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Abstract 

In this study, three multi-temporal remotely sensed data acquired from Landsat-5 Thematic Mapper (TM) and 

Landsat -8 Operational Land Imager/Thermal Infrared Sensor (OLI/TIRS) in 1990, 2005, and 2020 were 

used. The maximum likelihood classifier (MLC) was opted to classify land use and land cover (LULC). Land 

surface temperature (LST) and LULC spectral indices i.e., Normalized Difference Vegetation Index (NDVI), 

Normalized Difference Built-up Index (NDBI), Normalized Difference Latent Heat Index (NDLI) and Bare 

Soil Index (BSI) have been computed and their relationships were examined. The overall accuracy of LULC 

was more than 93%. The analyses showed a notable transformation in LULC over the study period. For 

instance, built-up areas increased 103.7% with a rate of 45.5 ha/year and agriculture land increased by 

28.9% with a rate of 186.4 ha/year. Whereas, bare soil was sharply decreased by 36.4% at a rate of 

227.7ha/year. The minimum and maximum LST values increased by 2.9°C and 4.9°C, respectively, from 1990 

to 2020. Furthermore, LST has a negative relationship with NDVI and NDLI (NDVI: 1990: r2 = 0.62; 2005: 

r2 = 0.62; 2020: r2 = 0.65. NDLI: 1990: r2 = 0.79; 2005: r2 = 0.78; 2020: r2 = 0.61) and a positive 

relationship with NDBI and BSI (NDBI: 1990: r2 = 0.68; 2005: r2 = 0.73; 2020: r2 = 0.44. BSI: 1990: r2 = 

0.77; 2005: r2 = 0.78; 2020: r2 = 0.53). These results provided useful information about LULC changes and 

its impact on LST, which are necessary for experts and land-use planners to formulate sustainable LST 

mitigation policies, create an environmental comfort in Nag-Hammadi district, and other geographical 

locations with similar conditions.  
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1. Introduction 

The land use and land cover (LULC) rapidly 

changes due to various natural and anthropogenic 

activities. This promotes serious worldwide 

environmental and human concerns regarding 

energy balance, near-surface temperature over the 

cities and its surroundings, human comfort, physical 

health, and quality of life [1] [2] and [3]. In this 

context, land surface temperature (LST) is sensitive 

to LULC changes which, in turn, influences its 

spatial distribution and, as such, needs accurate 

monitoring [4] and [5]. Traditional ground field and 

in-situ methods for monitoring LULC and LST are 

costly, time-consuming, and involve a tedious 

process making the spatial analysis of LULC and 

LST difficult [6] and [7]. 

In this regard, geospatial technologies i.e., 

remote sensing and geographic information system 

(GIS) are effective for detecting the changes of 

LULC and LST due to several reasons such as the 

low cost, availability, and large spatial coverage [8] 

and [9]. Several studies explored the impact of 

LULC changes on LST using GIS techniques and 

various satellite data over different geographical 

locations. Zhang et al., [10] used IKONOS data to 

obtain urban vegetation types and Landsat 7 

Enhanced Thematic Mapper Plus (ETM+) thermal 

bands to retrieve LST over Nanjing City, China. 

They found that higher LST values are negatively 

correlated with the vegetation cover (r = - 0.59). 

The results also revealed greater cooling effect of 

large-vegetated areas over smaller ones. Mallick 

[11] applied ASTER image at 90m for mapping 

LULC and LST over semi-arid region of Abha, 

Kingdom of Saudi Arabia and found that the spatial 

distribution of LST was affected by LULC and 

negatively correlated with Normalized Difference 
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Vegetation Index (NDVI) with r2 value of 0.62. El-

Zeiny and Effat [12] used Landsat Thematic Mapper 

(TM), ETM and Landsat 8 Operational Land 

Imager/Thermal Infrared Sensor (OLI/TIRS) images 

over El-Fayoum governorate, Egypt, and found that 

desert bare lands exhibited mean LST of ˃42℃ 

followed by urban areas, vegetation, and water 

bodies. Dhar et al., [13] utilized Landsat-5 TM, 

Landsat-8 OLI/TIRS, and Sentinel-2A for mapping 

LULC and estimating the LST over Rajarhat Block, 

West Bengal, India. The study showed an increase 

in LST to the tune of <1°C. Furthermore, the results 

revealed negative correlation between NDVI and 

LST, whereas positive correlation occurred between 

Normalized Difference Built-up Index (NDBI) and 

LST of urban areas. Aik et al., [14] utilized Landsat 

7 ETM+, Landsat 8 OLI/TIRS, and Moderate 

Resolution Imaging Spectroradiometer (MODIS) 

images over Cameron Highlands district, Malaysia. 

The results demonstrated that the measured LST 

showed a rise of about 2-3°C with an extreme of 

5°C on average. The current study utilized Landsat 

satellite images to evaluate the LULC changes and 

their impact on LST in Nag-Hammadi district over 

the past 30 years (1990 and 2020) as this region is 

the economic, commercial, agriculture and 

industrial hub in Upper Egypt. The specific 

objectives of this study are to (i) analyze the 

spatiotemporal changes of LULC over the last three 

decades from 1990 to 2020; (ii) analyze the 

spatiotemporal variation of LST, and (iii) evaluate 

the relationship between LST and selected LULC 

spectral indices. 

