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Abstract 

Normally, road damages can be automatically detected using image and video data from ground survey vehicle 

system combined with the detection algorithms. However, there are limitations of scales and map coordinates 

when using the image and video data to detect potholes. It has been challenging to detect and determine the 

sizes and locations of potholes. This research utilized a mobile mapping system, MMS, to collect data of roads 

and environment and classify potholes, roads and other objects. A convolution neural network (CNN) was used 

to directly identify 3D point clouds using the XYZ method in comparison with the proposed XYZ-RGB method. 

The XYZ classification demonstrated an overall accuracy of 96.77%, with the intersection over union (IoU) of 

potholes, roads, and other objects of 59.50%, 94.22%, and 94.06%, respectively. The proposed XYZ-RGB 

classification indicated an overall accuracy of 97.50%, with the IoU of potholes, roads, and other objects of 

66.66%, 95.43%, and 95.42%, respectively. Both datasets were statistically compared at the 95% confidence 

level, and the results revealed that both classifications produced significantly different results. 
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1. Introduction 

Road damage can negatively impact commuters and 

increase the risks of road accidents. Therefore, data 

on the physical conditions of road surfaces and 

damages are crucial and must be obtained for further 

applications such as planning, maintenance, and 

budget allocation. A systematic and continuous 

survey of road surface conditions is necessary to 

increase the road’s level of service and service life. 

Therefore, it is essential to survey for road damage. 

One of the easiest methods is a ground survey, which 

requires experts to manually go on foot to assess by 

visual inspection. However, this conventional 

approach is moderately costly, requires several 

workers, consumes excessive time, and provides less 

reliable data. It also exposes surveyors to potential 

danger while working on the road [1]. Consequently, 

modern technology and equipment are used with 

automation to mitigate the risk associated with the 

conventional method of detecting road damage. Road 

surveys produce high efficiency and accuracy with 

technology, enabling effective surface analysis. 

Nonetheless, since road damage does not share a 

definite characteristic, using technology to detect 

road damage might not be as effective as expected. 

Consequently, technology has rarely been used for 

automated road damage detection [2]. 

Road damages, especially potholes, can be 

detected automatically by analyzing photographic or 

video data derived from vehicle cameras in 

conjunction with the development of detection 

algorithms [3], [4], [5]. Machine learning (ML) is a 

popular choice of an instrument employed to detect 

potholes from photographic data. It has been 

implemented through several techniques such as 

Support Vector Machine (SVM) [6], [7], Random 

Forest (RF) [8], and neural networks [9]. In fact, 

neural networks, especially the Convolutional Neural 

Network (CNN), are the current trend in modern 

photographic pothole detection [10], [11], [12]. 

However, when using photographic or video data to 

detect potholes, there remain limitations related to 

scales and map coordinates. More specifically, it has 

been challenging to determine the precise sizes and 

locations of detected potholes.  
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Although unmanned aerial vehicle (UAV) imaging 

survey can detect road damages [13], [14] from 

scaled images in the map coordinate system and 

measure pothole sizes from aerial photographic map 

data, the method cannot yet detect or classify 

potholes in three dimensions (3D). As a result, the 

mobile mapping system (MMS) [15], [16] is more 

frequently utilized to detect potholes and other road 

objects in 3D since resulting point clouds can provide 

thorough details of road objects with positional 

accuracy. 

MMS employs several sensors, including the 

Global Navigation Satellite System (GNSS), the 

Inertial Measurement Unit (IMU) sensor, 360-degree 

panoramic cameras, the Light Detection and Ranging 

(LiDAR) laser scanner, and the Distance 

Measurement Instrument (DMI) [17]. Mounted on 

the vehicle, MMS utilizes these sensors altogether to 

explore the area while moving. Collected data 

processed by MMS can be stored as a point cloud, a 

spatial resolution of point data where every point 

refers to a coordinate in the map system. Hence, 

several studies use point cloud data to classify objects 

in the road environment, such as road surfaces, 

electric poles, trees, cars, buildings, and traffic signs 

[18], [19], [20]. Since modern MMS is equipped with 

360-degree panoramic cameras, point clouds are 

recorded in the color values of red, green, and blue 

(RGB), allowing 3D renders to show color values 

reflecting original photographic data and adding 

dimensions to point cloud classification [21]. 

