
33 

International Journal of Geoinformatics, Vol.18, No.6 December 2022 

ISSN: 1686-6576 (Printed)  |  ISSN  2673-0014 (Online) | © Geoinformatics International 

Rule-based Learning Techniques to Derive Automated 

Digital Terrain Model Using Airborne LiDAR Data 

 

 

Jifroudi, H. M.,1,3* Mansor, S. B.1 and Pradhan, B.2  
1Geospatial Information Science Research Center (GISRC), Faculty of Engineering, Universiti Putra Malaysia  

 (UPM), 43400 Serdang, Selangor, Malaysia, E-mail: hrmaskani@yahoo.com* 
2Centre for Advanced Modelling and Geospatial Information Systems (CAMGIS), Faculty of Engineering and  

 IT, University of Technology Sydney, Sydney, NSW, Australia 
3Environmental Research Institute, Academic Center for Education, Culture and Research (ACECR), Guilan,  

 Iran 

*Corresponding Author 

DOI: https://doi.org/10.52939/ijg.v18i6.2459 

 

 

Abstract 

Constructing an accurate Digital Terrain Model is costly and time-consuming, leading to more challenges in 

urban environments due to the presence of different objects. This research performs the step by step analysis of 

LiDAR data using a rule-based algorithm to create an automatic DTM. This method needs no extra data and 

has a precision equal to that of a DTM, which is constructed manually. The DTM constructed in this research 

was compared to the DTM constructed manually to investigate the accuracy of the results. It was found that the 

mean difference between the elevations in both DTMs in the rural and urban areas was equal to zero and 0.10 

m, respectively, while the mean difference between the slopes was 1.2 and 1.6%, respectively. However, in the 

areas which lacked buildings, the elevation and slope characteristics were equal, revealing identical DTMs, 

which was also confirmed by sig=.441 from t-test. Although sig=0.0 in the t-test shows a difference between 

the two DTMs in the urban and rural areas, it does not reveal the value of this difference. Thus, the RMSE 

method was used to examine this difference, leading to the values of ±0.20m, ±0.05m, and ±0.04m for the urban, 

rural, and areas without buildings, respectively. Considering that the precision required for urban and rural 

planning is 0.4m, it is totally acceptable to use the proposed algorithm instead of the manual method. 
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1. Introduction 

The surface shape, shown by the Digital Terrain 

Model (DTM), displays the earth’s surface using 

points with specific coordinates [1] in the raster 

format, which is one of the main products of 

photogrammetry and remote sensing [2] and [3] and 

the basis for many applied projects [4] [5] and [6]. It 

has always attracted the attention of many experts 

because the accuracy of the DTM can dramatically 

change the research results [7]. However, many 

research works that use DTM as an information layer, 

employ commercial software [8], the majority of 

which use the data without applying necessary filters, 

although filtering contributes substantially to 

creating an accurate DTM [9] and [10]. In addition, 

filtering LiDAR data needs time and specialty, which 

depends on the experts' experience [11] and [12] and 

is not always possible for many executive and 

research projects. The importance of this issue 

becomes more apparent when carefully reviewing the 

research by Klapste et al., [13] on DTMs generated 

by some software. Although the area studied by them 

did not have man-made structures, and the experts 

had previously visited the points, the RMSE results 

showed values in the range of 0.13 to 0.19m. 

Therefore it is essential to strictly investigate the 

accuracy of the generated DTMs by the common 

software in the urban areas, especially where no 

initial review of the LiDAR points has taken place.  

Furthermore, the need for an accurate DTM in 

studies based on extensive details such as surface 

water and flood management [14] is an undeniable 

fact. However, from the theoretical point of view, 

LiDAR can create a digital elevation model of the 

earth’s surface with high speed and accuracy 

compared to the traditional methods [15] [16] and 

[17].  

 

https://doi.org/10.52939/ijg.v18i6.2459


34 

International Journal of Geoinformatics, Vol.18, No.6 December 2022 

ISSN: 1686-6576 (Printed)  |  ISSN  2673-0014 (Online) | © Geoinformatics International 

Yet, the extraction of the digital elevation model 

from urban areas and complex and uneven 

environments is challenging, even using modern 

methods [18] [19] and [10].  Hence, the accurate 

DTM is only obtained when the non-ground points 

are properly filtered [20] and [21] and correctly 

interpolated. Despite all studies conducted, building 

an accurate DTM has always been a serious challenge 

in applied research [22] and [23]. The methods for 

accurate generation of DTM are applicable only 

when the experts can use them like the available 

commercial software without the need for specific 

knowledge.  

