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Abstract

Land Cover (LC) analyses and quantitiative as well as multi-thematic balances of (land use and) land cover
are well established steps when identifying biogeoclimatic zones, estimating the potentials for human uses or
habitat suitability, explore climate change impacts over time or dig deeper into the extent and co-location of
specific categories like desert, forest, glaciers etc with determining factors in topography, climate or human
impacts. While there are innumerable examples of land cover analysis in a range of projects at local scales
covering catchments, smaller administrative districts or planning regions, a ‘big picture’ approach exploring
national to global scales typically was constrained by the lack of easy access global data sets at high spatial
resolution, and the resulting computation load hardly manageable on personal workstations. The recent
availability of a variety of land cover services based on full and regular remote sensing coverage with automatic
extraction of LC through deep learning approaches, in combination with geospatial cloud computing facilities
enable researchers to leverage native (sensor) resolution analysis without the hassle of data download,
preparation and local computational loads, as first implemented in Google Earth Engine. This paper supports
this point by demonstrating LC analysis against topographic variables for the entire country of Kyrgyzstan.
This kind of insights will lead to a better understanding of spatiotemporal LC dynamics and inform policy
decisions from national to global levels.
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1. Introduction

Land cover serves as an important constraint for all
kinds of land use and human activities, and as an
indicator for natural as well as societal dynamics on
Earth’s surface. Mapping and monitoring land cover
(LC) is a key objective of space-based earth
observation (EO). Since the beginning of regular
global satellite imagery coverage with the Landsat
platforms, huge repositories of EO data have been
built up, recently complemented by a range of other
platforms, e.g. ESA’s Sentinel family.

Many of these EO archives now are available
under open licenses, facilitating the development of
derivative data products like global land cover as
presented by Tsendbazar et al., in [1] and Mora et al.,
in [2]. Original imagery as well as data products have
enormous storage requirements and are subject to
continuous expansion, enhancement and updating.
Cloud environments therefore are the only feasible
architectures where land cover archives and data
products can be maintained and made readily

accessible for users worldwide.

Land cover, as just one example of EO based
products, is being widely used for mapping and
establishing context for spatial planning [3],
environmental monitoring, and land use decisions. In
addition, it serves as an integrated indicator for
various spatial processes, and as such is of interest
whenever a deeper assessment and understanding of
regional geographies is required. Spatial analysis
aims at generating information in support of decision
making, and this information created from a
‘densification’ of data is the main intended output
from geospatial methods and tools. This study aims
at demonstrating the power of cloud based spatial
analysis, leveraging the online availability of EO
based land cover data products. It uses the ‘World
Land Cover 30m BaseVue’ data set originally created
and published by MDA, and available inter alia
through Esri’s Living Atlas cloud infrastructure.
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Land cover (LC) not only is an integrative indicator
for factors like climate, substrate and the interaction
of ecological processes, but also is well suited to
monitoring change induced by global (climate)
processes [14] as well as regional human activities.
Land cover also is a factor determining the local
potential for human habitation and economic
activities, including its role in complex biogeo-
climatic feedback cycles. While in extreme cases LC
is essentially ‘nil’ — considering barren rock or soil or
the special case of water, snow and ice, in most cases
it requires a scale-dependent and systems-oriented
definition. This is particularly true for multi-level
vegetation covers as well as seasonal agricultural
patterns. Like most mapping tasks, the schema or
classification employed to identify area categories
depends on the purpose of the resulting
representation. This paper is entirely focused on
remote sensing based and thus phenological
acquisition [1] [6] somewhat restricting the types of
LC units which can be distinguished. On the other
hand, this approach facilitates work with globally
homogeneous seamless data sets easily available
through online services. The work performed
towards this paper aims at determining the analytical
potential and constraints for regionalized insights
into LC distribution and dynamics. These again are
considered  highly relevant and  factually
indispensable for the monitoring of impacts from
direct human action as well as climate change. This
literally ‘top-down’ approach of global land cover
monitoring is demonstrated and discussed using a
Central Asia case study within the borders of the
Kyrgyz Republic.