Nevertheless, no studies have yet compared the 

accuracy of point cloud classification with and 

without RGB values. 

Algorithms have been developed to detect and 

classify objects in the road environment [18] [20] and 

potholes [15], [16], [22] from point cloud data, and 

ML can learn to classify objects from point clouds 

and photographic data. In fact, several ML 

techniques have been utilized to classify trees, 

electric poles, buildings, traffic signs, and road 

surfaces. The primary ones include RF for road edges 

and traffic signs on road surfaces [23], SVM for 

objects in urban areas [24], and CNN for objects from 

point clouds [25]. 

Classifying point clouds with CNN is more 

complex than classifying with two-dimensional (2D) 

photographic data due to the disordered arrangement 

of points. CNN point cloud classification can convert 

3D data into pixels [26] or voxels for extensive 3D-

shape utilization [27]. Some CNN architecture, such 

as PointNet, has evolved to the extent that it can 

classify point cloud data directly [28]. 

PointNet is a highly functional architecture as it 

can directly classify point clouds and simplify the 

process of converting data to voxels and pixels. 

Furthermore, the architecture has recently been 

upgraded to PointNet++ [29], with a distinctive 

feature allowing the architecture to detect objects’ 

local regions more effectively. However, since point 

cloud data only contain XYZ point values, using 

CNN to study and classify them was suspected to be 

problematic because road surfaces and potholes are 

not as significant in levels, and most pothole areas 

have shallow depths. Consequently, the said practice 

might produce excessive classification errors. On the 

other hand, combining point cloud data with image 

data obtained from 360-degree panoramic cameras 

provides access to both the XYZ and RGB values, 

and RGB color values are helpful when 

distinguishing objects. Hence, this study explored the 

classification of point cloud data obtained from MMS 

using CNN via the PointNet++ architecture to detect 

roads and potholes. Furthermore, it compared the 

efficiency of the two-point cloud classification 

methods, which utilized XYZ-only and XYZ-RGB 

data, in their training, validation, and classification 

processes. The purpose was to assess the significance 

and usefulness of these RGB values in enhancing 

data classification. 

 

2. Materials and Methods 

2.1 Study Area 

The spatial scope is Yothathikan Road, Keha 

Karnkaset Village, Village No. 10, Nong Prao Ngai 

Subdistrict, Sai Noi District, Nonthaburi Province, 

Thailand (N 13°52′48.37′′, E 100°18′37.51′′), which 

is as shown in Figure 1. The road deserves exploring 

because it leads to several industrial plants. 

Moreover, with trucks heavily utilized for 

transportation, the road surface is prone to damage 

and contains several potholes. Consequently, this 

study employed MMS to survey approximately four 

kilometers of the road, and collected data were 

processed by CNN to classify roads and potholes for 

further damage assessment. 

 

2.2 Mobile Mapping System 

MMS has a rapid pace of development and is an 

advanced surveying and mapping technique that can 

efficiently and quickly collect spatial data. [30] 

Typically, MMS vehicles are mounted with sensors 

such as LiDAR, GNSS, IMU, DMI, and advanced 

digital cameras (Figure 2). They are also equipped 

with a central computer system for data storage and 

management. [31] In addition, since GNSS, IMU, 

and DMI are positioning and orientation systems 

(POS), mobile mapping is conducted by scanning for 

wavelength and detecting light intensity when the 

laser is reflected from object surfaces.  
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Figure 1: The location of Yothathikan Road, Keha Karnkaset Village, Village No. 10, Nong Prao Ngai 

Subdistrict, Sai Noi District, Nonthaburi Province, Thailand 

 

 
 

Figure 2: MMS-IP-S3 mounted on a vehicle 

 

MMS can scan objects with precision, and acquired 

data can be used to create a 3D model of a city [32]. 