 

1.1 Literature Review 

Perhaps filtering based on a specific window can be 

used as one of the oldest DTM development methods 

that have evolved. Kilian et al., [24] and Zhang et al., 

[25] used this method, indicating that if the correct 

information on the region is provided, the resulting 

DTM has adequate accuracy. The slope-based 

method has been also used to separate the ground and 

non-ground points. This method initially considers a 

point as a ground point, which serves as the basis for 

the measurement of other points [26] and [27].  Sohn 

and Dowman [28] proposed a method, which first 

created a network with several initial points, and then 

a decision was made based on the angle of each point 

concerning the surrounding points to omit or keep the 

point as a non-ground or ground point, respectively. 

To improve this method, the initial points for 

triangulation were selected from the corners of the 

region, and the remaining points were classified into 

the upper and lower groups of initial triangulation. 

Afterward, the conditions of triangulation angles 

were studied separately for each group. 

In 2009, Meng et al., [20] attempted to compare 

the properties of each point with the four points 

around it and created a filter based on four different 

types. Although this filter had satisfactory results, 

interpolation based on the independent value of each 

point, especially in large buildings, was not satisfying 

due to the drastic height variations on the building 

boundary.  

Baligh Jahromi et al., [29] used an artificial neural 

network to omit the non-ground points. This method 

is based on the height difference between the first and 

last reflections. However, it cannot be used to 

develop DTM with fast processing due to the 

multiplicity of the constraints on the angles defined 

and the need for sample data. On the other hand, steep 

slopes are a limiting factor in this method, leading to 

numerous challenges in the practical application of 

this method in operational programs. In 2016, Zhang 

et al., [30] conducted a study of DTM extraction from 

DSM and stated that it is substantially important to 

separate non-ground points from the ground points 

for the automatic extraction of DTM from LIDAR 

data. This study sought to extract DTM from DSM 

with low resolution, using a two-step filter. The 

experiments on the resulting DTM showed 

significant effectiveness of the method for data with 

spatial resolution of 10 to 30 meters. However, the 

algorithm can be only used for large areas to provide 

an overall view and cannot be used for urban areas 

that call for high accuracy.  

Wojciech [31] carried out a study on building 

DTM using the kriging method and tried to examine 

the usual interpolation methods to create an accurate 

DTM. They examined the inverse distance weighing, 

the nearest neighbor, the moving average, and 

kriging algorithms. This study aimed to analyze the 

characteristics of the results of each of the existing 

interpolation methods to considerably reduce the 

computation time while maintaining the highest 

accuracy level in the created model. The 

experimental results highlighted significant 

advantages of the kriging technique over the other 

methods. 

 

1.2 Objective and Research Gap 
Generating accurate and applicable DTMs remains a 

serious but essential challenge [10] [32] [33] and 

[34]. Although all the previous studies have sought to 

generate accurate DTMs, due to the complexity of the 

used filters [10] and [11]   in a section of research 

process, they have taken advantage of one stage of 

the specialist supervision. This would result in two 

problems: 1) when the DTM layer generation is not 

the primary objective, but researchers utilize DTM as 

one of the necessary layers of information, it is not 

possible to implement essential modifications 

through field visits or taking advantage of 

experienced experts. Thus, they prefer to use raw data 

and commonly available software. 2) As the factors, 

which the experts should examine for the generation 

of DTM, are numerous and related to the human 

experience, certainly there will be errors during the 

investigation process. Therefore, the methods 

presented in the research works are only operative 

when the proposed algorithm can generate the 

required DTMs automatically without the need for 

further data or expert information. In reality, the most 

authentic method, which is the manual method [17], 

requires extensive time and costs, making its 

application impossible in the research and executive 

projects.  
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Therefore, an important point to note is that the DTM 

has applications in a broad spectrum of research 

works and operational projects. In many projects, 

DTM is just one of the layers used, which can 

significantly affect the results. Previous research 

works have largely ignored the fact that although a 

complex, time-intensive method can lead to an 

accurate DTM, this process is not practically feasible 

for other research works and operational projects as 

it demands for long processing times and an expert 

who is familiar with the generation process of DTM. 

Accordingly, a clear research gap in the existing 

literature is the failure to pay adequate attention to the 

practical applicability of the proposed DTM 

production methods to ensure their usability for all 

researchers and experts who have no expertise in 

DTM generation. 