2. Materials and Methods

2.1 Study Area

This exploratory study was conducted covering the
territory of the Kyrgyz Republic in Central Asia
(Figure 1). As an approx. 200000 km? country with a
rich topography spanning different climates from
sub-mountain, mountain, high-mountain and nival
zones, it is home to a correspondingly diverse set of
land cover categories well suited for exploring the
performance and quality of global LULC data sets.
From an agricultural perspective Park et al., [7]
explore the cropland suitability of Kyrgyz lands,
while other studies like Liu et al., [8] include climate
change scenarios. The general methodology of
correlating land cover with other spatial variables
however is considered transferable to any other
region.

2.2 Objectives

Analyzing the distribution of land cover and its
correlation with topographic parameters at a ground
resolution of 25m pixels corresponds to the original
spatial resolution of imagery as well as digital
elevation models (DEM), and at the same time
demonstrates the power and potential of extending
this analysis over huge swaths of land and potentially
the entire globe, instead of limited local study areas.
Within this meta-objective of assessing and
validating the global scope and analytical efficiency
of creating geospatial insights from a combination of
cloud-based data sets with fully scalable methods and
tools, this case study explores the topographic
patterns of land cover across the Kyrgyz Republic.
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Figure 1: Topographic context of Kyrgyzstan as a study area
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For the first time not only the balance of land cover
categories for this country is established, but also LC
distribution over topographic parameters. These
examples are intended to showcase the potentials
arising from combining, aggregating, and analyzing
easily accessible global data sets with cloud-based
geospatial methods.

2.3 Data Bases

This study is focused on (nearly) globally available
online data sets accessible as online services and
available for analysis. These products became feasible
with the advent of sensors like MODIS, AVHRR and
ETM which for the first time enabled the building of a
‘global view’ of the state and condition of Earth’s
surface. The increase in open access to remote sensing
date up to dekameter range created a decisive impulse
for the move from project-based and regional needs-
driven LULC classification towards global supply-
oriented coverages. The ‘Global Land Survey’ [9]
using Landsat ETM+ (after the full opening of Landsat
archives, and based on earlier precursors) set the stage
for the emergence of freely accessible worldwide LC
data. It is important to mention, however, that
automatic classification of remote sensing data is not
the only path to land cover data. The European
CORINE program initiated in 1985 started out with
manual classifications of Landsat imagery into 44
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categories with an original minimum mapping unit of
25ha and a focus on environmental monitoring [9].
Subsequently this was transitioned into the Sentinel —
focused Copernicus Land Monitoring Service.

The geospatial cloud analytics case study
presented in this data set is predominantly based on
two global data sets, therefore the general approach
would be applicable and reproducible essentially
anywhere. These data sets represent land cover and
elevation, respectively, and as due to their worldwide
availability (except for polar regions) provide a
seamless and complete coverage of Kyrgyzstan. The
“World Land Cover 30m BaseVue’ data set [10], see
Table 1, is a commercial product using a
multitemporal, semi-automated supervised classifier
(https://www.maxar.com/products/basevue-lulc). The
original capture dates were April 2014 to June 2014
with Landsat 8 with continuous updates until August
2020 for the data set used by the authors at
https://arcg.is/Py4ei. Available as a premium service
on the Living  Atlas  cloud platform
(https:/Nivingatlas.arcgis.com) like the other products
discussed in this section it has a proven record of
supporting analyses anywhere on the globe in the
25/30m resolution dimension. These LC data are
accessible as an image service with query, identify,
export and raster function capabilities and contain cell
values according to the following class definitions.

