuracy, significantly higher than any other 

classifiers. The KDtreeKNN and Maximum 

Likelihood; however, showed the similarity results in 

not much more in significant differences by the 

correlation of 93.00% and 93.36%, respectively. 

Additionally, water area extraction showed strong 

discrimination from LULC based on the 

backscattering coefficients (0), ranging between -22 

to -19 dB echo (0 VH) derived from band math 

calculation. The flooded map data was overlaid with 

the results of the 3 classification methods. The 

analysis revealed that the RF classifier detected the 

flooded area of 98 km2 for paddy rice, 30 km2 for 

residential area, and 78 km2 for vegetation. The 

KDTree KNN classifier identified the affected area 

of 85 km2 for paddy rice, and 70 km2 for vegetation. 

Finally, the Maximum Likelihood classifier indicated 

that the most affected area was vegetation, covering 

98 km2, followed by paddy rice at 91 km2. Moreover, 

the minor impacted area of 22 km2 was observed in 

residential. In this study, it was found that Random 

Forest classifier produced the most accurate results in 

LULC classification. Although the result of 

classification using RF algorithm provided the 

highest accuracy, other classifiers also performed 

similarly with minor differences. However, analysts 

can choose the appropriate method based on area's 

conditions and the development of the classification 

tool, which needs continuous improvement. This 

choice can be based on efficiency and popularity of 

using the RF machine learning algorithm, as evident 

in the majority of articles published in academic 

journals. Furthermore, flooded event data was 

overlaid with the classified map to assess the damage 

areas caused by flooding. These methods effectively 

monitored flooding by deriving classification maps 

and comparing them with various references data 

sources. In the future, researchers plan to incorporate 

real-time data into the analytical process to identify 

and monitor repeatedly flooded areas. This will be 

done using the Google Earth Engine cloud-based 

platform, which allows users to analyze and process 

geospatial data, including other relevant data to 

enhance and improve disaster management for 

natural disaster that may occur elsewhere. 
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