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Abstract 

Land use data can be used to understand patterns of economic behavior, such as the relationship between land 

use and property values or the impact of land use on environmental factors like air and water quality. The 

combination of land use data with other data sources and analysis methods can yield significant insights into 

economic growth and behavior. In this study, the land use and land cover (LULC) were classified using multi-

temporal Sentinel-2 imagery (2019 and 2021) and random forest through the Google Earth Engine platform 

(GGE) with an overall accuracy of more than 89.79%. According to the results of the change detection analysis, 

there was a 16.96% increase in miscellaneous surface areas and a 15.50% increase in artificial surface areas. 

These disclose confirm that the sea salt farm, which are the traditional economic function, are losing 37.40%. 

Furthermore, the CA-Markov model was utilized to predict alterations in land use patterns in the year 2023 

through the extrapolation of existing trends. The predicted LULC map of 2023 publicizes the trend of the sea 

salt farm decreasing, contrasty the artificial surface areas are increasing. In summary, this research reveals 

the evidence that LULC is strongly related to traditional living changes, and spatial analysis techniques are 

reasonable and committing tools for study. 
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1. Introduction 

Human activities reflect land use in the way how 

people use the land for a specific purpose. Humans 

need the land for living, and they notice the house on 

the land. Therefore, land use data can be used to 

understand economic growth and behavior. Land use 

data provides information about how land is being 

used, such as whether it is being used for agriculture, 

industry, or residential purposes, and this can be used 

to analyze economic activity in those areas. For 

example, an increase in land use for industrial 

purposes may indicate growth in the manufacturing 

sector and suggest a growing local economy. 

Alternatively, a decrease in land use for agriculture 

may indicate a shift away from traditional farming 

practices and towards other economic activities, such 

as tourism or services [1]. Land use data can also be 

used to understand patterns of economic behavior, 

such as the relationship between land use and 

property values or the impact of land use on 

environmental factors like air and water quality. 

Understanding these relationships can inform policy 

decisions and guide investments in infrastructure and 

development. Overall, land use data can be a 

valuable tool for understanding economic growth 

and behavior [2] and [3], particularly when combined 

with other data sources and analysis methods. To be 

achieved this,  the land activities that change over 

time have to investigate [4] [5] [6] and [7]. Land use 

and land cover (LULC) mapping derived from 

satellite imagery is a valuable source of information 

that offers current insights into various stages of 

transformation occurring on the Earth's surface [8]. 
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In addition, the time series of imagery allows a 

seasoning of landscape and actual processes such as 

urban expansion, crop rotation, and deforestation [9]. 

Besides, the procedure of land’s surface can be 

detected or computed with satellite imagery through 

a multi-temporal perspective [10]. As a result, remote 

sensing has emerged as the most effective and 

reliable method for characterizing and analyzing 

land-use and land-cover conditions and changes, and 

its usage has increased significantly over time [11]. 

The Sentinel-2 satellites equipped with multispectral 

imaging instruments (MSI) offer high-resolution 

satellite data that is useful for monitoring LULC [12]. 

This missions are aimed at ensuring continuity and 

improving upon the accomplishments of the Landsat 

missions [13]. 

Presently, the widely usage tool for satellite data 

accesses and processes is the Google Earth Engine 

(GEE). The GEE is a cloud-based computing 

platform that is easily accessible and capable of 

storing and processing large-scale geospatial data in 

the petabyte range. There is easily accessible and 

user-friendly with interactive data and processing 

algorithms [14]. Also, GEE provides high 

performance of cloud computation and multiple 

practical tools for carrying out the analysis of global 

geospatial big data. Currently, it is widely 

acknowledged as the most popular cloud computing 

platform in the fields of Earth and Environmental 

Science [15] that is commonly utilized for processing 

data related to various fields focused on 

environmental change, such as crop analysis [16], 

water resources [17], land cover mapping [18], 

disaster monitoring [19], climate change [20], soil 

properties [21], forest [22] and urbanization [23]. 

Due to the inability of traditional computing 

resources to handle multi-time series satellite images 

over large areas, the GEE service has emerged as an 

effective platform for supporting the analysis of 

global and regional land changes [24].  