Also, distance can be accurately measured by the 

speed of light, which generates a wave signal back 

and forth. Therefore, the positional accuracy of the 

3D model depends on the angle at which the wave 

signal is scanned, measuring distance, and the 

position and orientation of the device [33]. Figure 3 

describes the mechanism in which map coordinates 

are referenced based on the scan angle a and the scan 

distance d of point P, which is determined by the 

coordinate system. In addition, position values in the 

scan coordinate system can be converted to 

coordinates in the map coordinate system.
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.   

Figure 3: MMS’s mechanism for referencing map coordinates 
 

[

𝑋𝑃

𝑌𝑃

𝑍𝑃

] =  𝑅𝐼𝑀𝑈
𝑀 (,, ) ⋅  ([

𝑙𝑋

𝑙𝑌

𝑙𝑍

] +  [

𝐿𝑋

𝐿𝑌

𝐿𝑍

] + 𝑟𝑃
𝑆(𝑎 𝑑) ⋅ 𝑅𝑆

𝐼𝑀𝑈(,,)) +  [

𝑋𝐺𝑁𝑆𝑆

𝑌𝐺𝑁𝑆𝑆

𝑍𝐺𝑁𝑆𝑆

] 

Equation 1 
 

As shown in Equation 1, [XP, YP, ZP]T indicates the 

position value of the target object P in the map 

coordinate system, and 𝑅𝐼𝑀𝑈
𝑀 (,, ), including the 

IMU-derived local mapping frame’s sensor roll, 

pitch, and yaw, serves as the IMU-mapping rotation 

matrix. Furthermore, the navigation and the IMU 

origin obtained from a system calibration or a 

measurement provided the lever-arm offsets of 

[𝑙𝑋 𝑙𝑌 𝑙𝑍], which were equivalent to the origins of the 

laser scanner and GNSS. Additionally, laser scanner 

coordinates were determined by 𝑟𝑃
𝑆(𝑎 𝑑), the relative 

position vector of Point P. The laser scanner’s angle 

and range were represented by 𝑎  and 𝑑 , whereas 

𝑅𝑆
𝐼𝑀𝑈(,,)  served as the scanner-IMU 

rotation matrix, with (,,)  indicating the 

scanner frame’s boresight angles obtained through 

system calibrations and adjusted to match the IMU 

body frame. [X.GNSS, YGNSS, ZGNSS]T indicates the 

location value of the GNSS receiver in the same map 

system 

 

2.3 Using the Convolutional Neural Network in Point 

Cloud Classification 

Since most CNN architectures take voxel and pixel 

data as input, point clouds are not native to them. 

Consequently, most researchers initially convert 

point cloud data to voxels or pixels [26], [27] before 

inputting it to CNN for processing. Unfortunately, 

data conversion often creates unnecessary data and 

degrades the quality of point cloud data. Therefore, if 

point cloud data could be classified directly, there 

would be no need for data conversion, removing the 

point cloud’s unique characteristics and detailed 

parameters. For instance, if RGB values are to be 

used to classify data in conjunction with XYZ 

coordinates, users can only choose to keep one of the 

parameters when converting the data, preventing the 

effective use of point cloud data. Fortunately, 

PointNet is a CNN architecture that can directly 

classify point cloud data [28]. Developed in 2017, 

this architecture has become a foundation for several 

new architectures. Furthermore, it can directly import 

point cloud data using an equation of P=RNxD where 

N represents the number of point clouds and D is the 

dimension of the data. Normally, D=3 as the 

dimension (dim) refers to the XYZ values of each 

point.  

However, with PointNet, RGB data can be used 

in conjunction with this dimension D. In addition, 

PointNet has been developed extensively and named 

PointNet++ based on CNN architectural principles. 

PointNet++ contains three main data layers: 

sampling, grouping, and PointNet. Initially, the 

sampling layer selects a set of points as centroids of 

the local regions. Subsequently, the grouping layer 

searches for neighboring points of these centroids. 