 

2. Study Area 

Geographically, Nag-Hammadi district is located in 

Upper Egypt between 25°26ʹ 18ʺ to 26°08ʹ58ʺ N 

latitude and 32°09ʹ47ʺ to 32°27ʹ03ʺ E longitude 

(Figure 1). The district belongs to Qena governorate 

with a total area of 40703.58 hectare (ha). The 

population increased from 373504 in 1996 to 

451891 in 2006 and reached 578237 in 2017 [15]. 

Climatologically, it is characterized by a desert 

climate i.e., hot, and dry summer and warm winter.  
 

 
 

Figure 1: Geographical location of the study area (Nag-Hammadi district) 

 

 

 



15 

International Journal of Geoinformatics, Vol.19, No. 3, March, 2023 

ISSN: 1686-6576 (Printed)  |  ISSN  2673-0014 (Online) | © Geoinformatics International 

In the summer, the average maximum temperature is 

44°C, while it is 24°C in the winter. The maximum 

relative humidity is 53% in the winter and 29% in 

the summer. It rarely rains [16]. Agriculture is the 

prime source of livelihood for the population, and 

it’s cultivated with various fruits, vegetables, and 

field crops depending on the irrigation from the Nile 

River and underground sources. In addition, the 

district is home to the largest factory of aluminium 

production in the Middle East, and the largest 

factory for sugar production in Egypt. 

 

3. Materials and Methods 

Figure 2 shows the conceptual diagram of the major 

procedures adopted in this study. 

 

3.1 Data Collection and Pre-Processing 

Remotely sensed surface reflectance and surface 

temperature imageries from Landsat 5 and Landsat 

8 were used for the LULC classification and the 

LST estimation of Nag-Hammadi district. Three 

satellite images from the Landsat series i.e., 

Landsat-5 for 1990, 2005, and Landsat 8 OLI/TIRS 

for 2020 were freely acquired from the United 

States Geological Survey (USGS) 

(https://earthexplorer.usgs.gov). These images were 

selected in June and July to avoid the seasonal 

variation of climatic conditions with cloud-free 

status peering in mind that the LST and its relation 

to LULC is maximize in the summer. Table 1 

provides a descriptive summary of the Landsat 

imageries that have been used in this study. Only 

band 10 from Landsat 8 was used for retrieving LST 

because band 11 is affected by stray light and 

ghosting issues and faced calibration uncertainty 

[14]. All the used spectral bands were stacked and 

clipped to the boundary of the study area. 

Furthermore, other auxiliary datasets such as 

topographic maps at scale (1: 50,000), land use 

maps and high spatial resolution images from 

Google Earth were used to support the analysis. In 

this context, several band combinations of the 

Landsat images were tested to generate different 

composite effects and increase the interpretation of 

LULC. A combination of NIR, red, and green 

spectral bands were used in displaying the RGB 

color composite image for Landsat 5 TM and 

Landsat 8. Then, four LULC classes were visually 

identified namely: built-up area, agricultural land, 

water bodies, and bare soil and verified from the 

field investigation. 

 

 
 

Figure 2: Conceptual diagram of the adopted methodology, (a) generation of LULC maps and derived-based 

indices, (b) derivation of LST and its relation with LULC and spectral indices 
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Table 1: Description of the satellite imagery used for LST and LULC in this study 

* Resampled to 30 m pixels by USGS from the original 120 and 100m resolution.  

 

Built-up areas represent Naj-Hammadi city, all rural 

villages, commercial and industrial buildings, and 

transportation facilities. Agricultural land includes 

all cultivated lands with field crops, vegetables or 

fruit trees, and harvested lands. Water bodies 

include the Nile River, irrigation, and drainage 

canals. Bare soil includes uncultivated land or land 

with no vegetation cover. 

 

3.2 Image Classification   

Supervise-based maximum likelihood classifier 

(MLC) was employed to classify the Landsat 

images. MLC is robust and requires less extended 

training process, and it is commonly used for the 

precise monitoring and assessment of the LULC 

changes [11] [12] and [17]. In this study, the 

training sets were drawn using the on-screen 

digitizing for each of the LULC types for each 

image. This allows for generating spectral 

signatures for the LULC classes which were input 

into the MLC algorithm. Then, accuracy assessment 

was performed using four hundred (400) reference 

sample points computed based on binomial 

probability theory using equation 1 and spatially 

distributed using a stratified random schema to 

represent the four LULC classes located in the study 

area. The binomial probability theory can be 

represented as follows: 

 

 

 

𝑁 =
𝑧2 ×  𝑝 ×  𝑞

𝐸2
 

Equation 1 

where:  