In this research, the LULC classification was 

conducted using the Sentinel-2 time-series imagery 

in conjunction with the random forest algorithm on 

the GEE platform. In addition, we conducted a 

change detection analysis to examine the LULC 

changes in Phetchaburi and Samut Songkhram 

provinces between the years 2019 and 2021. The 

cellular automata - Markov chain model (CA–

Markov) deployed in the TerrSet software developed 

by Clark (formerly IDRISI), with the high reputation 

and widely acceptation. The software provides an 

excellent advantage and essential geospatial tools for 

the study of land-cover changes and probable 

prediction [25]. This study, itis used to predict the 

possible LULC in 2023. Additionally, the objectives 

of our study included the classification of LULC 

using a sustainable cloud-computing platform and 

training dataset, as well as the simulation of future 

land cover changes in our study area located in 

western Thailand through the utilization of the CA-

Markov model. 

 

2. Materials 

2.1 Study Area 

This research sites are located in Phetchaburi and 

Samut Songkhram provinces (Figure 1). These 

provinces are in the western region of Thailand 

(12°33′45′′N to13°31′7′′ N and 100°6′12′′E to 

99°6′2′′ E) and cover the area of 6585.28 km2. The 

natural border between Thailand and Myanmar is 

formed by the presence of high mountains and forests 

in the western region. Also, the east site is a coastline 

be a part of the gulf of Thailand. In addition, the 

Kaeng Krachan National Park, which was declared as 

a potential UNESCO Natural World Heritage site in 

2013, is located in the western region [26]. 

 

2.2 Background of Study Site 

The Phetchaburi province has a forestry of 57.24%, 

an agricultural area of 28.86%, and a build-up of 

5.14%. The total population is approximately 

480,000 people and the gross provincial product 

(GPP) was about 63,000 million bath and the GPP per 

capita was about 130,000 baht/year in 2016. The 

largest economic value about 37,000 million baht 

which contributed by the industrial sector and the 

agriculture sector. Primary economic activities in 

Phetchaburi is salt producer and horticulture such a 

palm sugar, rose apple, and etc.  

The Samut Songkhram province has an 

agricultural area of 68.22%, a build-up of 15.24%, 

and forestry of 6.79%. The total population was 

approximately 194,000 people and the gross 

provincial product (GPP) was 20,400 million baht 

and GPP per capita was 105,000 baht/year in 2016 as 

well. Primary economic activity worth 12,600 

million bahtwhich contributed by the agriculture 

sector, fishery, and tourist. The Samut Songkhram is 

known as salt producer as well as the Phetchaburi. 

Additional, the horticulture and fishery are also prime 

contributes in economic activities.   

The main economic sectors in those area are the 

agriculture, fishery, and sea salt farm. The rapid 

expansion of industrial area in last decade is the most 

driving force to change the traditional economic 

sectors to industrial sectors which reflecting on land 

use change, as well as the local traditional living.
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Figure 1: The study area of Phetchaburi and Samut Songkhram provinces 

 

2.3 Dataset 

The data used in this study are composed of two 

historic Sentinel-2 satellite imagery (2019 and 2021) 

with a spatial resolution of 10-meter. The imagery 

scenes that covered the study area irrespective of 

cloud cover were operated in the GEE platform. The 

image datasets were already geo-referenced, 

projected, and provided the atmospheric corrections. 

In addition, the land use datasets of Phetchaburi and 

Samut Songkhram province from the Land 

Development Department (LDD) were used to 

perform the training dataset for machine learning 

classification. These datasets were produced by 

visual interpretation from LULC experts of 

government. Also, the study area's ground truth 

dataset was observed randomly and covered in 

different LULC classes. The identified LULC classes 

were compared and matched with similar types 

observed in both the classified imagery and training 

dataset. Moreover, the independent variable datasets 

were collected to support the prediction model: the 

digital elevation model (DEM), the road network 

dataset, the stream dataset, and the land use dataset. 