This layer receives a data input in the form of a point 

set of size N × (d + C) that is mainly composed of N 

points with C-dim point features, d-dim coordinates, 

and an array of coordinates for centroids of size N' x 

d. Moreover, it generated point set outputs that were 

of the size N' × K × (d + C), given that each of these 

groups must be consistent with a local region and K 

represents the quantity of points neighboring centroid 

points. Eventually, the PointNet layer employs mini-

Pointnet to encode local region patterns into feature 

vectors.  
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More specifically, this layer receives a data input of 

N’ local regions with points indicating data size N'× 

K × (d + C). Furthermore, its output’s local regions 

are abstracted by their centroid and local features 

encoding the centroids’ neighboring areas. The data 

size of the output refers to N' × (d + C') matrix of  N' 

subsampled points with d-dim coordinates and new 

C-dim feature vectors, which described the local 

context. The way to solve this problem is to sample 

all points as centroids at an inevitably higher 

computational expense at the abstraction level. An 

alternative is to propagate subsampled points’ 

features to their original points. Hence, this study 

adopted the hierarchical propagation strategy using 

interpolation based on distances and across level skip 

links (Figure 4). Hence, point features were 

propagated from NƖ × (d + C) to NƖ−1 where NƖ−1 and 

NƖ (with NƖ ≤ NƖ−1) represent the point set size of the 

input and output of set abstraction level Ɩ. In terms of 

interpolation, the inverse distance weighted average 

method was implemented in conjunction with the k-

nearest neighbors algorithm (k-NN). Furthermore, 

skip-linked point features from the defined 

abstraction level are concatenated with the 

interpolated features on NƖ−1 points. Afterward, a 

“unit pointnet,” comparable to a CNN’s one-by-one 

convolution, was applied to the concatenated 

features. The feature vector for each point was 

updated by applying some shared fully linked and 

ReLU layers. The original point set was subsequently 

updated through the propagation of these features in 

a repeated process [29]. 

Open3D is an open-source library that supports 

the development of software related to 3D data. It is 

responsible for presenting structures and algorithms 

in C++ and Python; managing data for PointNet++ to 

load, write, and display point cloud data; and pre-

processing, down-sampling, and interpolating data. 

 

2.4 Data Collection 

In this study, Topcon IP-S3 was utilized to handle 

MMS tasks by collecting and storing data of the study 

area, which is approximately a four-kilometer 

distance from the local control point, GNSS 610373. 

Obtained data were processed by the Post Process 

Kinematic (PPK), while six ground control points 

(GCPs) and six checkpoints (CPs) were measured to 

improve data accuracy. According to the National 

Standard for Spatial Data Accuracy (NSSDA), the 

model produced 0.089 meters of 3D accuracy at the 

95% confidence level (NSSDA Class 2), suitable for 

mapping missions involving automatic and semi-

automatic object classification [34]. The point cloud 

data derived from MMS contains approximately 282 

million points, roughly at the density of 5,000 points 

per square meter, with enough spatial resolution to 

classify potholes and roads. Furthermore, since the 

data were embedded with color values from digital 

cameras, each point contains both the XYZ and RGB 

values. 

 

2.5 Point Cloud Classification through a 

Convolutional Neural Network 

In this study, since CNN via the PointNet++ 

architecture was used to classify roads and potholes, 

point cloud data could be processed directly in two 

methods, including XYZ only and XYZ-RGB. 

Figure 4 illustrates the addition of RGB values when 

classifying roads and potholes from point cloud data. 

To prepare datasets for training and validation, in 

areas where data were unclear, potholes, roads, and 

other objects were manually labeled by visual 

observations via software, and the effort was 

supported by data from additional field surveys. 

These datasets were also utilized as references for 

checking the test datasets of both methods for 

classification accuracy (Figure 4). The trained model 

demonstrated that it could accurately classify objects 

from unknown data, the primary target for this 

classification. In other words, if the model could only 

classify previously known data, the network did not 

learn different information. Hence, training and 

validation are essential to learning, allowing models 

to predict unknown data more accurately. 

