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Abstract 

Rice (Oryza sativa L.) is a staple food for more than half of the global population. This research, therefore, 

aims to explore the estimation of crop yields towards the application of unmanned aerial vehicles (UAVs). 

The research areas are the sample rice fields owned by Sam Ngam Large-Scale Rice Production Community 

Enterprise in Don Tum District, Nakhon Pathom. The data collected by both RGB and multispectral UAVs 

was used for estimating the crop yields of Rice Department 41 (RD41), a rice variety, and then analyzed by a 

geographic information system (GIS). Multiple Linear Regression was applied to factor analysis for the 

purpose of crop yield estimation based on the factors investigated and obtained by the UAVs. These factors 

included vegetation indexes (i.e. Normalized Difference Vegetation Index, Green Normalized Difference 

Vegetation Index, and Triangular Greenness Index), plant height, and canopy coverage. The prediction of the 

analysis model was proved to be valid (R2 = 0.99; RMSE = 2.506 g.). Extreme Gradient Boosting (XGBoost) 

was applied to increase the accuracy of the estimation (RMSE = 0.557 g.; MAE = 0.364). The findings of 

study showed that the utilization of UAVs could contribute to the estimation of crop yield in the research 

areas. 
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1. Introduction 

Rice (Oryza sativa L.) is an essential source of 

energy for human beings. It is a staple food for more 

than 50% of the world’s population by which 

approximately 20,000 tons of rice are consumed 

each year [1] and [2]. However, the demand for rice 

has been tremendously rising [3]and [4]owing to 

myriad global concerns such as overpopulation [5], 

food insecurity [6], and climate change [7] 

Countries in Southeast Asia, a major rice-producing 

region, such as Vietnam, Myanmar, and Thailand 

are widely acknowledged as primary rice exporters 

across the globe. In particular, the Chao Phraya 

River Basin [8], the largest basin of Thailand, is one 

of the most intensive rice-producing areas 

worldwide. In 2019, around 40% of the total labor 

force in Thailand belonged to the agricultural sector, 

and 6.04 million tons of rice (with a value of 3.74 

billion USD) were exported, making the country 

become the world’s second largest rice exporter of 

that year [9]. Therefore, it can be assumed that rice 

is a crucial economic plant in Thailand which is not 

only consumed domestically but also globally. 

Unfortunately, even though Thailand’s economic 

performance is highly correlated with rice 

production outputs, the Office of Agricultural 

Economics [10] reports that the national rice yields 

have declined and become uncertain over the past 

five years. As a result, an accurate estimation of rice 

production is necessary in order to maximize the 

quantity and quality of each paddy field.  

https://doi.org/10.52939/ijg.v19i2.2569
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At present, the advancement of geospatial 

technology is flourishing, especially the application 

of remote sensing and satellite imagery in 

agriculture [11] [12] and [13] According to 

González et al., [14] 20m spatial resolution imagery 

provided by the Sentinel-2 satellites was employed 

to monitor rice fields and their outputs and record 

data in time series based on 4 indexes: NDVI, 

NDWIMF, NDWIGAO, and BSI. The study shows 

that NDWIMF could estimate crop yields most 

effectively. Another study conducted by Hashemi et 

al., [15] reveals that the Synthetic Aperture Radar 

(SAR) data from Sentinel 1 could predict the crop 

yields of rainfed paddy fields efficiently. Several 

scholarly works have explored the application of 

unmanned aerial vehicles (UAVs) to crop yield 

estimation. For instance, Reza et al., [16] utilized 

low-altitude UAVs to predict crop yields by means 

of the k-means clustering technique. Ge et al., [17] 

investigated rice production by analyzing plant 

nitrogen concentration (PNC) which signified the 

correlation between crop yields and nitrogen content 

in agricultural fields based on the photos taken by 

UAVs. Phan and Takahashi [18] applied a UAV 

LIDAR system to examine height of rice plants. 