 

3. Methodology 

In this section, we describe the major anticipated uses 

for the LULC changes in the future. The time-series 

raster dataset from Sentinel-2 imagery was classified 

using a machine learning algorithm on the Google 

Earth Engine platform. The primary workflow 

implemented in this study involved: (1) the mapping 

of 2019 and 2021 using the random forest classifier 

of satellite imagery, (2) an analysis of change 

detection, (3) predicting LULC changes using a CA-

Markov Model in the year 2023 was a crucial aspect 

of the workflow in this study. The overall workflow 

illustrates in Figure 2. 

 

3.1 Data Preparation 

The time-series Sentinel-2 images were used in 2019 

and 2021. Sentinel-2 (L2A) products were used in 

this study, which is corrected reflectance products 

[27] and [28], and are available on GEE. Cloud cover 

is a significant limiting factor in time-series datasets 

from satellite sensors, particularly in rainforest 

regions [29]. Hence, the library of sentinel-2 cloud 

probability product was utilized on the GEE platform 

to mask the cloud cover in all sentinel-2 images. We 

separate the period of imagery into three periods of 

each year: a beginning period (January-April), a 

middle period (May-August), and the end period 

(September-December). Each period consisted of 

five generated bands, namely; Blue, Green, Red, 

NIR, SWIR, and three indices named as NDVI, 

NDWI, and NDBI, that were resampled into 10-

meter pixel sizes of all bands as demonstrates in 

Figure 3. 
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Figure 2: Overall methodology 
 

 
 

Figure 3: Image composite approach in this study 

 

The landuse dataset from Thailand's Land 

Development Department (LDD) in 2019 was used 

to generate the training dataset. First, we group 

LULC classes from the LDD landuse dataset into 11 

categories which are applied based on The System of 

Environmental-Economic Accounting (SEEA) of the 

United Nations [30].The LULC classes are modified 

based on the eight traditional found in study area 

therefore, included: artificial surfaces (AS), 

herbaceous crops (HC), woody crops (WC), tree-

covered areas (TC), mangroves (MG), water bodies 

(WB), salt fields (SF) and miscellaneous (MC), 

representing of geographic areas dominated by 

natural cover, the detailed of description publicize in 

Table 1. Also, we select the image of the beginning 

period of 2019 to generate image segmentation using 

the GEE platform and convert it to a vector dataset. 

Next, the landuse dataset and segmentation dataset in 

the form of vector data overlay into the dataset. Then, 

we perform the centroid of all polygon features 

representing the training location of LULC in this 

study. After, the centroid datasets were operated with 

Sentinel-2 images in 2019 to obtain the training 

dataset of 21 values in each centroid (five bands and 

three indices in three-period each). 

 

3.2 Image Classification 

We classified the LULC classes from Sentinel-2 

imagery in 2019 and 2021 with the predictor 

variables associated with land cover for each location 

in the training data of 2019. After preparing the 

training data, we used it to predict all eight-LULC 

classes in Sentinel-2 imagery for the years 2019 and 

2021. The land cover classification was carried out 

using a random forest classifier, which is one of the 

most commonly used classifiers for image 

classification based on remotely sensing data [31]. 

This classifier mothed has received considerable 

interest over the last two decades: its good handling 

of the outliers and noisier datasets, good performance 

with multi-dimension and sources datasets, and 

higher accuracy than other algorithms [32]. The final 

LULC map in 2019 and 2021 of Phetchaburi and 

Samut Songkhram province were produced. 
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Table 1: The LULC classes in this study 
 

Previous LULC 

based on SEEA 

LULC reclassify 

in this study 
Description 

Artificial surface 
Artificial surface 

(AS) 

This class is composed of artificial surfaces, including urban and 

associated areas, for example, urban buildings, concrete parks, 

industrial areas, and waste dump deposits. 

Herbaceous crop 
Herbaceous crop 

(HC) 

This land cover class includes cultivated herbaceous plants such as 

non-perennial crops that do not survive for more than two growing 

seasons. Also, this class includes cultivated herbaceous plants, such 

as non-perennial crops that have a lifespan of two growing seasons 

or less. These crops are typically harvested for their upper parts, 

while the root systems can persist for over a year. Examples of such 

crops include sugarcane, paddy, and maize. 

Woody crops Woody crops (WC) 

This class consists of permanent crops, including orchards and 

plantations that are not cut for harvested purposes. Examples include 

fruit trees, coffee and tea plantations, oil palms, and rubber 

plantations. 