N = Sample size 

p = Expected percent accuracy of the entire map 

q = 100-p 

E = Allowable error 

z = 2  
 

Then, for each image the overall, user’s, and 

producer’s accuracies and Kappa coefficient were 

calculated for the classified images using equations 

2-5: 
 

𝑂𝑣𝑒𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (%) =
∑𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝑉𝑎𝑙𝑢𝑒

𝑁
× 100 

Equation 2 

 

where: Diagonal value = Number of correctly 

classified pixels for each class: 

N = Total number of pixels (reference samples) 

 

𝑈𝑠𝑒𝑟′𝑠 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(%) =
𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑅𝑜𝑤

𝑅𝑜𝑤 𝑇𝑜𝑡𝑎𝑙
× 100  

Equation 3 
 

𝑃𝑟𝑜𝑑𝑢𝑠𝑒𝑟′𝑠 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(%) 
𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝐶𝑜𝑙𝑢𝑚𝑛

𝐶𝑜𝑙𝑢𝑚𝑛 𝑇𝑜𝑡𝑎𝑙
100 

 

Equation 4 

 

Type of 

Satellite 
Sensor ID Path/Row 

Date of 

acquisition 

Band Name and Wavelength 

(µm) 

Spatial 

Resolution 

(m) 

Landsat – 5 
Thematic 

Mapper (TM) 
175/42 

June 10, 1990; 

July 5, 2005 

Band 1_Blue: 0.45–0.52  

Band 2_Green: 0.52–0.60  

Band 3_Red: 0.63–0.69  

Band 4_Near Infrared (NIR): 

0.76–0.90  

Band 5_Shortwave Infrared 

(SWIR-1): 1.55–1.75  

Band 6_TIR(Thermal): 10.40-

12.50  

Band 7_Shortwave Infrared 

(SWIR-2): 2.08–2.35             

30 

30 

30 

30 

 

30 

 

120* 

 

30 

Landsat –8 

Operational 

Land Imager 

(OLI) and 

Thermal 

Infrared 

Sensor (TIRS) 

175/42 June 12, 2020 

Band 2_Blue: 0.45 – 0.51  

Band 3_Gerrn: 0.53 – 0.59  

Band 4_Red: 0.64 – 0.67  

Band 5_ Near Infrared (NIR): 

0.85 – 0.88  

Band 6_ Shortwave Infrared 

(SWIR-1): 1.57 – 1.65  

Band 7_ Shortwave Infrared 

(SWIR-2): 2.11–2.29  

Band 10 Thermal Infrared 

(TIRS-1) 10.60–11.19 

30 

30 

30 

30 

 

30 

 

30 

 

100* 
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𝐾 =  
𝑁 ∑ 𝑥𝑖𝑖 − ∑ (𝑥𝑖+ × 𝑥+𝑖  )𝑟

𝑖=1
𝑟
𝑖=1

𝑁2 −  ∑ (𝑥𝑖+ × 𝑥+𝑖  )𝑟
𝑖=1

 

Equation 5 

where:  

K = Kappa coefficient 

r = Number of rows in the matrix 

xii = Number of observations in row i and column i 

xi+ and x+ i = Marginal sum of row i and column i 

respectively  

N = Total number of observations (pixels) in the 

entire matrix 

 

As a role of thump if the accuracy of the classified 

image is greater than 85% and Kappa statistic is 

above 0.75 then it would be acceptable for LULC 

classification [18]. Finally, the magnitude of the 

change (MC), the percentage of change (PC), and 

the annual rate of change (ARC) were computed to 

determine the changes in LULC during the study 

periods using equations 6-8 [19]: 

 
𝑀𝐶 (ℎ𝑎) = 𝐴𝑖 − 𝐴𝑓 

Equation 6 
 

𝑃𝐶(%) =
𝐴𝑖 − 𝐴𝑓

𝐴𝑖
 × 100 

Equation 7 
 

𝐴𝑅𝐶(ℎ𝑎/𝑦𝑒𝑎𝑟) = (
𝐴𝑖 − 𝐴𝑓

𝑛
 ) 

Equation 8 
 

where: Ai = Class area (ha) at the initial time 

           Af = Class area (ha) at the final time 

           n = Number of years of the time period 

  

3.3 Calculation of LULC Spectral Indices 

Four common spectral indices were used to monitor 

LULC and LST. The NDVI (equation 9; [20]) 

values range from -1 to 1 where higher NDVI 

values indicate dense vegetation cover while lower 

values (typically from 0 to 0.2) indicate non-

vegetated cover [21]. The NDBI (equation 10) is 

sensitive to the built-up features and has been 

promoted as an effective measure to identify built-

up areas using the short-wave infrared and the near-

infrared regions of the spectrum [1] [4] and [22]. 

The values of NDBI range from -1 to 1. The higher 

values represent high density built-up areas, 

whereas lower values refer to vegetation or water. 