They discovered a positive relationship between the 

height of rice plants and the crop yields observed by 

LIDAR’s mineral exploration. Their study shows 

that the UAV LIDAR system is useful for tracking 

the rice growth, and geoinformatics can benefit 

contemporary agriculture. However, the limitation 

of the satellite image is the lower spatial resolution 

than UAV images. In addition, using hyperspectral 

satellite images is possible, but at the same cost of 

operation as LIDAR UAVs. Notwithstanding, UAVs 

are cheaper due to their variety and better spatial 

resolution than satellite imagery. UAVs are cheaper 

because they are more versatile and have better 

spatial resolution than satellite images, making them 

more accessible to the public, and geospatial 

methods can be applied to estimate yield. 

Therefore, this research attempts to scrutinize 

factors affecting rice production towards the use of 

unmanned aerial vehicles (UAVs) and then estimate 

crop yields of the sample rice fields in Don Tum 

District, Nakhon Pathom based on the explored 

factors. The expected outcomes of this study are 

increases in rice productivity and rice farmers’ 

revenues by virtue of the UAV technology. 

 

2. Materials and Methods 

2.1 Study Area 

Nakhon Pathom is a province in the central region 

of Thailand where latitude and longitude 

coordinates are 13.814029 and 100.037292. It is a 

province in the Thachin River Basin, and its size is 

2,168.327 km². Distance between Bangkok and 

Nakhon Pathom is 60 kilometers. Most areas of the 

province are plain fields with neither mountains nor 

forests, which are favorable to rice production. The 

central areas are low plains composed of plateaus 

and water sources. The eastern and southern areas 

are low plains along the Thachin River where many 

natural and artificial canals can be found. 
 

 
 

Figure 1: Study area 
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However, the northern and northeastern areas of the 

province are highlands which are not suitable for 

rice farming [19]. According to the Land 

Development Department [20], the majority of land 

in Nakhon Pathom is utilized for agriculture. The 

land area of 680.18 km² belongs to rice fields, 

accounting for 46.17% of the total agricultural land 

(1,472.99 km²). This fact shows that rice is a 

significant economic plant of Nakhon Pathom. 

Thus, in this study, the rice fields of Sam Ngam 

Large-Scale Rice Production Community Enterprise 

in Don Tum District, Nakhon Pathom, were selected 

as sample fields. Sam Ngam Large-Scale Rice 

Production Community Enterprise, consisting of 40 

member households, owns an agricultural land of 1 

km². It is located in Koh Tan Village, Moo 11, Sam 

Ngam Sub-district, Don Tum District, Nakhon 

Pathom. The village occupies an agricultural land of 

3.2 km² (see Figure 1), and most of the working 

population in the village are farmers. 

 

2.2 Data Collection  

This research applied field experimentation in 

agriculture by which data was obtained from two 

connected sampled rice fields with the size of 0.016 

km² each. The output data from the sample fields 

was collected from 20 plots scattering across the 

fields (1m high x 1m wide each). The sub-fields or 

spots were selected by UAVs when the farmers 

trapped water in the fields. Vegetation indexes were 

employed to classify the field areas into three 

groups: soil, water, and vegetation. Next, the 

samples were selected from all of the three groups. 

In this study, aerial exploration and data collection 

towards the use of UAVs were allowed by the rice 

field owners. Accordingly, a DJI Phantom 4 Pro 

V2.0 camera drone was utilized because of the 

following features: satellite positioning systems 

(GPS/GLONASS), a 7-km flight range, a 500-m 

max service ceiling, wind speed resistance of 36 

km/h, operating frequency between 2.40–5.85 GHz, 

a 4K/20 MP 1-inch (12.8mm x 9.6mm) CMOS 

sensor camera, FOV 84° lens with an aperture of 

f/2.8 - f/11 and auto focus at 1 m, and a 3-axis 

(pitch, roll and pan) stabilized gimbal [21] and [22]. 