Tree-covered areas 
Tree-covered areas 

(TC) 

This class is any geographic area covered by more than 10% of 

natural tree plants, shrubs, and herbs that are density higher than 

trees. Also, the trees for afforestation and forest plantation are 

included. 

Mangroves Mangroves (MG) 

This class encompasses any geographic area where woody vegetation 

covers more than 10% of the land and is consistently or periodically 

flooded by salt and brackish water. 

Water bodies Water bodies (WB) 
This class includes any geographic area that is covered by inland 

water bodies for the majority of the year. 

Salt fields Salt fields (SF) This class is about any area covered a salt from human activities.  

Grassland 

Miscellaneous (MC) 

This class includes geographic areas dominated by natural 

herbaceous plants, shrubs, and vegetation, covering less than 10% 

of the area. 

Shrub-covered area 

Sparsely natural 

vegetation areas 

Terrestrial barren 

land 

 

3.3 Accuracy Assessment 

Popular measures extracted from confusion matrix 

reports, such as overall accuracy, producer accuracy, 

and user accuracy were used [34]. This process is 

important in determining image classification 

method that provides reliability and accuracy [35]. 

The field survey in March 2022, which is nearby 

image classified, was performed to collect the actual 

ground points covered in all classes of LULC. The 

equation is as follow:  
 

100
Pc Nc

OA
Pc Fp Nc Fn

 +
=  

+ + + 
 

 

Equation 1 
 

Where: 

OA or Overall Accuracy = the percentage of 

correctly classified pixels in the entire image or 

area.  

Pc or Producer's Accuracy = the proportion of 

actual positive pixels correctly identified or 

classified by the model.  

Nc or User's Accuracy = the proportion of actual 

negative pixels correctly identified or classified 

by the model.  

Fp or False Positive Rate = the number of negative 

pixels classified as positive incorrectly.  

Fn or False Negative Rate = the number of positive 

pixels incorrectly classified as negative. 

  

3.4 Land Change Modeler (LCM)  

The results of the LULC classification in 2019 and 

2021 were employed in the RECLASS module of the 

software [36]. All values, including background 

values (-9999), were reclassified as class 0 to 

background values, class 1 to artificial surfaces, class 

2 to herbaceous crops, class 3 to woody crops, class 

4 to tree-covered areas, class 5 to mangroves, class 6 

to water bodies, class 7 to salt fields, and class 8 to 

miscellaneous areas. For analyzing the change in 

LULC, we conducted a change analysis by 

comparing the differences between the LULC of 

2019 and 2021. 
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3.5 CA-Markov Model 

One of the most efficient models in current LULC 

modeling tools is the CA-Markov model. The CA-

Markov model is a practical tool that combines 

Markov and Cellular automata (CA) approaches to 

simulate land use changes. It is important to consider 

both time series and spatial data when forecasting and 

modeling land use changes, as this can help to better 

simulate the temporal and spatial patterns of these 

changes [37]. Markov probability is utilized to 

predict the future state of a system based on its 

present state, without considering the past states. 

Cellular automata, on the other hand, is a model 

derived from the fields of physics and biology, which 

uses a natural mechanism to simulate and 

comprehend complex behaviors [38]. We employed 

the integrated CA-Markov approach to predict future 

land use changes based on the 2019 and 2021 

datasets. To achieve this, we prepared the transition 

probability matrix (TPM), transition probability area 

(TPA), and transition suitability image (TSI) using 

the Markov model. These outputs were then used in 

the CA-Markov model. 

 

4. Results and Discussion 

4.1 LULC Classification and Changing 

The present study utilized Sentinel-2 time series data 

from 2019 and 2021 to perform LULC classification 

through the random forest classifier of the machine 

learning approach. The classification accuracy was 

evaluated using a confusion matrix and ground truth 

data obtained from field surveys. The overall 

accuracy of the classification was found to be 

87.79%. Table 2 shows that the highest classification 

accuracy was obtained for water bodies (WB), salt 

fields (SF), and artificial surfaces (AS), respectively. 