The Normalized Difference Latent Heat Index 

(NDLI, equation 11) has been proven to be an 

effective indicator for monitoring water content 

using a combination of the three spectral bands (i.e., 

green, red, SWIR) due to their spectral response to 

water content from other land cover types [23] [24] 

and [25]. The NDLI values greater than 0 to 1 

indicate existence of water content. The Bare Soil 

Index (BSI) has been utilized for monitoring and 

mapping the bare soil areas using equation 12 [26] 

and [27] where the higher value denotes bare soil. 

Equations 9-12 are expressed as follow: 
 

 

NDVI = 
NIR - RED

NIR + RED
 

Equation 9 
 

NDBI = 
SWIR - NIR

SWIR + NIR
 

Equation 10 
 

NDLI = 
GREEN - RED

GREEN + RED + SWIR
 

 

Equation 11 
 

BSI = 
 (SWIR1 + RED) - (NIR + BLUE)  

(SWIR1 + RED) + (NIR + BLUE)
 

Equation 12 
 

where:  

NIR = Near infrared band (i.e., 0.76-0.90 µm for 

Landsat TM and 0.85-0.88 µm for Landsat-8 

OLI)  

RED = Red band (i.e., 0.63-0.69 µm for Landsat 

TM and 0.64-0.67 µm for Landsat-8 OLI)  

SWIR1 = Shortwave infrared band (i.e., 1.55-1.75 

µm for Landsat TM and 1.57-1.65 µm for 

Landsat-8 OLI) 

GREEN = Green spectral band (i.e., 0.52-0.60 µm 

for Landsat TM and 0.53-0.59 µm for Landsat-8 

OLI) 

BLUE = Blue band (i.e., 0.45-0.52 µm for the 

Landsat TM and 0.45-0.51 µm for Landsat-8 

OLI)  

 

3.4 Retrieving LST   

To retrieve LST from thermal band of Landsat 

imageries the following procedures are explained 

below. 

 

3.4.1 Conversion of digital number (DN) values to 

top-Of-atmosphere (TOP) spectral radiance (Lλ) 

The calculation of the spectral radiance (Lλ) has 

been done using the rescaling factors provided in the 

metadata file [28] using equation 13 for Landsat-5 

TM imageries for years 1990-2005 and equation 14 

for Landsat-8 TIRS band for the year of 2020. 

Equation 13 is presented as follow:   
 

𝐿λ = [
𝐿𝑀𝐴𝑋.𝜆 − 𝐿𝑀𝐼𝑁.𝜆 

𝑄𝐶𝐴𝐿 .𝑀𝐴𝑋 − 𝑄𝐶𝐴𝐿 .𝑀𝐼𝑁
] × (𝑄𝐶𝐴𝐿 − 𝑄𝐶𝐴𝐿𝑀𝐼𝑁)

+ 𝐿𝑀𝐼𝑁.𝜆 

Equation 13 
 

where:  

Lλ = Spectral radiance at sensor’s aperture in 

w/(m2·sr · μm) 
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LMAX.λ = Spectral radiance scaled to QCAL.MAX i.e., 

DN value 255  

LMIN.λ = Spectral radiance scaled to QCAL.MIN i.e., DN 

value 1 

QCAL = Pixel values of satellite images (DN) 

QCALMAX = Quantized and calibrated maximum pixel 

value (corresponding to LMAX.λ) 

QCALMIN = Quantized and calibrated minimum pixel 

value (corresponding to LMIN. λ)  
 

Equation 14 is expressed as follow:     
 

𝐿λ =  𝑀𝐿 × 𝑄𝐶𝐴𝐿 + 𝐴𝐿 

Equation 14 
 

where:  

ML = Multiplicative rescaling factor for the 

radiance of the specific spectral band (n) 

obtained from the metadata of the dataset (i.e., 

RADIANCE_MULT_BAND_n) 

AL = Additive rescaling factor for the radiance of 

the spectral band (n) retrieved from the metadata 

of the image’s dataset (i.e., 

RADIANCE_ADD_BAND_n) 

 

3.4.2 Conversion of spectral radiance to brightness 

temperature (in Kelvin) 

The spectral radiance was converted to brightness 

temperature (TB) in Kelvin using equation 15, then 

it was converted from kelvin (°K) to degree Celsius 

(°C) using equation 16: 
 

𝑇𝐵 =  
𝐾2

𝐼𝑛 (
𝐾1
𝐿λ

+ 1)
 

Equation 15 
 

𝑇𝐵 (℃) =  𝑇𝐵(𝑖𝑛 𝑘𝑒𝑙𝑣𝑖𝑛) − 273.15      

Equation 16 
 

where:  

TB = At satellite brightness temperature in Kelvin 

Lλ = TOA spectral radiance w/(m2·sr · μm)  

K1 and K2 = Two pre-launch calibration constants of 

thermal bands obtained from the image’s metadata  

 

For Landsat-5, value of K1 for band 6 is 607.76 and 

K2 for band 6 is 1260.56, and for Landsat-8, value 

of K1 for band 10 is 774.8853 and K2 for band 10 is 

1321.0789.  
 