A DJI Phantom 4 Multispectral mapping drone was 

also used as it was equipped with six cameras, 

including 1 RGB camera and other 5 cameras 

filtered by five different colors (red edge, near-

infrared, green, red, and blue) [23].  

The DJI Phantom 4 Pro V2.0’s photogrammetry 

was operated in the double grid mode at 20 meters 

above the ground level. The image overlap was set 

up (70% side lap and 80% overlap) in order to 

obtain the ground sample distance of 0.58 cm/pixel. 

Meanwhile, the DJI Phantom 4 Multispectral’s 

photogrammetry was also operated in the double 

grid mode at 20 meters above the ground level. 

However, its image side lap and overlap were set at 

65% and 75%, respectively, in order to acquire the 

ground sample distance of 1.1 cm/pixel. Four 

ground control points were located at each corner of 

the connected fields. Other four ground control 

points were installed at each edge of the fields. In 

total, there were 8 ground control points for each 

drone’s operation (as Figure 2 and Table 1). 

 

2.3 Methods 

In terms of data analysis, the concept of UAV 

photogrammetry was applied to UAV imagery. 

Orthorectification was processed in order to solve 

problems of relief displacement and tilt 

displacement by using high and low spatial data 

based on the Universal Transverse Mercator (UTM) 

which provided adjusted images of objects and 

landscapes as well as their locations, sizes, and 

shapes. The adjustment based on such concept 

increased the accuracy of mapping. Grounded on the 

literature review, this study investigated 7 factors 

affecting UAVs’ crop yield estimation, which 

included Normalized Difference Vegetation Index 

(NDVI), Green Normalized Difference Vegetation 

(GNDVI), Triangular Greenness Index (TGI), crop 

canopy, soil surface, plant height, and canopy cover 

(as Table 2).  

 

Table 1: UAV specifications 
 

Specifications DJI Phantom 4 Pro V2.0 DJI Phantom 4 Multispectral 

Satellite positioning systems GPS/GLONASS GPS/GLONASS 

Flight range 7 km. 7 km. 

Max service ceiling 500 m. 500 m. 

Wind speed resistance 36 km/h 36 km/h 

Operating frequency 2.40–5.85 GHz 2.40–5.85 GHz 

Sensor and Camera 
4K/20 MP 1-inch (12.8mm x 

9.6mm) CMOS 

Six cameras, including 1 RGB camera and other 5 
cameras colors (red edge, near-infrared, green, red, 

and blue) 

Aperture f/2.8 - f/11 f/2.8 - f/11 

Gimbal 
3-axis (pitch, roll and pan) and 

stabilized gimbal 
3-axis (pitch, roll and pan) and stabilized gimbal 
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Figure 2: Data collection towards the use of RGB and multispectral UAVs. (a) Flight path of RGB UAVs  

(b) Flight path of Multispectral UAV (c) Ground control points in each plot area 

 

Table 2: Factors affecting crop yield estimation 
 

Factors Equation Sources 

NDVI 𝑁𝐷𝑉𝐼 =
(𝑁𝐼𝑅 − 𝑅𝑒𝑑)

(𝑁𝐼𝑅 + 𝑅𝑒𝑑)
 Kong et al., [24] 

GNDVI 𝐺𝑁𝐷𝑉𝐼 =
(𝑁𝐼𝑅 − 𝐺𝑟𝑒𝑒𝑛)

(𝑁𝐼𝑅 + 𝐺𝑟𝑒𝑒𝑛)
 Basso et al., [25] 

TGI 𝐺𝑟𝑒𝑒𝑛 − (0.39 𝑥 𝑅𝑒𝑑) − (0.61 𝑥 𝐵𝑙𝑢𝑒) Hunt Jr. et al., [26] 

Crop Canopy 𝐷𝑖𝑔𝑖𝑡𝑎𝑙 𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑀𝑜𝑑𝑒𝑙 Wan et al., [27] 