Therefore, creating a fully automatic structure is 

one of the main goals of this research. For this 

purpose, the LiDAR data are implemented because 

LiDAR data provide the possibility to transfer 

geographical location and elevation characteristics 

and much other information about the land objects in 

the form of point clouds. On the other hand, it is 

possible to convert LiDAR data into a 

multidimensional matrix, which subsequently helps 

with using the programming languages in the 

analysis of the above mentioned data. This research 

has the Python programming language to write a 

program which initially accepts the LiDAR data file, 

executes a number of rule-based algorithms, and 

finally stores the DTM file with the raster format in 

the exit path.  

  

2. Materials and Methods 

2.1 Study Area 

The study region with a surface area of 3000ha is 

located in the west of Malaysia, southeast of Selangor 

Province. The coordinates of the aforementioned 

region in the UTM coordinates system in the region 

N47 are as follows: minimum x = 800000, maximum 

X = 805000, minimum Y = 328000, and maximum Y 

= 334000 (Figure 1). The study region is divided into 

three major parts concerning texture and land use: 1) 

Areas including one-story buildings and lands 

covered with grass and scattered trees, highly suitable 

for research in rural areas; 2) Dense urban areas with 

high-rise buildings, urban drains, power transmission 

lines, and low vegetation, suitable for research in 

urban areas; and 3) Areas without urban texture, 

covered with grass, trees, canals, and scattered lakes, 

and suitable for research in non-urban regions. Since 

the study area was extensive, and the suggested 

algorithm's findings required repeated field visits, 

access to the study locations was critical. As a result, 

the research region was separated into three sections: 

urban, rural, and without structures, each sector 

including accessible samples of <2 hectares. Finally, 

the suggested algorithm assessed 301 hectares of the 

region, of which 136 hectares were urban areas, 88 

hectares belonged to rural areas, and 77 hectares were 

without buildings. 

 
Figure 1: Location of study area 
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This research used LiDAR data for all processes and 

RGB images for visual inspection of manual DTM 

construction and preliminary checking of results. 

LiDAR point cloud data and orthorectified, used in 

this research, were acquired in 2015 over Universiti 

Putra Malaysia and part of the Serdang area by 

Ground Data Solution Bhd. The raw LiDAR dataset 

was collected using the Riegel scanner on-board EC-

120 Helicopter hovered at an average height above 

sea level of 600m above the terrain surface. The 

orthorectified (RGB color image) was captured with 

the Canon EOS5D Mark III camera with a focal 

length of 35mm, a horizontal and vertical resolution 

of 72Dpi, and an exposure time of 1/2500sec. The 

density of LiDAR data was about 8 points per square 

meter. This research performed data processing in 

five steps, all of which were taken automatically in 

an algorithm written using the Python language.  

 

2.2 Separation of the Last Reflection 

Each point in the LiDAR data carries several 

descriptive data. In the data used in this study, the 

initial separation is based on the first and last 

reflections, and the points in the LiDAR data carry a 

factor known as the ‘Classification factor’. 

Therefore, x, y, and z determine the position of the 

point in space, and the class factor can determine the 

first or last reflection. At this stage, the point clouds 

are converted into a Numpy array, the points with the 

last reflection are identified, and the other points are 

removed using the classification factor in the array. 

 

2.3 Calculating the Effective Distance 

The designed algorithm compares each point with the 

surrounding points at a specific distance. More 

importantly, the effective distance is different for 

each data, and the above algorithm is designed to 

automatically calculate the effective distance in each 

row and between the rows for each different data. The 

effective distance in each row is larger than the 

average distance between two points and smaller than 

twice the average distance between two points, 

always including at least one point. The effective 

distance between the rows refers to a distance larger 

than the average distance between two rows and 

smaller than twice the average distance between two 

rows. The average distance between the points in 

each row is calculated based on Equation 1, and the 

effective distance in each row is calculated based on 

Equation 2. However, it is worth noting that this 

distance is calculated based on the horizontal 

distance without deviation from the main directions. 

To operationalize the effective distance, the value 

that has to be added to the x value of each point is 

calculated based on Equation 3. D2 is the value 

whose elimination or addition to the value X of each 

point will create a range that contains at least two 

other points except the target point. 
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Where: 

x Value of x axis 

y Value of y axis 

i Number of points 

n Number of points available in  LiDAR data 

j Number of rows 

m Number of rows available in LiDAR data 

d1 Average distance between the points in 

row 

d2 Effective distance in each row in algorithm 

d3 Average distance between rows algorithm 

d’ Effective distance between points 

d’’ Effective distance between rows 

 

The effective distance for each row is also obtained 

based on the average distance between the rows. 