Table 1: Land cover class definitions according to [10]

Class | Class Name Description (abbreviated)

1 Deciduous Forest Trees > 3 meters in height, canopy closure > 35% (<25% intermixture with evergreen species) that
seasonally lose their leaves, except larch

2 Evergreen Forest Trees > 3 meters in height, canopy closure >35% (<25% intermixture with deciduous species), of
species that do not lose leaves (includes coniferous larch)

3 Scrub/Shrub Woody vegetation <3 meters in height, > 10% ground cover. Only collect > 30% ground cover.

4 Grassland Herbaceous grasses, > 10% cover, including pastureland. Only collect > 30% cover.

5 Barren or Minimal Land with minimal vegetation (<10%) including rock, sand, clay, beaches, quarries, strip mines, and

Vegetation gravel pits.

7 Agriculture, General | Cultivated cropland

8 Agriculture, Paddy Cropland characterized by inundation for a substantial portion of the growing season

9 Wetland Areas where the water table is at or near the surface for a substantial portion of the growing season,
including herbaceous and woody species (except mangrove species)

10 Mangrove Coastal (tropical wetlands) dominated by mangrove species

11 Water All water bodies greater than 0.08 hectares (1 Landsat pixel) including oceans, lakes, ponds, rivers,
and streams

12 Ice/Snow Land areas covered permanently or nearly permanently with ice or snow

13 Clouds Areas where no land cover interpretation is possible due to obstruction from clouds, cloud shadows,
smoke, haze, or satellite malfunction

14 Woody Wetlands Areas where forest or shrubland vegetation accounts for greater than 20% of vegetative cover and the
soil or substrate periodically is saturated with or covered by water.

15 Mixed Forest Areas dominated by trees generally greater than 5 meters tall and greater than 20% of total vegetation
cover. Neither deciduous nor evergreen species are greater than 75% of total tree cover.

20 High Density Urban | Areas with over 70% of constructed materials that are a minimum of 60 meters wide (asphalt,
concrete, buildings, etc.).

21 Medium-Low Areas with 30% to 70% of constructed materials that are a minimum of 60 meters wide (asphalt,

Density Urban concrete, buildings, etc.).
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Figure 2: BaseVue land cover service with enlarged sample detail
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Figure 3: Land Cover categories within Kyrgyzstan - dominated by barren land, shrubs and grassland, with
minor proportions of forests, agricultural land and water/snow/ice

For the presentation of analyses highlighted in this
paper the classes 7 and 8 have been consolidated under
‘Agriculture’, the minimal amount of ‘Wetlands’ has
been added to “Water’ and 20 and 21 were combined
into ‘Urban’. Classes 10, 13, 14, and 15 were not
present within the study area. Figure 2 shows the
original view and standard symbology zoomed into the
study area with a local more detailed sample around
the Kyrgyz capital city Bishkek.

Statistically aggregating the LC classes on the
BaseVue service within Kyrgyzstan’s boundaries
shows more than 80% of the land mass covered by
only three approximately equal categories, barren
land, shrub / scrub and grassland. Only 6% are
available for agriculture, and area exceeded by water /
ice / snow. Forest cover is minimal, and built-up land
is concentrated in a few major settlements.
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While this kind of summary statistics is easily
tabulated, for further analysis and the development of
change scenarios it is important to allocate LC
categories to specific topographic, climatic and human
access contexts — this question will be addressed
further below. The map in Figure 2 shows a lot of
detail and serves as a starting point for high resolution
multi-thematic analyses, but does not really provide a
quick and crisp overview of spatial LC patterns across
the country. For more effective communication of the
‘big picture’ a generalized view was created with a
hexagonal standard mapping unit of 10km2. Within
each hexagon, the dominant ‘majority’ class was
selected by zonal statistics and assigned a unique value
according to the legend provided. While BaseVue
2013 has been used exclusively in the analysis
presented below, multiple alternative data sets now are
available with somewhat different characteristics and
are referenced here for context: most recently, a ten
class global land use/land cover (LULC) data set based
on Sentinel 2 for the year 2020 has been generated at
10 meter resolution [11]. It distinguishes classes water
— trees — grass — flooded vegetation — drops —
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scrub/shrub — built area — bare ground — snow/ice —
clouds and claims an overall accuracy of 86% against
a validation set [12]. It was produced by a deep
learning model trained using over 5 billion hand-
labeled Sentinel-2 pixels, sampled from over 20,000
sites distributed across all major biomes of the world.
The underlying deep learning model uses 6 bands of
Sentinel-2 surface reflectance data: visible blue, green,
red, near infrared, and two shortwave infrared bands.
To create the final map, the model is run on multiple
dates of imagery throughout the year, and the outputs
are composited into a final representative map of 2020
(https://arcg.is/lOKemuy). In addition, the processing
workflow has been established in a way to allow future
global as well as regional replication based on updated
sensor data, thus facilitating updating and change
detection. Acknowledging that the quest for global LC
data sets is already dating back at least three decades,
the original GLC can be considered a baseline data set
which only much more recently has been made
accessible as an online service. The table below
provides a quick look at the evolution of monitoring
global land cover since then (Table 2).
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Figure 4: 10km? hexagons assigned the majority class within each hexagon