Furthermore, when classifying data, it is crucial to 

define conditions and parameters to suit the data 

appropriately. The training dataset contains three-

dimensional (3D) point-data coordinates, and it was 

used to train CNN to enhance its classification and 

recognition capabilities involving data attributes. 

Simply put, the training dataset taught CNN to create 

classification models corresponding to its preset data 

attributes. Furthermore, the validation dataset also 

served as another set of data attributes that 

contributed to the mentioned post-training models. 

They were also used to test the classification, and 

their results were further incorporated to revise and 

enhance the models. Eventually, the testing dataset 

was employed as actual classification test data for the 

models since these models were never exposed to the 

test data before.  

Hence, if the models worked effectively with the test 

data, they would also be adequately accurate to 

classify other data. Typical ratios of training, 

validation, and testing data are either 80:10:10, 

70:15:15, or 60:20:20, depending on data 

characteristics [35]. In this study, the distribution of 

potholes was uneven distance-wise.  Therefore, the 

60:15:25 ratio was chosen because there were few 

potholes in some data ranges in the testing dataset.  
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Figure 4: Point cloud data imported into CNN with PointNet++ for training, validating, 

and testing the classification 

 

 
 

Figure 5: The division of the point cloud data into training, validation, and testing datasets 

 

Hence, it was necessary to use 25% of the data as the 

sample data for the classification test. In this study, 

data were divided into three datasets, including 

training, validation, and testing. Since the point cloud 

data acquired from MMS were approximately 4,000 

meters, they were divided into 2,500 meters of the 

training dataset, 500 meters of the validation dataset, 

and 1,000 meters of the testing dataset for an actual 

classification  (Figure 5). 

 

2.6 To Assess for Accuracy, Quality Assessment and 

Statistical Hypothesis Testing were Conducted 

Firstly, the quality of the classification was assessed 

using the overall accuracy and intersection over 

union (IoU) values for each class as exhibited in 

Equations 2 and 3, where TP, TN, FP, and FN refer 

to true positive, true negative, false positive, and false 

negative points, respectively. 

 

Overall Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 

     

 Equation 2 

 

IoU = 
𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
 

        Equation 3 

 

Results of point cloud classification obtained from 

both methods through the calculation of Kappa 

coefficients in the Confusion Matrix were compared 

to identify differences between the methods [36].
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According to Equation 4, the Z-test has the primary 

hypothesis of 𝐻0 ∶ (𝐾1 −  𝐾2) = 0  (indifferent 

classification results) and the secondary hypothesis 

of 𝐻1 ∶ (𝐾1 −  𝐾2) ≠ 0  (different classification 

results). Hence, 𝐻0  would be rejected when 𝑍 ≥
𝑍𝑎/2  at the 95% confidence level and the critical 

value of 1.96. In other words, should the 𝑍 value falls 

outside the critical range of -1.96 to 1.96, it means 

that the results are significantly different at the 95% 

confidence level. 

 

𝑍 =
|𝐾1 − 𝐾2|

√𝑣𝑎𝑟(𝐾1) − 𝑣𝑎𝑟(𝐾2)
 

Equation 4 

 

When 𝐾1, 𝐾2 refers to Kappa estimates of Confusion 

Matrices 1 and 2, and 𝑣𝑎𝑟(𝐾1) − 𝑣𝑎𝑟(𝐾2)  to 

estimated Kappa variance. 