Therefore, the line equation for the row is obtained 

according to Equation 4, and the distance from each 

point to the line is calculated based on Equation 5, 

followed by the calculation of the effective distance 

for that point using Equation 6. The resulting distance 

actually determines the vertical distance from each 

point.  
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To operationalize the results and use them in the 

designed algorithm, the resulting effective distance 

has to be converted into a number to be added to and 

subtracted from the value of y of each point. 

Therefore, the resulting value is converted to the 

distance value on the y axis using Equation 7. Based 

on the calculations above, a range is identified for 

each point based on the minimum and maximum 

values calculated on the x and y axes. As a result, at 

least 4 points are placed around the target point.  

 

2.4 Error Filtering 

Errors in LiDAR data are classified into two 

categories: Type I includes ground points regarded as 

non-ground points, and type II includes non-ground 

points accepted as ground points [35]. In urban areas, 

numerous high-density man-made objects can cause 

type II errors. Therefore, the filtering stage is 

substantially important in LiDAR data and can be 

performed both manually and automatically [4]. The 

current research has used the nearest neighbor 

filtering based on the effective distance because this 

filter can decide according to the features of the data 

existing in the neighborhood of the target point, and 

this is fully in line with the selection of a point for the 

grounds and non-grounds. Furthermore, the research 

shows that this filter is effective at noises removal 

[36]. 

 

2.4.1 Nearest Neighbor Filter (K-NN) 

Here, the effective distance is the range required to 

analyze the data features. The logic behind this idea 

is that if the selected point is part of the ground 

points, most of the points around it fall in the same 

category, and if a point is a noise, most of its 

neighboring points do not fall in this category. 

Therefore, the K-NN filter can remove many noises 

and the ‘roof error’ is one of the errors removed with 

this filter.  

 

2.4.2 Roof error 

Laser can enter some objects due to their 

characteristics and lead to the initial and last 

reflections. This naturally applies to trees, allowing 

for the recognition of vegetation. However, in urban 

areas, this phenomenon occurs in some ceilings 

through which laser can pass and create what is 

known as the ‘roof error’. These types of structures 

are not exclusively used in greenhouses with 

transparent ceilings because urban grounds have 

various structures, and this error is widely present in 

a part of the existing structures. Considering the logic 

used in the neighboring filter based on the effective 

distance, the K-NN filter can remove the roof error. 

Pseudo-code as illustrated in Figure 2 is a part of 

codes written for the K-NN filter automation in the 

DTM building stage.  

 

2.5 Creating a Modified Network  

After filtering the nearest neighbor, many locations 

lacking data, known as the ‘empty spaces’, are 

created. These empty spaces are classified into two 

categories. The first category includes small spaces 

created due to the removal of one or two points, and 

the second category includes large spaces created to 

remove the structures. In this research, ‘large spaces’ 

refer to spaces in which there is no remaining point 

within the effective window range.

 

Figure 2: Pseudo-code for K-NN filter automation 

 

Input 

Input_array1 (an array that contains all points) 

Inpur_array2 (an array that contains points with the last reflection) 

Loop 

For I in Input_array2 

(Creating list A of coordinates in the effective window range with point I as the center 

from Input_array1) 

For j in list A 

If (Reflection of point j equals 2): 

Conter1+=1 

Else 

Conter2+=1 

If Conter2< Conter1: 

(Point I is added to list B) 

Conter1= Conter2=0 

Output 

Output_array (The coordinates on list B are omitted from Input_array2) 
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A new grid of points has been used to fill the empty 

spaces. The distance between points in the new grid 

is assumed equal to the minimum distance between 

the points in LiDAR data and rated based on the 

elevation value of the points in LiDAR data. Hence, 

the weighted averages of all the existing points in the 

LiDAR data, located within the effective window 

with the center of target point in the new grid of 

points, are calculated. Therefore, the value of the 

target point is calculated based on the distance of 

each LiDAR point, which is in effective window 

from the target point according to Equation 8. This 

process is repeated for all the points in the new grid. 

The value of existing points in the large empty spaces 

is filled with -999.   
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where: 

Z(So) Elevation at target point 

Z(Si) elevation at point i 

i considered point number at effective 

distance 

n number of points in effective window 

k impact coefficient of target point 

distance, which is considered here as 2 

so target point 

si point i in effective distance 

 

2.6 Interpolation 

This stage targets the large empty spaces filled with 

value -999. First, the boundary of every object is 

detected because the margins of structures are 

significantly important in urban planning. This is 

because a structure is built as a vertical object into the 

ground, and only the structure boundary is in line 

with the general earth slope, which is considered in 

environment planning such as the design of the urban 

sewage network. Hence, if a structure is removed, the 

space occupied by the structure has to be filled as a 

smooth surface in line with the general earth slope. In 

other words, if the boundary points maintain their 

effects in the object interpolation, two types of error 

occur, including stair and surface interpolation errors.  