Table 2: Overview of select global land cover data sets

Data set Global Land Cover 1992-2019 | LC BaseVue 2013 | Global LULC 2020
Accessed at | https://arcg.issXWa4j https://arcg.is/Py4ei | https://arcg.is/OKemuy
Sensor AVHRR, SPOT, PROBA et al Landsat 8 Sentinel-2

SRS GCS WGS84 Web Mercator Web Mercator UTM-WGS84
Resolution 300m 30m 10m

Acquisition | 1992 ff 2013-2017 2020

classes 36 (hierarchical) 14/16 (US only) 10

International Journal of Geoinformatics, VVol.18, No.6 December 2022
ISSN: 1686-6576 (Printed) | ISSN 2673-0014 (Online) | © Geoinformatics International




The below presented exemplary analyses, however,
are not predominantly focused on change monitoring
and detection, even though this has been the main
objective for the creation of the above introduced
coverages. The authors rather want to emphasize the
potential for analysis across thematic domains, like:

- LC distribution and dynamics across different

morphometric features,

- LC relative to population densities and human

activities,

- LC differences within and between national

jurisdictions.

These kinds of cross-domain analyses are facilitated
by global data sets similarly accessible like the above
introduced LC services, in particular the Airbus
WorldDEM  used in  subsequent  analyses
(https://www.intelligence-
airbusds.com/imagery/reference-layers/worlddem/).
To work with topography across the study area in the
following analyses, the global multi-resolution terrain
elevation service from the Living Atlas was accessed
at https://arcg.is/feefK at the (25m) resolution of the
WorldDEM data.

2.4 Data Analysis

Multi-thematic analysis long has been a mainstay set
of methods within the field of spatial analysis.
Exploring correlations and systematic
interdependencies between coverages of spatial data is
an important starting point for understanding spatial
distributions of observations — like land cover. Having
a clear picture of the impact of independent spatial
variables like terrain, zonal climate factors and human
action on land use and land cover ultimately helps with
modeling distributions [13] as well as developing
scenarios for anticipating change. Applicable overlay
methods depend on the type of data involved. Metric
data sets, like elevation vs precipitation lend
themselves to simple correlation quantifying a degree
of interdependence — although due to the typical
presence of a high degree of spatial autocorrelation
inferential statistics have limited value. At the core of
exploratory analyses in this paper is the traditional map
algebra approach of zonal analysis, generating
descriptive statistics of a metric, continuous spatial
variable like terrain elevation within the spatially
discrete zonal categories of e.g. land cover.