3.4.3 Calculating of proportion of vegetation (𝑃𝑣) 

Proportion of vegetation ( 𝑃𝑣 ) retrieved using 

equation 17: 

𝑃𝑣 = (
𝑁𝐷𝑉𝐼 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛

𝑁𝐷𝑉𝐼𝑚𝑎𝑥 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛
)

2

 

Equation 17 
 

 

 

where:  

NDVI = Normalised Difference Vegetation Index as 

computed using equation 9 for each of the years 

NDVImin = Minimum value of NDVI for that year 

NDVImax = Maximum value of NDVI for that year 

 

3.4.4 Estimation of the land surface emissivity (LSE) 

The Land surface emissivity (LSE (ε)) is an 

essential parameter to estimate the LST. It was 

computed using equation 18: 
 

𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑒𝑚𝑖𝑠𝑠𝑖𝑣𝑖𝑡𝑦(ℇ) = (0.004 × 𝑃𝑣)  + 0.986 
 

Equation 18 
  

3.4.5 Estimation of LST  

After retrieving the emissivity images for each year, 

the LST was derived using equation 19:  
      

𝐿𝑆𝑇(℃) =  
𝑇𝐵

1 + [(λ ×
𝑇𝐵
𝜌

) × 𝐼𝑛(𝜀)]
 

Equation 19 
 

where:  

TB = At sensor brightness temperature 

λ = Wavelength of emitted radiance (i.e., the 

average wavelengths = 10.8 μm)  

ρ = ℎ × (
𝑐

𝜎
) = 1.438×10-2 m·K (h = Planck’s 

constant (6.626 × 10-34 J·s) 

c = Velocity of light at a vacuum (2.998 ×108 m/s) 

σ = Boltzmam constant (1.38 ×10-23J/K) 

ε = Land surface emissivity (LSE)  

     

LST was then classified into appropriate and color-

coded ranges to produce a thermal pattern 

distribution map for Nag-Hammda district. 

 

3.5 Correlation and Regression Analysis  

The analyses of the relationships between the LULC 

spectral indices and LST for each year were 

evaluated using linear regression analysis at the 

pixel level. A hundred randomly selected sample 

points (pixels) from LST, NDVI, NDBI, NDLI and 

BSI images within the study area for each study 

period were employed to evaluate the relationship 

using the coefficient of determination r2, equation 

20: 

𝑟2 = (
∑ (𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)𝑛

𝑖=1

√∑ (𝑥𝑖 − �̅�)2𝑛
𝑖=1 √∑ (𝑦𝑖 − �̅�)2𝑛

𝑖=1

)

2

 

 

Equation 20 

where:  

xi = Independent variable of NDVI, NDBI, NDLI 

and BSI measuring value of xi 

y = Dependent variable of LST measuring value of 

yi 

n = Number of observations 



19 

International Journal of Geoinformatics, Vol.19, No. 3, March, 2023 

ISSN: 1686-6576 (Printed)  |  ISSN  2673-0014 (Online) | © Geoinformatics International 

 
 

Figure 3: Geographical distributions of spatio-temporal LULC changes in Naj Hammadi district for the years 

(a) 1990, (b) 2005, and (c) 2020 
 

Table 2: Area coverage for each land cover class (Hectares) and percentage of LULC classes 
 

LULC Classes 1990 2005 2020 

Area(ha) % Area(ha) %| Area(ha) %| 

Built-up area 1316.07 3.2 2136.82 5.2 2680.63 6.6 

Agricultural land 19293.93 47.4 21084.3 51.8 24884.64 61.1 

Water bodies 1300.59 3.2 1247.58 3.1 1176.66 2.9 

Bare soil 18792.99 46.2 16234.88 39.9 11961.65 29.4 

Total 40703.58 100.00 40703.58 100.00 40703.58 100.00 

 

4. Results and Discussion 

4.1 LULC changes from 1990 to 2020  

The spatiotemporal analysis of LULC changes is 

presented in Figure 3(a) to (c) and Table 2. Results 

showed that the agricultural land was dominant 

during the period of interest and experienced 

gradual increase from 47.4% to 61.1% of the study 

area. The built-up area increased from 3.2% to 

6.6%, while the bare soil and water bodies were 

declined from 46.2 to 29.4% and from 3.2 to 2.9% 

from 1990 to 2020, respectively.  Table 3 shows the 

MC of the LULC classes between the years. During 

period one, between 1990 - 2005, the study shows a 

noticeable decrease of –2558.11 ha with a change 

difference of -6.3% for the bare soil class. Water 

bodies observed an MC of -53.01 ha with a change 

difference of -0.1%. Whereas, the agricultural land 

witnessed an increase in MC of +1790.37 ha, with a 

change difference of 4.4%. The built-up area 

demonstrated an increase in MC of +820.75 ha with 

differences change of 2%. In the second period, 

between 2005 - 2020, bare soil class had witnessed a 

decline of -4273.23 ha with a change difference of -

10.5%. Water bodies observed an MC of -70.92 ha 

with a change difference of -0.2%. On the contrary, 

agricultural land witnessed an increase of +3800.34 

ha with a change difference of + 9.3%. Furthermore, 

the built-up area witnessed an increase of +543.81 

ha with a change difference of + 1.4%. Additionally, 

the land cover distribution demonstrated various 

change between 1990 - 2020. The bare soil and 

water bodies witnessed a loss of -6831.34 ha (-

16.8%) and -123.93 ha (-0.3%), respectively. Land 

coverage by agricultural land and built-up area 

witnessed the highest increase with +5590.71 ha 

(+13.7%) and +1364.56 ha (+3.4%), respectively. 