It was found that separating salt fields from paddy 

fields or construction sites posed a challenging issue 

due to similarities in geometry, however, spectral 

classification based on the presence of even thin 

layers of salt was found to be useful. Furthermore, 

due to the limitations of the spatial resolution of the 

image, small artificial objects were difficult to 

extract, and therefore, grouping pixel technique was 

applied to enhance the limitations of this issue. 

Overall, LULC change between 2019 and 2021, 

in addition to Table 3, revealed an increasing trend in 

human-made structures and tree plants, whereas the 

land for local economic functions such as HC, WC, 

and SF, showed a decreasing trend. Even the 

agricultural map, Agri-map, reported by the Land 

Development Department (LDD) in 2021, 

recommended the transformation of herbaceous 

plants to GI's plantation including lychee, coconut, 

and pomelo since 2019, following appropriate 

agricultural extension guidelines [39].  
 

Table 2: Accuracy assessment of classified LULC in 2021 
 

LULC Class 
Ground Reference data 

Total UA 
AS HC WC TC MG WB SF MC 

C
la

ss
if

ie
d

 

AS 344             3 347 99.14 

HC 20 162       10     192 84.38 

WC 4 30 129           163 79.14 

TC     8 28       2 38 73.68 

MG       2 5       7 71.43 

WB           102    102 100.00 

SF             20   20 100.00 

MC     1 46       116 163 71.17 

Total 368 192 138 76 5 112 20 121 1032  
PA 93.48 84.38 93.48 36.84 100 91.07 100 95.87 OA = 87.79% 

 

Table 3: The LULC changes observed between 2019 and 2021 
 

LULC Class 
2019 2021 

Area (sq.km.) Percent (%) Area (sq.km.) Percent (%) 

1. Artificial surface (AS) 515.6 7.8 610.2 9.3 

2. Herbaceous crops (HC) 1,222.9 18.6 1,060.7 16.1 

3. Woody crops (WC) 686.2 10.4 622.8 9.5 

4. Tree-covered areas (TC) 3,581.9 54.4 3,680.2 55.9 

5. Mangroves (MG) 56.1 0.9 51.8 0.8 

6. Water bodies (WB) 323.7 4.9 343.6 5.2 

7. Salt fields (SF) 50.4 0.8 36.7 0.6 

8. Miscellaneous (MC) 151.2 2.3 182.1 2.8 

Total 6,588.0 100.0 6,588.0 100.0 
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Figure 4: Results of LULC change between 2019 and 2021;    

(a) gain and loss of LULC, (b) overall net change in all LULC categories,  

(c) artificial surface, (d) herbaceous crops, (e) woody crops, (f) tree-covered areas, (g) mangroves,  

(h) water bodies, (i) salt fields, and (j) miscellaneous  
 

In contrast, Phetchaburi is renowned for its 

production of high-quality sea salt, key limes, palm 

sugar, rose apples, pineapples, and bananas, among 

other items [40]. However, the traditional yield has 

experienced a drastic decline due to a reduction in 

manpower in those sectors. The Land Change 

Modeler (LCM) available in the software was 

utilized to conduct a detailed investigation of the 

LULC changes from 2019 to 2021. The LCM 

generated a grain and loss chart, depicted in Figure 4, 

which represents the way LULC classes transition 

from one to another.  
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The HC class was found to be decreasing from 2019 

to 2021, with a conversion to WC of approximately 

40 km2, as seen in Figure 4(d) and 4(e). This indicates 

a shift in the main economic activity, with the 

promotion of fruit tree plantations gradually gaining 

momentum in this area. Additionally, the WB areas 

increased by around 12.5 km2, which is the highest 

change from SF. This provides evidence that the salt 

fields are being abandoned or converted into other 

land utilities, as shown in Figure 4(h) and 4(i). The 

most significant change observed was in the artificial 

surface (AS), which increased by almost 60 km2, 

primarily constructed or converted from HC, as 

depicted in Figure 4. This LULC analysis revealed 

that HC experienced the most significant changes 

among other classes due to the continued decline of 

herbaceous crops' economic function in this area. In 

addition to its rich cultural heritage and agricultural 

productivity, Phetchaburi has become a popular 

tourist destination due to its unique topography. As 

depicted in Figure 5, the number of tourist 

accommodations has been steadily increasing since 

the Tourism Authority of Thailand (TAT) tourism 

campaign in 2017, indicating a growing demand for 

tourism-related activities in the region. Furthermore, 

the urban expansion in the area is reflected in the 

increasing presence of artificial surfaces, such as 

roads and highways, as seen in Figure 5. This 

expansion has led to an extension of the 

transportation network, facilitating the movement of 

people and goods within and beyond the region. 