2.6.1 Stair error 

Stairs are objects sometimes implemented to connect 

land to buildings. They are usually seen only in the 

input section and are not present at all the borders of 

the building (Figure 3(a)). However, in the design of 

the urban drains, the general slope of the ground is 

often followed, which is the same slope of the 

building border (Figure 3(b)). Hence, the space under 

the stair is often used to continue the drains (Figure 

3(c)). In other words, the stairs connected to the 

buildings do not act as a barrier against running 

water. Therefore, when filling the empty spaces, if 

interpolation is done normally and considering all the 

existing points in the area, the impact of steps 

connected to buildings is observed within the 

buildings limits. In this case, the spaces within the 

buildings would turn into wavy surfaces instead of 

being flat (which follow the elevations at the borders 

of the building). This type of surface could not be a 

good DTM for the urban area. Here, this type of error, 

produced due to any object that connects land to a 

part of the building, is called the “Stair error”.   

 

2.6.2 Surface interpolation error 

All the existing interpolation algorithms are designed 

based on data continuity, and the continuous data 

maintains its effect in the new data up to a certain 

distance. From there, water flow follows the overall 

slope of the structure. Therefore, an algorithm has to 

be used to create a smooth part after interpolation.  As 

a result, the designed algorithm first modifies the 

boundary of the large empty spaces based on the 

average height of each side, and interpolation is 

performed correctly within the range. In this case, the 

effect of stairs or small structures, which play the role 

of connectors, is eliminated, and the impact of the 

height of the sides is not stretched along the structure. 

 

2.7 Create DTM 

At this stage, the new point’s network, edited in the 

previous steps based on the coordinate system of 

LiDAR, is converted to DTM. Therefore, the DTM is 

created in a fully automatic process from LiDAR data 

and saved in the TIFF format in the output path.   

 

2.8 Accuracy Assessment 

Since the manual DTM has good accuracy [17], the 

DTM of the area was first manually generated in this 

section, using the LiDAR point clouds, and both 

DTMs were compared based on statistical 

calculations and field visits. 
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2.8.1 Statistical calculations 

A database was created, where each point had two 

values of DTMs, manual and automatic. Descriptive 

statistics were used to evaluate the height and slope 

of the two DTMs. The minimum, maximum, and 

average height and slope factors of the two DTMs 

were investigated, and their standard deviation was 

calculated based on Equation 9. In the next step, the 

difference between the two layers was examined via 

the t-test. Finally, the two DTMs were compared to 

each other based on RMSE because it is an 

appropriate criterion to examine the amount of error 

[33] [37] [38] and [39]. 
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Equation 9 
 

Where:    

N Number of available database points 

I Variable number under review 

xi i-th variable under review 

µ The mean of the data under review 

  

2.8.2 Field visit 

Considering that some differences in the output 

layers required a field study, a change map for the 

two DTMs relative to each other was generated, and 

the coordinates of the changes were extracted from 

the change map. Next, using the RGB image, the 

object that caused two different DTMs was 

determined, and the automatic and manual DTMs 

were compared in the ArcScene environment in a 

three-dimensional form. In the next step, using GPS, 

the mentioned object was found in the study area, and 

the difference between the two DTMs were subject to 

field visits. 

 

3. Results 

3.1 The First Study Area 

The first study area has one-story buildings, narrow 

roads, and relatively dense tree vegetation that are 

sometimes very close to the buildings or cover them. 

Furthermore, the construction of buildings does not 

follow a particular order, and temporary structures 

are abundantly scattered everywhere. This region has 

all the characteristics of rural areas. In Figure 4(a), 

the building shown with the letter D is considered an 

object using the algorithm designed in this research, 

the boundary of the given object is modified based on 

the designed algorithm, and then interpolation is 

performed. As a result, the canal on the left side of 

the building has remained a real canal and does not 

affect the building environment.  