 

3. Results 

3.1 Training   

In this study, only 300 epochs were used for the 

training because the overall accuracy and the mean 

loss started to remain constant from the 200th epochs 

onward (Figure 6). The training lasted approximately 

30 minutes per epoch. Furthermore, mean loss, 

overall accuracy, mean IoU, and class IoU were 

obtained upon completing each epoch. The data were 

divided into three classes in this training: potholes, 

roads, and other objects. The best training results are 

shown in Table 1, and the results of each epoch are 

shown in Figure 6. From the results, the proposed 

method using RGB values from the point cloud for 

training yielded more effective data classification 

learning. Although the IoU values obtained from 

classifying roads and other objects were similar, the 

mean loss and IoU values from classifying potholes 

differed significantly. According to the results 

acquired from the two training methods (Table 1), the 

most effective training results within the method 

without RGB values suggested that the IoU of 

potholes (0.698) was lower than the IoUs of roads 

(0.961) and other objects (0.989), indicating that the 

training led to effective learning. Classifying 

potholes is more complicated than classifying roads 

and other objects because potholes do not 

collectively appear with a fixed characteristic and 

often blend in with the road surface. Therefore, this 

study introduced the use of RGB color values in 

training, and the results indicated that the method was 

more beneficial to the training since the mean loss 

was reduced from 0.068 to 0.044, and the IoUs of 

potholes improved from 0.698 to 0.848. 

Nevertheless, the overall accuracy values, the IoUs of 

roads, and the IoUs of other objects were similar. 

Therefore, it is safe to conclude that using RGB 

values in training increased prediction accuracy, 

especially in the IoU of potholes. 

 

    
Figure 6: The results of the two training methods using the point cloud data with and without RGB values 

 

Table 1: The results from training CNN with the training dataset 
 

 XYZ XYZ-RGB 
Mean Loss 0.068 0.044 

Overall Accuracy 0.989 0.992 

Mean IoU 0.883 0.938 

IoU of Potholes 0.698 0.848 

IoU of Road 0.961 0.976 

IoU of Other 0.989 0.990 
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3.2 Validation 

Every five epochs of training with the training 

dataset, validation was carried out using the 

validation dataset to store the classification model for 

the final classification with the testing dataset. Note 

that the system only stored models with higher test 

values than their previous epoch. Each validation 

produced overall accuracy values, mean IoUs, and 

class IoUs. Table 2 illustrates the highest validation 

results achieved by the two methods every five-epoch 

training interval. According to the diagram in Figure 

7, the RGB method produced the most accurate 

prediction in line with the previous training results. 

Remarkably, the IoU of potholes of the mentioned 

method (0.813) produced significantly higher results 

than that of the non-RGB method (0.700), meaning 

that the RGB method was incredibly and 

significantly accurate at classifying potholes 

compared to roads and other objects. 

 

3.3 Classifying the Testing Dataset 

To test for learning efficiency, the best performing 

models obtained from the training and validation 

were exposed to the testing dataset, a completely new 

dataset that contains a kilometer of point cloud data 

and 72 million points approximately. The results 

acquired from the methods with and without RGB 

values are illustrated in Figure 8. Overall, the 

classifications of roads and other objects by both 

methods were similarly effective, with the non-RGB 

method producing more errors when classifying road 

surfaces by mistaking other objects for road surfaces. 

Furthermore, the classification of potholes was 

adequately practical but less effective than that of 

roads and other objects. The classification was 

assessed for quality based on the IoU values of each 

class. According to Table 3, the mean IoU produced 

by the non-RGB method was 0.826 and the RGB 

method of 0.858. Although the IoUs of roads and 

other objects were similar at 0.94 and 0.95, the IoUs 

of potholes were different. More specifically, the 

non-RGB method produced a value of 0.595 and the 

RGB method of 0.667. This discovery is consistent 

with the results obtained from the training and 

validating sessions: the method with RGB values 

outperformed the non-RGB method. Furthermore, 

when the previously unknown testing dataset was 

classified, the resulting mean IoUs were 6% and 

7.2% lower than those obtained from the validation 

by the non-RGB and RGB methods, respectively. 

Furthermore, after assessing the classification quality 

of both methods through the Confusion Matrix, 

results revealed that the non-RGB method yielded an 

overall accuracy of 96.8% and a Kappa coefficient of 

0.94 (Table 4). Similarly, the RGB method produced 

an overall accuracy of 97.5% and a Kappa coefficient 

of 0.95 (Table 5). 