The analysis of the MC and PC remarkably show 

that the increase of built-up areas was at expense of 

bare soil and agricultural lands.  
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This increase would be related to the population 

growth, which has contributed to massive human 

activities and development. Moreover, it can be 

observed that agricultural lands were increased in 

line with the decrease of bare soil and maintain its 

domination over the entire study period. Such 

increasing trend in agriculture lands exists mainly 

towards the southern side of the study area. 

This would be due to the continuous investment 

in agricultural activities (i.e., new land reclamation) 

over the past thirty years in the study area which 

significantly contributed to the alteration of LULC 

types. Figure 4 shows the annual rate of change 

(ARC) of the LULC in three different periods (1990 

– 2005; 2005 – 2020 and 1990 – 2020). In the first 

period, a significant annual increase in the built-up 

area (54.7 ha/year) was mostly occurred at the 

expense of agricultural and bare soil (-170.5). Slight 

annual increase and decrease were observed in the 

agricultural land and water bodies; 119.4 ha/year 

and -3.5 ha/year, respectively. During the second 

period the annual increase in built-up areas with rate 

of 36.3 ha/year, and agricultural land increased with 

a rate of 253.4 ha/year, which occurred on expense 

of the bare soil (-284.9 ha/year). During the entire 

study period (i.e., 1990-2020) agricultural land was 

the largest land cover in the region with annual 

increase of 186.4 ha/year. The built-up area 

witnessed an increase of 45.5 ha/year. While, both 

water bodies and bare soil decreased by annual rate 

of -4.1 and 227.7 ha/year, respectively. It was 

observed that this increase was synchronized with a 

decrease in the bare soil during the whole period of 

study which might be a reflection of the 

governmental developmental projects (i.e., urban 

development and fringe desert reclamation). 

 

4.2 Accuracy Assessment 

The overall accuracies of the classified LULC maps 

were 93.25%, 94.5% and 96.25%, for the 1990, 

2005, and 2020, respectively, which is satisfactory 

given that an accuracy of 80% is a minimum 

criterion [18]. Kappa values were 0.91, 0.93, and 

0.95, respectively for the same years indicated for 

acceptable classification. The accuracy assessment 

for each LULC class is summarized in Tables 4-6. 

In all of the classified maps, the water bodies class 

had the highest user’s and producer’s accuracies due 

to its distinct spectral signature from the other 

LULC classes. Also, slightly low errors were 

observed between built-up area and agriculture land 

classes which would likely be due to their distinct 

spectral confusion. Moreover, the color reflection 

resemblance of the roofs of the traditional buildings 

and paved roads in the study area could mistakenly 

be classified across other land uses [29]. 

 

Table 3: The magnitude of the change (MC) in land cover classes between years 
 

LULC Classes 1990-2005 2005-2020 1990-2020 

Area change 

(ha) 

% Diff Area change (ha) % Diff Area change 

(ha) 

% Diff 

Built-up area (+)820.75 (+) 2 (+) 543.81 (+) 1.4 (+) 1364.56 (+) 3.4 

Agricultural land (+)1790.37 (+) 4.4 (+) 3800.34 (+) 9.3 (+) 5590.71 (+) 13.7 

Water bodies (-) 53.01 (-) 0.1 (-) 70.92 (-) 0.2 (-) 123.93 (-)  0.3 

Bare soil (-)2558.11 (-) 6.3 (-) 4273.23 (-) 10.5 (-) 6831.34 (-) 16.8 
 

 
Figure 4: Graph showing annual rate of change for each LULC classes (ha/year) during the period of study 
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4.3 Land Surface Temperature Change (LSTC)  

Figure 5 shows the spatial distributions of LST 

retrieved from satellite images for the three study 

periods (1990, 2005 and 2020). It shows the 

variation of the minimum and maximum LST across 

Nag-Hammadi district which ranges between 

21.94°C and 49.57°C in 1990. In 2005, the LST 

values varied between 24.12°C and 45.57°C, while 

in 2020, the LST values were within the range of 

24.84°C to 54.56 which revealed an increase in the 

minimum and maximum LST over the last three 

decades by approximately of 2.9°C and 4.98°C, 

respectively. This increase in the LST values could 

be attributed to the increasing built-up areas and 

other impervious surface in the study area from 

1990 to 2020.  

 

4.4 Variation of LST for Different LULC Types 

Figure 6 summarizes the mean values of LST (°C) 

of each LULC type during the three years of interest 

1990, 2005 and 2020. Zonal statistics analysis was 

performed to summarize the relationship between 

LULC and LST. The comparison between the LST 

and LULC map indicated low mean values of about 

23°C, 25°C, and 26 °C in water bodies in 1990, 

2005, and 2020, respectively. 