 

However, in Figure 4(b), which is associated with the 

manually built DTM, the height of the existing canal 

directly affects the location of the building due to the 

lack of the mentioned mechanism.  As a result, this 

canal appears as a series of continuous pits with 

separating hills, while the building area looks like a 

pit. Figure 4 clearly shows that the removal of the 

‘stair error’ and the ‘surface interpolation error’ is 

necessary to correctly display the building locations 

and canals. A comparison of the elevation and slope 

characteristics of the corresponding points in both 

DTMs shows no significant differences between the 

elevation factors (Table 1). However, there were 

evident differences in the slope factor. Next, the 

value of each DTM was subjected to the independent 

samples t-test (Table 2), revealing a significant 

difference between the two DTMs. Although the 

above test indicated a difference between the two 

DTMs, the t-test could not show the value of this 

difference. This issue needs further investigation, 

considering the correlation of >95% between the two 

DTMs, the standard deviation value of 0.001m, and 

the error range of 0.013-0.018m, as it might be 

impossible to use the difference for specific scales.  

Hence, the RMSE value of the DTM layer created 

automatically was calculated considering the DTM 

calculated manually. According to the calculations, 

the RMSE was .05m in the rural areas, indicating that 

the average difference between automatically and 

manually calculated DTMs was 5cm. The used maps 

in the urban and rural planning had the scale of 

1:2000[40]; therefore, the error of 5cm is totally 

acceptable.  

 

3.2 Second Study Area 

This area is a prominent example of an urban area. 

The presence of high-rise buildings, numerous cars, 

wide streets, and concrete structures such as curbs 

and short trees compared to the buildings are the 

characteristics of the second study area, which was 

examined as an urban area in this study, with the 

selected samples covering an area of 136 hectares. 

Field visits showed that many buildings in the second 

study area have a longitudinal slope and are built as 

stepped buildings on a slope. However, the manually 

built DTM is entirely uniform and does not consider 

the changes made to the earth’s surface. Figure 5 

shows the location of the investigated samples within 

the study area while also demonstrating a residential 

house to better illustrate the longitudinal and lateral 

slopes and highlighting the difference between the 

two DTMs. 
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Figure 3: A view of the design procedure of urban drains with respect to buildings 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4: Constructed DTMs. (a) automatically generated DEM (b) Manually generated DEM 

 

Table 1: Slope and elevation specifications of constructed DTMs in first study area 
 

  Height (m) Slope (%) 

Min Max Mean SD Min Max Mean SD 

Automatic DTM  41.2 42.7 42.2 0.26 0 95.6 5.9 7.5 

Manual DTM  41.2 42.7 42.2 0.27 0 88.7 4.7 6.2 
 

 

 

Table 2: Comparison of two DTMs based on independent-sample t-test in first study area 
 

 

correlation 

t-test for Equality of Means 

t df Sig  
Mean 

Difference 

Std. Error 

Difference 

95% Confidence Interval 

of the Difference 

lower Upper 

Equal variances 

assumed 

Equal variances 

not assumed 
0.953 

13.112 

 

13.112 

196558 

 

1.964E5 

0.000 

 

0.000 

0.016 

 

0.016 

0.001 

 

0.001 

0.013 

 

0.013 

0.018 

 

0.018 
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Figure 5: Longitudinal and cross section of manually and automatically constructed DTMs 

 

As clearly seen in Figure 5, the ground at the bottom 

of the building is slightly hollow in the longitudinal 

cross-section of the manually built DTM, and it 

definitely cannot be a suitable model for urban 

planning. However, the DTM built based on the 

proposed algorithm fully restores the changed ground 

shape and shows the increased height at the building 

downstream. This is manifested in another form in 

the transverse cross-section of the building. 

Here, the comparison of the elevation factors of 

the two DTMs indicates a slight difference between 

the study factors. However, an analysis of the 

existing slope difference revealed a significant 

difference (Table 3). Seemingly, as the number of 

urban structures increases, the difference in the 

average slope increases, and thus the sudden slope 

changes in urban regions are considerably higher 

than the rural regions. The statistical test also 

indicates the difference between two DTMs (Table 

4); however, the value of difference is not clear. The 

correlation of >95% between the two DTMs, 

standard deviation of 0.007, and an error range of 

0.047-.073 confirm the slight difference between the 

two DTMs. Hence, the RMSE of the DTM layer 

constructed automatically was also calculated 

considering the manually-constructed DTM. The 

calculations show the RMSE value of 0.2m in the 

urban areas, highlighting that the average difference 

between the DTMs constructed automatically and 

manually is 20cm, which is totally acceptable 

considering the required scale in the urban and rural 

planning. 

 

3.3 Third Study Area 

This area lacks man-made buildings and structures 

and is covered with grass and scattered trees. Hence, 

this region is highly suitable to analyze the 

mechanisms used to build the DTM manually and 

automatically. The results indicate that as the number 

of urban structures grows, the difference between the 

manual and automatic methods is further highlighted. 