Soil Surface 𝐷𝑖𝑔𝑖𝑡𝑎𝑙 𝑇𝑒𝑟𝑟𝑎𝑖𝑛 𝑀𝑜𝑑𝑒𝑙  Wan et al., [27] 

Plant Height 𝐶𝑟𝑜𝑝 𝐶𝑎𝑛𝑜𝑝𝑦 −  𝑆𝑜𝑖𝑙 𝑆𝑢𝑟𝑓𝑎𝑐𝑒 Malambo et al., [28] 

Canopy Cover 𝐶𝐶 =  
𝑛𝑜.  𝑜𝑓 𝑐𝑟𝑜𝑝 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝐴𝑂𝐼

𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓  𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑡ℎ𝑒 𝐴𝑂𝐼
 Hunt et al., [29] 

 

However, the plant height factor was calculated 

using the raster calculator in the GIS software.Next, 

the relationships between relevant factors were 

explored in order to predict the crop yields of the 

sample rice fields. There were 7 factors used as 

independent variables, while the crop yields were 

the dependent variable. The crop yield prediction 

was analyzed by Multiple Linear Regression (MLR) 

[30], as explained by the following equation: 
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𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2+. . +𝛽𝑖𝑥𝑖 + 𝜀 

Equation 1 

 

Where as:  

𝛽  = Estimated regression coefficient  

x   = Factors affecting crop yields of sample  

        rice fields  

y   = Outputs of sample rice fields  

 

In addition, this study used the Extreme Gradient 

Boosting (XGBoost) model to predict yield using 

the same factors as MLR to compare yield 

predictions across the sample area. Extreme 

Gradient Boosting (XGBoost) was learning from 

parameters in the same way as the regression tree 

family approach. This model was based on the 

gradient descent direction of the loss function of the 

last established model [31], as explained by the 

following equation:  
 

𝐿(∅) = ∑ 𝑙

𝑖

(ŷ𝑖 , y𝑖) + ∑ Ω(𝑓𝑘)

𝑘

 Ω(𝑓) =  𝛾𝑇 +
1

2
𝜆‖𝑤‖2 

Equation 2 

Where as:  

𝑙(ŷ𝑖 , y𝑖)  = Training loss, 

Ω(𝑓𝑘)      = The complexity of trees  

       𝑓𝑘           = The regression trees 

𝑇            = The number of leaves in the tree 

𝑤           = The score of the regression tree node 

 

Then, the results from the MLR and XGBoost 

analysis were compared to the crop yields of each 

sample plot observed by field exploration and 

validated by the coefficient of determination (R2). 

The R-Squared represents the relationship between 

independent and dependent variables, while the 

Root-Mean-Square Error (RMSE) and the Mean of 

Absolute value of Errors (MAE) represent the 

relationship between predicted crop yields and 

observed crop yields of 20 sample plots [32] and 

[33], as illustrated by the following equation: 

  
 

𝑅2 = 1 −
∑(𝑌𝑜𝑏𝑠 − 𝑌𝑝𝑟𝑒)2

∑(𝑌𝑜𝑏𝑠 − 𝑌𝑎𝑣𝑒)2
 

Equation 3 

 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑(𝒀𝒐𝒃𝒔 − 𝒀𝒑𝒓𝒆)𝟐 

Equation 4 
 

𝑀𝐴𝐸 =  
1

𝑁
∑|𝒀𝒐𝒃𝒔 − 𝒀𝒑𝒓𝒆|

𝟐
 

Equation 5 

 

 

Where as:  

𝒀𝒐𝒃𝒔 = Crop yield observed by field exploration 

𝒀𝒑𝒓𝒆 = Predicted crop yield 

𝒀𝒂𝒗𝒆  = Average of crop yields observed by field    

             exploration 

      𝑵 = Number of data points 

 

Finally, the crop yield estimation results were tested 

by Extreme Gradient Boosting (XGBoost), a tree-

based machine learning algorithm. In this algorithm, 

decision trees are sequentially formulated and 

continuously learn from the errors of previous 

decision trees until a stopping criterion is met, 

gradually increasing prediction accuracy [34]. 