 

Table 4: Confusion matrix of 1990 classified LULC map 
 

LULC- 

Category 

Built-up  Agricultural  Water  Bare soil Total User’s 

accuracy 

Kappa 

coefficient 

Built-up area 88 3 1 5 97 90.7 0.91 

Agricultural land 5 95 2 2 104 91.3 

Water bodies 0 2 98 0 100 98 

Bare soil 4 3 0 92 99 92.9 

Total 97 103 101 99 400  

Producer’s accuracy 90.7 92.2 97 92.9    

Overall accuracy 93.25       
 

Table 5: Confusion matrix of 2005 classified LULC map 
 

LULC- 

Category 

Built-up  Agricultural  Water  Bare soil  Total User’s 

accuracy 

Kappa 

coefficient 

Built-up area 85 3 1 4 93 91.4 0.93 

Agricultural land 2 97 2 4 105 92.4 

Water bodies 0 3 96 0 99 96.9 

Bare soil 2 1 0 100 103 97.1 

Total 89 104 99 108 400  

Producer’s accuracy 95.5 93.3 97 92.6    

Overall accuracy 94.5       

 

Table 6: Confusion matrix of 2020 classified LULC map. 
 

LULC- 

Category 

Built-up  Agricultural  Water  Bare soil  Total User’s 

accuracy 

Kappa 

coefficient 

Built-up area 98 1 0 4 103 95.2 0.95 

Agricultural land 4 96 0 2 102 94.1 

Water bodies 0 1 99 0 100 99 

Bare soil 2 1 0 92 95 96.8 

Total 104 99 99 98 400  

Producer’s accuracy 94.2 96.9 100 93.9    

Overall accuracy 96.25       
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Figure 5: Spatial distribution of LST in Naj-Hammadi district in (a) 1990; (b) 2005; and (c) 2020. A-B, C-D 

and E-F represent LST spatial profiles as shown in Figure 7 

 

 
 

Figure 6: Temporal distribution of mean LST (ºC) over LULC types in 1990, 2005 and 2020 

 

While high mean values of 38°C, 40°C, and 43°C in 

built-up area and 39°C, 42°C, and 45°C in bare soil 

in 1990, 2005, and 2020, respectively. This 

indicates that urban areas contribute on rising LST 

on the account of other LULC as the urban areas are 

mainly constructed from impervious surfaces such 

as stone, metal, and concrete which exhibit low 

evaporation. Meanwhile, the bare soils exhibit 

higher LST values according to the diurnal cycle 

variation of LST.  

The agricultural lands show moderate LST values in 

all years due to the evapotranspiration and 

vegetation density. To deepen the understanding of 

the impact of LULC changes on LST, three arbitrary 

cross sections were created across the study area to 

represent the LULC types wise LST. These included 

two cross-sections (i.e., A-B, C-D) from north to 

south and E-F from west to east (Figure 7).  
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Figure 7: LST versus LULC profiles for the spatial profiles shown in Figure 5 for the years 1990, 2005,  

and 2020 

 

It is seen from the cross profiles that bare soil 

exhibits highest LST with ~45°C followed by built-

up area ~ 40 °C. In three different cross-sections, 

the water bodies and agricultural land showed the 

lower LST of ~ 22ºC and ~ 34ºC, respectively, in 

1990. The LST values for bare soil, built-up area, 

water bodies, and agricultural land were ~ 40°C, ~ 

42°C, ~ 23ºC and ~ 34ºC, respectively in 2005. In 

2020, these values were ~ 46°C, ~ 44°C, ~ 25ºC and 

~ 37ºC, respectively. From the analysis, it can be 

inferred that agricultural lands shows low LST in all 

years due to the heat reduction within vegetation 

cover due to its density and transpiration. These 

outcomes conform to the findings of different 

studies [30] and [31]. 

 

4.5 Relationship between LST with LULC Spectral 

Indices 

Figure 8 shows the spatial distribution of NDVI 

values derived using Landsat images of 1990, 2005 

and 2020. The results showed that the NDVI values 

ranged between -0.50 and 0.72 in 1990, while it was 

-0.41 and 0.69 in 2005, and -0.19 and 0.57 in 

2020.These results demonstrate the highest NDVI 

values in the east and west banks along the Nile 

River within Nag-Hammadi district, which mainly 

is covered by densely vegetated areas (i.e., most 

productive agricultural land) leading to lower LST. 

The distribution of NDLI values of Nag-Hammadi 

district in 1990, 2005, and 2020 is presented in 

Figure 9. The results demonstrated that the NDLI 

values ranged between -0.09 to 0.17 in 1990. This 

was -0.12 and 0.09 in 2005 as well as -0.08 and 0.08 

in 2020. The NDLI values were low in built-up 

areas and bare soils and high in the water bodies and 

vegetation cover which is consistent with other 

studies such as [25]. 