The spatial resolution of remote sensing images 

plays a crucial role in accurate Land Use and Land 

Cover (LULC) classification. However, it has been 

observed that a 10-meter resolution image can 

significantly impact the classification results, 

particularly in the case of objects with intricate 

details, such as trees and small 

buildings/constructions. In addition, the limited 

spatial resolution often leads to a mixture of spectral 

reflectance values, resulting in the extraction of 

erroneous information and confusion in near-

character objects. Therefore, caution must be 

exercised while selecting the appropriate spatial 

resolution for the remote sensing image to ensure the 

accuracy and reliability of the LULC classification 

results.  

 

4.2 The LULC Simulation in 2023 

LULC change extraction is a magnificent tool for 

economic and urban behaviors; therefore, LULC 

simulation in 2023 is applied for LULC change 

prediction. The map of LULC change in this study 

from 2019 and 2021 was initial as the dependent 

variable to perform the MLP neural network, 

preparing as two classes, namely: No change and 

LULC change, as shown in Figure 6a.  

 

 
Figure 5: The LULC classifications (a) 2019, and (b) 2021  
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Figure 6: LULC change analysis results (a) ULC Change from 2019 to 2021, (b) elevation, (c) slope,  

(d) distance to stream, (e) distance to road, and (f) distance to urban and village  
 

Table 4: Sub-modules and Cramer’s V value for simulation 
 

LULC 

Factor 

Elevation Slope 
Distance to 

stream 

Distance 

to road 

Distance to urban 

and village 

Overall V 0.3336 0.0092 0.0097 0.2191 0.2582 

1. Artificial surface 0.0000 0.0000 0.0000 0.0000 0.0000 

2. Herbaceous crops 0.3700 0.0038 0.0107 0.2243 0.2653 

3. Woody crops 0.4497 0.0091 0.0155 0.3075 0.3650 

4. Tree-covered areas 0.3050 0.0038 0.0015 0.2259 0.2630 

5. Mangroves 0.8755 0.0015 0.0200 0.6198 0.7303 

6. Water bodies 0.1427 0.0204 0.0041 0.0621 0.0734 

7. Salt fields 0.2650 0.0120 0.0049 0.1571 0.1863 

8. Miscellaneous 0.1200 0.0031 0.0035 0.0525 0.0635 
 

Table 5: The transition probability matrix for LULC change 
 

LULC 

Class 

Prediction  

AS HC WC TC MG WB SF MC 

AS 1.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

HC 0.0482 0.7625 0.1074 0.0319 0.0019 0.0180 0.0002 0.0299 

WC 0.0313 0.1271 0.6256 0.1098 0.0107 0.0049 0.0000 0.0906 

TC 0.0004 0.0034 0.0107 0.9778 0.0004 0.0003 0.0000 0.0071 

MG 0.0180 0.0595 0.1423 0.0229 0.6688 0.0852 0.0013 0.0020 

WB 0.0130 0.0392 0.0048 0.0030 0.0113 0.9101 0.0179 0.0007 

SF 0.0217 0.0113 0.0000 0.0000 0.0033 0.3579 0.6058 0.0000 

MC 0.0476 0.1225 0.2267 0.1307 0.0008 0.0028 0.0000 0.4688 
 

The model utilized five driving factors or variables: 

elevation, slope, distance to stream, distance to road, 

and distance to urban and village areas, as shown in 

Figure. 6b – 6f. The dominant factors were calculated 

using Cramar’s V values, which determining the 

most dominant factor in LULC change is elevation 

and distance to urban and village as shown in Table 

4.  