Therefore, if the difference between the two methods 

used is based on man-made structures, the first 

hypothesis is that in areas lacking man-made 

structures, there should be no differences between the 

two DTMs built.  
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Table 3: Slope and elevation specifications of constructed DTMs in second study area 
 

 Height (m) Slope (%) 

Min Max Mean SD Min Max Mean SD 

Automatic DTM  45.8 48.8 47.3 0.79 0 82 6.4 7.9 

Manual DTM  45.8 49.2 47.2 0.85 0 66 4.8 5.2 
 

Table 4: Comparison of two DTMs based on independent-sample t-test in second study area 
 

 

correlation 

t-test for Equality of Means 

t df Sig  
Mean 

Difference 

Std. Error 

Difference 

95% Confidence Interval 

of the Difference 

lower Upper 

Equal variances 

assumed 

Equal variances not 

assumed 

0.959 

8.706 

 

8.706 

56472 

 

5.622E4 

0.000 

 

0.000 

0.060 

 

0.060 

0.007 

 

0.007 

0.047 

 

0.047 

0.073 

 

0. 073 

 

Table 5: Slope and elevation specifications of constructed DTMs in third study area 
 

 Height (m) Slope (%) 

Min Max Mean SD Min Max Mean SD 

Automatic DTM  40.1 41.6 41.0 0.28 0 51.5 9.1 10.1 

Manual DTM  40.2 41.6 41.0 0.27 0 53.6 9.1 10.3 

 

Table 6: Comparison of two DTMs based on independent-sample t-test in third study area 
 

 

correlation 

t-test for Equality of Means 

t df Sig 
Mean 

Difference 

Std. Error 

Difference 

95% Confidence Interval 

of the Difference 

lower Upper 

Equal variances 

assumed 

Equal variances 

not assumed 

0.967 

-1.790 

 

-1.790 

16534 

 

16534 

0.073 

 

0.073 

-0.008 

 

-0.008 

0.004 

 

0.004 

-0.016 

 

-0.016 

0.001 

 

0. 001 

 

 
Figure 6: DTMs constructed in third study area. (a) automatically generated DEM  

(b) Manually generated DEM 

 

Figure 6(a) shows the DTM built using the proposed 

algorithm, and Figure 6(b) shows the DTM built 

manually. The results of the field studies confirm the 

primary hypothesis, according to which there is not a 

significant difference between the two DTMs. A 

comparison of the elevation characteristics of the two 

DTMs also shows many similarities, as confirmed 

through the comparison of the slope characteristics 

(Table 5). This is also confirmed by the t-test, and the 

numbers in the two DTMs linked to one coordinate 

are not significantly different (Table 6).  On the other 

hand, the RMSE=0.04m exhibits an error equal to 

4cm, which is a totally acceptable precision. 

 

 



43 

International Journal of Geoinformatics, Vol.18, No.6 December 2022 

ISSN: 1686-6576 (Printed)  |  ISSN  2673-0014 (Online) | © Geoinformatics International 

4. Discussion 

Despite some similarities in the method used here 

with previous studies, such as using a window to 

filter noise in neighborhood points [1] [24] and [25], 

the size of the window does not change based on the 

features [25] but is automatically calculated based on 

the data type and the distance of LiDAR points. This 

issue automatically solves the problem of selecting 

the window size [25]. Furthermore, the window 

selected in this research is the basis for comparing 

each point with other points based on the nearest 

neighboring filter. Therefore, there is no need to use 

the slope filter [26] [27] and [38] or classify other 

grounds [25], and unlike many studies, there is no 

need for a separate layer or high-accuracy DSM [3] 

and [30]. This reduces the DTM building cost, 

accelerating its generation.  

The elimination of manual operations is regarded 

as one of the biggest benefits of this research, because 

most previous studies have spent a lot of time on 

expert-based operations [14], increasing the costs and 

causing non-adherence to the methods designed in 

executive projects. 

In other words, the proposed algorithm removed 

all the stages that need the specialist intervention and 

investigation and provided a good accuracy 

concerning the methods that attempted to generate 

DTM. For example, Jakovljevic et al., [34] reached 

the RMSE values in the range 0.05 to 0.25m, 

although they had investigated their study area before 

using their proposed method and provided training 

samples for each area. However, the studied areas in 

that research included a maximum of 8% urban 

texture. On the other hand, the RMSE values were 

0.04m in area without building and 0.20m in urban 

area in the current study, using the proposed method, 

implementing a fully automatic method, and without 

training samples. Klapste et al., [13] conducted a 

study in an area without man-made structures, when 

the trees lacked leaves. They used the common 

available software for the DTM generation and 

obtained RMSE values in the range of 0.13 to 0.19m. 