The NDBI (Figure 10) values ranged between -

0.51 to 0.36 in 1990. In 2005, these values were 

between -0.49 and 0.44 as well as -0.39 and 0.28 in 

2020. The NDBI values were very high in the built-

up areas and bare soils as they are exposed to the 

incoming solar radiation. Finally, the spatial 

distribution of BSI values in 1990, 2005, and 2020 

is presented in Figure 11. The result demonstrates 

that the BSI values ranged between -0.54 and 0.13 

in 1990, -0.46 and 0.14 in 2005, and -0.30 and 0.19 

in 2020. Among them, the bare soils have the 

highest BSI value. Figures 12 and 13 illustrate the 

results of the relationship between LST and LULC 

spectral indices. The linear regression analysis 

demonstrates that higher LST were corresponding to 

areas of low vegetation cover and vice-versa. In this 

study, the statistical analysis and scatter plots clearly 

shows that the LST is negatively correlated to 

NDVI; having a coefficient of determination R2 

value of 0.62 in 1990, 0.62 in 2005, and 0.65 in 

2020. The result of the correlation and regression 

analysis discloses a positive correlation between 

NDBI-derived built-up areas and LST with R2 

values of 0.68 in 1990, 0.73 in 2005, and 0.44 in 

2020 (Figure 12).  
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Figure 8: Spatial distribution of NDVI in Naj-Hammadi district in (a) 1991; (b) 2005; and (c) 2020 
 

 
 

Figure 9: Spatial distribution of NDLI in Naj-Hammadi district in (a) 1990; (b) 2005; and (c) 2020 
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Figure 10: Spatial distribution of NDBI in Naj-Hammadi district in (a) 1990; (b) 2005; and (c) 2020 
 

 
 

Figure 11: Spatial distribution of BSI in Naj-Hammadi district in (a) 1990; (b) 2005; and (c) 2020 
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Figure 12: Graph showing scatter plot for (a) LST and NDVI; (b) LST and NDBI 

  

 
 

Figure 13: Graph showing scatter plot for (a) LST and NDLI; (b) LST and BSI 
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Figure 14: (a) Spatial distribution of LST in Naj-Hammadi district in 2020, (b) true colour image of the 

Aluminium factory area, and (c) spatial profile of LST detected for the Aluminium factory area 

 

This denotes that the lower the NDBI, the lower the 

LST while the higher NDBI indicates a higher LST. 

The results show a negative correlation between 

NDLI-derived water features and LST due to the 

physical changes, increased moisture in the irrigated 

areas, and profusion of vegetation, which influence 

the heating of the ground surface [32]. The 

coefficient of determination shows R2 values of 0.79 

in 1990, 0.78 in 2005, and 0.61 in 2020 (Figure 13). 

Also, the low LST values in vegetated areas would 

be due to the processes of transpiration and 

evapotranspiration [33]. On top of that, the negative 

correlation between the NDLI and LST are due to 

evapotranspiration process which reduces the 

surface temperature. Thus, the findings of this study 

are closely consistent with recent studies such as 

[24]. 

Further to examine the changes in bare soil 

lands, BSI maps of 1990, 2005, and 2020 were 

produced. The result reveals a positive correlation 

between BSI-derived bare soil and LST with R2 

values of 0.77 in 1990, 0.78 in 2005, and 0.53 in 

2020 (Figure 13). This relationship would be 

attributed to the low evaporation and low heat 

transfer capacity. Similar findings were reported in 

other studies such as [1] [25] [34] [35] [36] and 

[37].  

It is noteworthy to mention that the study area is the 

home of heavy industries (i.e., Aluminium and 

Sugar factories), which is accountable for a notable 

increase in the surface temperature with LST value 

of 54°C by ~5-7°C compared to its surroundings. 

The LST profile across the industrial area also 

confirmed the existence of this case in this area 

(Figure 14). 

 

 

 

 

5. Conclusion  

The study effectively explored the changes in LULC 

and their impacts on LST in Nag-Hammadi district, 

Upper Egypt from 1990-2020, using geospatial 

technologies. The results indicated a significant 

increase in built-up area and agriculture lands, while 

bare soil and water bodies declined which 

subsequently affect the LST within the study area. 

The relationship between LST and LULC spectral 

indices was examined and interpreted quantitatively 

by linear regression analysis at the pixel level. The 

regression analysis showed that vegetated areas 

(NDVI) and water bodies (NDLI) have a negative 

relationship with LST, and positive relationship in 

the built-up areas (i.e., NDBI) and bare soil (i.e., 

BSI). Some of vital causes behind the higher surface 

temperature in built-up areas might be due to the 

urban growth and development in the socio-

economic activities, which affected the radiative 

properties in the study area. These findings would 

be valuable for local government authorities and 

decision makers since they provide the updated 

information of LULC dynamics, improve 

understanding and identification of areas that have a 

higher LST to implement long-term sustainable 

strategies to mitigate the effect of LST and create a 

friendly environment in the study area for a 

sustainable future.  
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