 

Table 2: Validation results from the validation dataset 
 

 XYZ XYZ-RGB 

Overall Accuracy 0.991 0.994 

Mean IoU 0.886 0.930 

IoU of Potholes 0.700 0.813 

IoU of Road 0.968 0.983 

IoU of Other 0.991 0.993 

 

 
Figure 7: The validation results of the two training methods using the point cloud data  

with and without RGB values 
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Figure 8: Data classification by both methods 

 

Table 3: The IoU values of both methods 
 

 XYZ XYZ-RGB 

Mean IoU 0.826 0.858 

IoU of Potholes 0.595 0.667 

IoU of Road 0.942 0.954 

IoU of Other 0.941 0.954 

 

Table 4: The Confusion Matrix of the non-RGB method 
 

Point Cloud Classification without RGB 

 Ground Truth 

Classes Potholes Road Other Total UA, % 

Potholes 510197 164134 24202 698533 73.0 

Road 157417 37435563 1673580 39266560 95.3 

Other 1533 301056 31676656 31979245 99.0 

Total 669147 37900753 33374438 71944338  

PA, % 76.3 98.8 94.9   

Overall Accuracy 96.8%     

Kappa 0.94     

 

Table 5: The Confusion Matrix of the RGB method 
 

Point Cloud Classification with RGB 

 Ground Truth 

Classes Potholes Road Other Total UA, % 

Potholes 533176 129340 1342 663858 80.31 

Road 135651 37580084 1342928 39058663 96.21 

Other 320 191329 32030168 32221817 99.41 

Total 669147 37900753 33374438 71944338  

PA, % 79.68 99.15 95.97   

Overall Accuracy 97.50%     

Kappa 0.95     
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Table 4 and Table 5 show that the overall accuracy 

value of the point cloud classification with RGB 

(97.5%) was slightly higher than that produced by the 

non-RGB method (96.8%). Consistently with the 

producer accuracy and user accuracy values obtained 

from other point cloud classifications, the RGB 

method yielded increased accuracy. Since the point 

cloud classifications of roads and other objects 

typically produce similarly effective accuracy 

performance, several studies tend to publish similar 

results. Although the classification of potholes may 

produce a significantly different result compared to 

roads and other objects, potholes tend to be regarded 

as a data class with fewer points to classify. Hence, 

they tend not to tip the scale of the overall accuracy 

in broader results.  

After the Z-test was administered to the two 

methods to compare differences in accuracy 

performance at the 95% confidence level, the Z value 

of this test was 261.27, falling outside the critical 

range of -1.96 to 1.96. Furthermore, based on the Z-

test and the Confusion Matrix, both methods yielded 

a significantly different classification outcome, with 

the RGB method providing a more satisfying 

classification accuracy with statistical significance 

when classifying potholes. 

 

4. Discussion 

According to Figure 6, the IoUs of potholes from 

each training epoch improved more slowly in the 

non-RGB method than in the RGB one, suggesting 

that the 360-degree panoramic cameras helped 

enhance the training outcomes. After training the 

non-RGB and RGB methods, the best-obtained 

performance was similar at the overall accuracy 

values of 98.9% and 99.2%, respectively. However, 

their IoUs of potholes were 69.8% and 84.8%, 

respectively. The validation results of each epoch 

also produced results in a similar fashion compared 

to the training results, which are lower than the IoUs 

of roads and other objects. These figures indicate that 

potholes are a challenging class for CNN to learn and 

classify. This difficulty could be due to their unique 

and non-fixed characteristics in the point cloud data 

since potholes could emerge in any shape on the road 

surface, confusing the model when classifying. 