 

3. Results 

3.1 Analysis of Factors Affecting Sample Fields’ 

Crop Yields by UAVs 

According to the exploration of the 20 plots (1 m2 

each), the multispectral UAV could analyze 3 

factors, including Normalized Difference 

Vegetation Index (NDVI), Green Normalized 

Difference Vegetation (GNDVI), and Triangular 

Greenness Index (TGI). The NDVI and GNDVI 

reflected the vegetation index values ranging from -

1.0 to 1.0. Meanwhile, the TGI demonstrated the 

chlorophyll content of plants ranging between 15–

85 mg/cm2 [29]. It can be assumed that the higher 

index values, the greater amount of chlorophyll (as 

Figure 4). Moreover, there were two other factors 

analyzed by the RGB UAV, which included plant 

height and canopy cover. The RGB UAV performed 

in a double grid pattern, achieving UAV-captured 

RGB images which could be used for calculating the 

height data of the crop canopy and soil surface 

based on a geographic information system (GIS). 

The data gained from the previous process was 

analyzed to calculate the plant height in the sample 

fields. Regarding the canopy cover, the images were 

interpreted and divided into two types of pixel 

images representing rice areas and non-rice areas, 

respectively. The data was then calculated by a 

canopy cover estimation formula (as Figure 5).  As a 

result, there were 5 factors affecting crop yields of 

the sample fields in total, as listed in Figure 6. 

 

3.2 Estimation of Sample Fields’ Crop Yields Based 

on Data Collected by UAVs 

To estimate the crop yields of the sample fields, 

crop yields were observed from the 20 plots in order 

to compare them with the crop yields predicted by 

Multiple Linear Regression based on the following 

factors: Normalized Difference Vegetation Index 

(NDVI), Green Normalized Difference Vegetation 

(GNDVI), Triangular Greenness Index (TGI), plant 

height, and canopy cover.  
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Figure 3: Conceptual framework 
 

 
 

Figure 4: Analysis of data received from multispectral UAV 
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Figure 5: Analysis of data received from RGB camera from UAV 
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Figure 6: Factors affecting crop yields of sample fields. (a) Plot areas (b) NDVI (c) GNDVI  

(d) Plant height (e) TGI (f) Canopy cover 
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According to the research results, the most 

significant factors included canopy cover, plant 

height, and Triangular Greenness Index (TGI), 

followed by Green Normalized Difference 

Vegetation (GNDVI) and Normalized Difference 

Vegetation Index (NDVI). This study found that all 

factors are important for rice yield estimation and 

could be ordered as follows: Canopy cover, NDVI, 

Plant height followed by GNDVI, and TGI (as the 

value column in Table 3). Based on the 

aforementioned factors, the crop yields of the 

sample fields were estimated by validating the crop 

yields observed from the 20 plots of the sample 

fields by the coefficient of determination (R2), Root-

Mean-Square Error (RMSE), and Mean of Absolute 

value of Errors (MAE) as illustrated in Figure 7 and 

Table 4 respectively. In the Figure 7, the research 

results showed that the R-Squared value was 0.99, 

indicating that the prediction of the Multiple Linear 

Regression (MLR) model was valid. Then, the 

average difference between the predicted crop yields 

and the observed crop yields was measured by the 

Root-Mean-Square Error (RMSE = 2.506 g.), and 

Mean of Absolute value of Errors (MAE) = 1.778.  
 