It is noteworthy that Klapste et al. [13] reviewed the 

LiDAR points by the specialists and removed the 

problematic points before using the measured data, 

whereas the algorithm used in this research was 

implemented when all trees had leaves, and all the 

process was conducted automatically. The RMSE 

values for the areas without buildings and rural areas 

were 0.04 and 0.05m, respectively.  

On the other hand, a review of literature on 

creating DTM showed that the accuracy of a 

continuous data-based interpolation method is an 

advantage over other existing methods [31], and the 

IDW is an appropriate algorithm for interpolation and 

construction of DTM [38] and [41]. However, the 

results of this study show that in areas where severe 

changes occur in the slope, such as structures and 

urban and rural canals, using methods based on 

continuous data for the entire area would not lead to 

good results. This issue is especially more obvious in 

the canals close to the buildings. Hence, in the urban 

and rural areas, one should interpolate the objects 

apart from lands such as canals and land limits as 

separate objects, and then fitting should be applied. 

Thus, according to Figure 4(a), canals would not 

affect the surrounding objects, and the real image of 

the ground is preserved. This is also true concerning 

the stairs. As shown in Figure 3, stairs are small 

sections to connect buildings and do not affect the 

overall slope of the area. When the effect of stairs is 

not removed, some holes would appear in the border 

of buildings.  If the method introduced in this 

research is implemented, the effect of stairs would be 

limited to the stairs themselves. 

 

5. Conclusion 

It can be concluded from the findings of this research 

that using the K-NN filter for noise removal in a 

smart environment is highly effective because it is 

possible to analyze each point based on the effective 

distance. Therefore, if the K-NN filter is used based 

on the effective distance, the noise in the LiDAR data 

is removed.  lthough the statistical test shows the 

difference between the two DTMs in the urban and 

rural areas, a correlation of >95% in the generated 

DTMs and very low standard deviation value show 

that we cannot confirm the lack of accuracy of DTM 

just by relying on the difference in the statistical test. 

The reason is that these tests only reveal the presence 

of difference but cannot determine whether this 

difference affects a specific scale or not. Thus, 

generally, it could be concluded that the DTMs 

generated by the algorithm used in this research for 

urban and rural areas and the areas without buildings 

have appropriate accuracy equal to the accuracy of 

DTMs generated manually. On the other hand, field 

surveys confirm that the DTM built using the 

algorithm proposed in this research is more accurate 

in areas with higher building densities or buildings 

near grounds such as canals. The continuous data-

based interpolation methods in man-made 

environments that involve a sudden change in slope 

are not efficient enough. As shown in Figure 3, the 

results of manual DTM show the presence of pits in 

the vicinity of the canals, which are produced due to 

interpolation and should be examined and edited by 

specialists.  
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However, the produced DTM in this research could 

produce the complete canal shape, interpolating the 

building in the vicinity of the canal based on the 

existing algorithm and following the mean slope of 

the area. In general, it is possible to create a fully 

automatic structure for the extraction of DTM based 

on LiDAR data. However, it is worth noting that 

many filters should be used to create a fully 

automatic process. Based on these filters, every point 

has to be compared to the other points surrounding it, 

necessitating massive computations that can only be 

performed in a fully smart environment. Therefore, 

the use of programming languages and artificial 

intelligence algorithms is the only path to the 

automation of the mentioned processes. Furthermore, 

to operationalize the results, the algorithms have to 

be designed to avoid the need for quantitative and 

qualitative data except for the initial data. Thus, the 

Rule-Base Method is highly efficient and does not 

require training samples.  

Finally, it is necessary to use many filters in this 

research method, based on which any point should be 

compared to other surrounding points, leading to 

huge computational tasks. Therefore, access to good 

hardware will be one of the limitations of this method 

when producing DTM for a large area. However, 

based on the field studies in urban and rural areas, the 

DTM generated by the proposed algorithm is more 

consistent with the study area than the manually 

generated DTM. Therefore, it seems as if the manual 

DTM production process needs further scrutiny due 

to the specific type of interpolation based on 

continuous data used in manual DTMs. As a result, it 

is recommended to carefully investigate the process 

of manual DTM in separate research employing 

terrestrial mapping and dual-frequency GPS, as it 

seems that the commonly used techniques for 

creating manual DTM in urban areas need significant 

adjustment. 
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