The final classification with the testing dataset 

revealed that the non-RGB and RGB methods 

respectively produced 2.3% and 1.9% decreased 

overall accuracy values compared to the previous 

validation classification results. However, the IoUs 

of roads, potholes, and other objects decreased by 

2.6%, 10.5%, and 5.1% for the non-RGB method and 

2.9%, 14.6%, and 3.9% for the RGB method, 

respectively. Evidently, the models obtained from the 

training and validation were less effective in 

classifying potholes from previously unknown data 

than in classifying roads and other objects. However, 

the Z-test indicated that both methods still produced 

significantly different outcomes. 

Based on the final test with the testing dataset, the 

non-RGB method was much less accurate and 

produced several significant errors, such as mistaking 

other objects for road surfaces. These errors occurred 

in several locations, especially at road boundary lines 

and road curbs with a similar level (Figure 9).  

 
Figure 9: Classifying road boundaries with both methods 
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These errors are what make the two methods 

distinctive in classification accuracy. Apparently, the 

model could learn to classify objects more accurately 

when seeing RGB color values at road curbs. 

When using CNN to classify data, classification 

efficiency depends on its training dataset. For 

example, if the sample data contain images of a 

pothole under the shadow of a tree or building, the 

model would learn to recognize such a pothole as is 

and be able to classify a similar pothole in the future. 

The model is projected to have the capability to 

classify data by weighing between XYZ and RGB 

values. Evidently, using CNN to classify potholes 

directly based on the point cloud data was an exciting 

endeavor since CNN was able to distinguish objects 

from 3D point data in combination with color values 

with a degree of satisfying efficiency. Furthermore, 

point cloud data can extensively be utilized in the 3D 

analysis. MMS is point cloud survey equipment that 

can provide detailed road surface data since its 

platform can be mounted on vehicles. Nonetheless, 

there are now other platform options, such as UAV 

LiDAR, that can also be used to collect 3D data, and 

they are more affordable than MMS. In addition, 

UAV LiDAR surveys can provide data with similar 

quality to MMS, especially when flying at low 

altitudes. Obtained point cloud data can also be used 

to classify objects and detect road damage. 

Therefore, UAV LiDAR seems to be an adequate 

alternative for further road damage exploration. 

 

5. Conclusion 

Based on the point cloud classification performance 

of the two methods with the three datasets of training, 

validation, and testing, the method with XYZ and 

RGB values was more effective than the method with 

only XYZ values in the PointNet++ architecture. In 

addition, although both methods did not produce a 

significantly different outcome when classifying 

roads and other objects, the RGB method has 

tremendously outperformed the non-RGB one in 

pothole classification. 

When introducing the training and validation 

datasets, both methods could learn to classify roads 

and other objects at a face pace. However, they were 

slower at learning to classify potholes. The RGB 

method had a faster classification learning pace 

during the training and validation. Furthermore, 

based on the final test with the testing dataset, IoUs 

of roads and other objects slightly decreased, while 

those of the potholes decreased considerably. 

Evidently, classifying potholes from point clouds is a 

challenging task. Although the RGB method could 

improve the classification performance, its 

effectiveness in classifying potholes remained low 

compared to other classes, such as roads and other 

objects. 

Based on the results, the classification of potholes 

became more accurate when using the point cloud 

data that contained XYZ and RGB values compared 

to the method that only utilized XYZ values. 

However, the degree of accuracy achieved in this 

study was purely based on available data obtained 

from the survey site. Hence, classification accuracy 

might change with new datasets of new locations and 

different pothole characteristics. 

In terms of suggestions, Since the road data 

employed in this study mainly include straight roads 

with junctions leading to alleys and do not contain 

primary junctions, such as three-way and four-way, 

further studies are suggested to utilize point cloud 

data with primary junctions to assess the 

effectiveness of road classification at junctions. 

Furthermore, since the study area contains various 

types of damage, such as potholes, rutting, and 

depression. Future studies are recommended to 

classify road damages according to damage types. In 

addition, since there were limitations in finding a 

survey site with consistent and long-distance road 

surface problems with potholes, further studies are 

suggested to find areas with lengthy potholes to 

ensure more pothole samples could be collected and 

used to train CNN to achieve a higher precision 

classification performance. 
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