Table 3: Level of significance of factors affecting sample field’s crop yields 
 

Source Value 
Standard 

Error 
t Pr > |t| 

Lower 

Bound 

(95%) 

Upper 

Bound 

(95%) 

p-values 

Signification 

Codes 

Intercept 0.000             

NDVI  684.102 18.571 36.836 <0.0001 644.518 723.685 *** 

GNDVI  89.649 15.500 5.784 <0.0001 56.611 122.687 *** 

TGI (µg/cm2) 10.436 0.233 44.706 <0.0001 9.938 10.933 *** 

Plant height (m) 443.095 6.133 72.242 <0.0001 430.022 456.168 *** 

Canopy cover 

(%)  1,102.962 4.653 237.067 <0.0001 1093.046 1112.879 *** 

Signification Codes: 0 < *** < 0.001 < ** < 0.01 < * < 0.05 <. < 0.1 < ° < 1  
 

 

Table 4: Prediction of crop yields of 20 plots in sample fields by multiple linear regression model 
 

Plot Observed Yield (g.) Predicted Yield (g.) Residual (g.) 

1 1,412.480 1,413.210 -0.730 

2 1,343.643 1,340.669 2.974 

3 1,449.320 1,450.202 -0.882 

4 1,259.920 1,259.276 0.644 

5 1,324.450 1,322.813 1.637 

6 1,360.260 1,358.392 1.868 

7 1,362.200 1,360.690 1.510 

8 1,434.660 1,432.012 2.648 

9 1,336.230 1,336.873 -0.643 

10 1,386.880 1,388.677 -1.797 

11 1,355.260 1,357.133 -1.873 

12 1,459.950 1,461.910 -1.960 

13 1,397.700 1,395.652 2.048 

14 1,402.782 1,403.739 -0.957 

15 1,522.840 1,523.634 -0.794 

16 1,480.020 1,484.996 -4.976 

17 1,393.400 1,395.848 -2.448 

18 1,447.740 1,447.523 0.217 

19 1,448.440 1,443.917 4.523 

20 1,425.520 1,425.953 -0.433 
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Figure 7: Prediction of multiple linear regression model 

 

Table 5: Prediction of crop yields of 20 plots in sample fields by extreme gradient boosting (XGBoost) 
 

Plot Observed Yield (g.) Predicted Yield (g.) Residual (g.) 

1 1,412.480 1,413.179 -0.699 

2 1,343.643 1,343.617 0.026 

3 1,449.320 1,449.510 -0.190 

4 1,259.920 1,259.549 0.371 

5 1,324.450 1,324.455 -0.005 

6 1,360.260 1,360.715 -0.455 

7 1,362.200 1,361.938 0.262 

8 1,434.660 1,435.414 -0.754 

9 1,336.230 1,336.191 0.039 

10 1,386.880 1,387.183 -0.303 

11 1,355.260 1,355.333 -0.073 

12 1,459.950 1,460.308 -0.358 

13 1,397.700 1,398.150 -0.450 

14 1,402.782 1,403.048 -0.266 

15 1,522.840 1,520.891 1.949 

16 1,480.020 1,479.911 0.109 

17 1,393.400 1,393.406 -0.006 

18 1,447.740 1,447.816 -0.076 

19 1,448.440 1,447.990 0.450 

20 1,425.520 1,425.089 0.431 

 

Lastly, the accuracy of the results was further 

analyzed by Extreme Gradient Boosting (XGBoost). 

The analysis results showed that the prediction of 

the Extreme Gradient Boosting (XGBoost) model 

was valid (R2 = 0.99, RMSE = 0.557g.; MAE = 

0.364), as displayed in Figure 8 and Table 5, 

respectively. According to the results of the MLR 

model, it was found that the factors affecting the 

predicted rice yield in the experimental plots, 

although factors were not positively correlated, were 

considered from the values of R2, RMSE, and 

MAE. However, when developed with the XGBoost 

model, the result was found that the predicted of rice 

yield from the analyzed factors had a higher level of 

accuracy. Because Extreme Gradient Boosting 

(XGBoost) is learning from parameters in the same 

way as the regression tree family approach. Thus, 

XGBoost learned from the model parameters and 

stopped when done to solve the overfitting problem 

of the results. However, MLR is a statistical method 

that uses two or more independent variables to 

estimate the dependent variable only. 
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Figure 8: Estimation of extreme gradient boosting (XGBoost) model 