Associated with the driving factor, a Markov chain 

analysis was used to produce the changing dynamic 

of the LULC classes. The transition probability 

matrix (TPM) was generated to forecast the future 

patterns of LULC and the results presented in Table 

5. Based on human behavior, they were unlikely to 

return to tree cover or other land uses once artificial 

surfaces were established. 
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Figure 7: The LULC prediction in 2023 

 

Table 6: The comparison of LULC change between 2019, 2021, and 2023 
 

LULC Class 
2019 2021 2023 

Area (sq.km.) Area (sq.km.) Area (sq.km.) 

1. Artificial surface 515.6 610.2 697.10 

2. Herbaceous crops 1,222.9 1,060.7 939.70 

3. Woody crops 686.2 622.8 593.22 

4. Tree-covered areas 3,581.9 3,680.2 3,726.36 

5. Mangroves 56.1 51.8 48.92 

6. Water bodies 323.7 343.6 354.03 

7. Salt fields 50.4 36.7 28.63 

8. Miscellaneous 151.2 182.1 200.01 

Total 6,588.0 6,588.0 6,588.0 
 

Therefore, it was predicted that the current artificial 

surface (AS) would remain as the AS in 2023 with a 

probability of 100%, as shown in Table 5. 

Additionally, the study found a high probability of no 

change in the tree cover (TC) class, which may be 

attributed to most TC areas belonging to national 

forest parks. The change of LULC between 2019 and 

2021 yields the LULC in 2023, Figure 7, 

demonstrating that artificial surface (AS) was the 

dominant change in this area (Table 6). The predicted 

AS in 2023 is distributed in tree-covered areas, 

nearby the dam in the forest area, a water body 

illustrated in the center of the map, and along a 

shoreline in the right part of the map in Figure 7 as 

well. The prediction of AS aligns with the 

government promoting plan that the recent 

acceptance of Phetchaburi into the UNESCO 

Creative Cities Network (UCCN) for gastronomy in 

2021, as well as the growing demand for tourist 

activities due to the post-COVID-19 pandemic, has 

led to an increase in tourist facilities and 

construction, which were found through remote 

investigation to be associated with the next normal 

paradigm. However, during 2019 – 2021, the 

COVID-19 pandemic had a profound impact on 

society and the economy worldwide and affected the 

availability and quality of data. Data collection 

during the pandemic may have been more 

challenging due to restrictions on movement and 

face-to-face interactions. As a result, there may have 

been gaps or biases in the data that were collected, 

which could have affected the accuracy of the 

research findings.  
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The next   normal paradigm   is mentioned in post-

pandemic affected different aspects of social and 

economic life, including changes in behavior, 

mobility patterns, and consumption patterns.  These 

changes could have affected the land use patterns and 

economic activities that were being studied. 

 

5. Conclusion  

In conclusion, this study has successfully classified 

land use and land cover (LULC) using the 

internationally recognized System of Environmental-

Economic Accounting (SEEA) standard and has 

utilized a cellular automata-Markov chain (CA-

Markov) model to predict future LULC in 

Phetchaburi and Samut Songkhram provinces, 

Thailand. The random forest algorithm applied to the 

Sentinel-2 time-series imagery yielded an overall 

accuracy of approximately 87%, and the model 

closely matched LULC types with field observations. 

The LULC change analysis conducted between 2019 

and 2021 revealed significant changes in the spatial 

and quantitative distribution of LULC. Notably, the 

study found a slight increase in artificial surfaces, 

tree-covered water bodies, and miscellaneous areas, 

while herbaceous crops, woody crops, mangroves, 

and salt field areas decreased significantly during the 

same period. Additionally, the study demonstrated 

the potential for LULC to explain socioeconomic 

patterns in a target area when associated with 

economic data. Access to various datasets is essential 

for informing land use and land cover planning 

decisions to promote environmental sustainability. 

The limitations of Sentinel-2 imagery, which does 

not provide historical imagery over several decades, 

are acknowledged. However, the continuous 

operation of the product in high resolution similar to 

Landsat provides opportunities for future research 

that can input more time-series imagery and training 

datasets covering all classes of LULC in multiple 

regions and countries. Incorporating demographic 

data into the analysis is critical to understanding the 

long-term dynamics of LULC change and its 

implications for achieving sustainable development. 

These findings make significant contributions to the 

field of LULC analysis and provide a foundation for 

future research in sustainable land use management 

and conservation. 
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