 

4. Conclusion 

This research investigates the estimation of crop 

yields towards the application of unmanned aerial 

vehicles (UAVs). It was discovered that the UAVs 

used for estimating crop yields of the sample rice 

fields in Don Tum District, Nakhon Pathom, could 

analyze 5 factors affecting the estimation of crop 

yields, which included three vegetation indexes 

(Normalized Difference Vegetation Index, Green 

Normalized Difference Vegetation Index, and 

Triangular Greenness Index) and two physical 

covariates (plant height and canopy cover). 

According to the Multiple Linear Regression 

analysis, the most significant factors were canopy 

cover, plant height, and Triangular Greenness Index, 

followed by Green Normalized Difference 

Vegetation Index and Normalized Difference 

Vegetation Index, respectively (R2 = 0.99). After 

estimating the crop yields of the sample rice fields 

based on the five aforementioned factors, the 

multiple linear regression model showed a positive 

relationship between the predicted crop yields and 

the crop yields observed by field exploration 

(RMSE = 2.506 g.; MAE = 1.778). Additionally, the 

application of Extreme Gradient Boosting 

(XGBoost) increased the accuracy of crop yield 

estimation (RMSE = 0.557 g.; MAE = 0.364). 

Nonetheless, since this research project was carried 

out in a genuine agricultural setting, the data 

collection process was limited by the duration of 

actual agricultural activities, local climate, and 

economic conditions of the rice fields’ owners. 

However, the limitation of this study used only 

factors derived from UAVs. Thus, future studies 

should include factors related to the environment, 

economy and farmer behavior that could lead to 

more accurate yield predictions.  

 

5. Discussion 

Since Thailand is one of the world’s major rice 

exporters, rice is a key economic plant of the 

country. Rice is vastly cultivated nationwide and 

consumed not only domestically but also 

internationally [8]. Nowadays, geoinformatics has 

been widely applied to contemporary agriculture, 

including rice cultivation, due to its rapid 

advancement [11]and [12]. Long-distance aerial 

exploration using optical satellites is frequently used 

for monitoring rice producing areas and estimating 

crop yield in time series based on various vegetation 

indexes [14]. Synthetic Aperture Radar (SAR) 

satellites are highly suitable for monitoring rainfed 

rice farming during the rainy season [15]. Apart 

from satellite imagery or photography, unmanned 

aerial vehicles (UAVs) have become a popular 

instrument for modern agriculture as they can 

provide crucial data for analytical modeling or 

factor analysis, for example, estimating crop yield 

by k-means clustering [16]. Therefore, this study 

employed two statistical tools such as Multiple 

Linear Regression and Extreme Gradient Boosting 

(XGBoost) to estimate crop yields. The tools 

provided valid research results. Furthermore, the 

factor analysis was performed by two different types 

of UAVs, including an RGB drone and a 

multispectral drone [35].  

The UAVs discovered that the most significant 

factors were canopy cover, plant height, and 

Triangular Greenness Index (TGI), followed by 

Green Normalized Difference Vegetation (GNDVI) 

and Normalized Difference Vegetation Index 

(NDVI), respectively. To increase the accuracy of 

the plant height estimation, the Light Detection and 

Ranging (LIDAR) system was also applied [18]. 

The system is still an expensive technology to date. 

Even though the UAVs can be used for estimating 
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crop yields, they are high-resolution equipment 

which is more suitable for exploring small areas. 

Satellite imagery is thus suggested for monitoring 

large-scale rice producing areas. Furthermore, 

Extreme Gradient Boosting (XGBoost) is a model 

with higher accuracy than MLR considering the 

results of this study because Extreme Gradient 

Boosting (XGBoost) is learning from parameters in 

the same way as the regression tree family 

approach. However, MLR is a statistical method 

that uses two or more independent variables to 

estimate the dependent variable.  
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