Outlined already in the foundational book by
Tomlin [14], zonal analysis per se obviously does not
qualify as a novel approach in geospatial analysis.
Within the context of this paper however it is applied
to demonstrate the immense added value derived from
two recent developments: the services-based open
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access to global data sets with high spatial and
temporal resolution, and the emancipation of
processing frameworks from personal workstations
towards cloud computing. The combination of these
developments significantly lowers the hurdles for
exploratory analysis of land cover distributions and
dynamics on e.g. national scales without having to go
through the previously required enormous efforts of
data preparation and staging of analyses. This
evolution of analytical frameworks is tightly
connected with the establishment of Spatial Data
Infrastructures [15] [16] and Digital Earth twins [17],
as demonstrated e.g. through the European INSPIRE
Spatial Data Infrastructure presented by Minghini et al
[2].

A spatial resolution of 25m was explicitly defined
for all subsequent analysis steps, fully leveraging the
nominal 25m resolution for terrain elevation and
reasonably close to the 30m original Landsat ETM
resolution underlying the BaseVue land cover service.
Values of derivatives like slope therefore must be
considered within the constraints of this resolution.

3. Results

To demonstrate the power and potential of cloud-
based multi-thematic analysis over large regions
covering entire countries, the BaseVue 2013 land
cover data set zones were analyzed against
topographic variables at a 25m spatial resolution. For
full appreciation of the data volume involved and the
scale of these cross-tabulations of categorized data
through zonal operations it shall be kept in mind that
each layer (land cover, elevation and slope) include
approx. 320 million data points each. The entire
workflow has been implemented in the Esri
‘ecosystem’, leveraging data from the Living Atlas
infrastructure, using ArcGIS Pro for analytical steps
and ArcGIS Online for presentation including
storymapping.

3.1 Hypsometric Distribution of Land Cover
Categories

The summary table presented as Figure 5 summarizes
the zonal analysis of BaseVue LC classes against
WorldDEM elevation, aggregated into 100m
elevation steps and cut off above 5000m. The column
labeled ‘HYPSOMET’ shows the rather unusual
hypsometric curve of this country. A peak around
1600m elevation highlights the huge lake area of
‘Issyk Kul’ in the northeastern region, and the
dominant elevations between 3000m and 3500m are
characteristic for the large tracts of land with only
very limited economic potential as seasonal pastures.
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Figure 5: Hypsometric distribution of land cover categories across Kyrgyzstan

The coloured graphic bars within the chart represent
the relative per-LC-class elevation distribution and
have to be interpreted with reference to the total share
of these classes as indicated in Figure 3. Agricultural
uses and human settlements dominate only below
1500m elevation, from there a few forests and a lot
of grassland and shrub in dryer areas take over with
barren land dominating above 3500m followed by
nival high mountain environments. This overview
could of course be translated back into a multivariate
selection map (not shown here for space reasons)
highlighting e.g. low lying semi arid and currently
unused areas which potentially could be made
available for agriculture through irrigation. Or those
shrublands can be identified offering opportunities
for afforestation, or for conversion into productive
grasslands. Clearly these would be naive approaches
requiring finetuning with additional factors and
constraints to deliver any kind of useful policy
recommendations.  Climate  variables,  soils,
feasibility of irrigation, access to markets and other
criteria would have to be included with only slope
inclination addressed as an additional factor below —
as the main thrust of this paper aims at demonstrating
the application of regional analysis through cloud
computing and leveraging of online LC services, not
pursuing specific development and policy questions.

3.2 Slope Patterns of Land Cover Categories
Topographic gradients, commonly referred to as
‘slope’ are another important constraint for the
development of land uses and the assessment of
regional potentials. In Figure 6 again the entire
national land mass was classified in 5° slope
categories using the 25m WorldDEM with direct use
of server-side processing. The frequency distribution
including sizable proportions of rather steep slopes —
nearly half the country is in the steeper than 20°
bracket. Again the slope frequencies in the respective
columns have to be interpreted relative to those LC
categories as quantified in Figure 3. Besides the
obvious flat area and gentle slope preferences of
settlements and agriculture (and of course water
bodies) grassland due to its use as pastures dominates
hilly slopes. Shrub and barren land depends less on
slope than on substrate and humidity and therefore
does not exhibit a clear slope frequency profile, with
forests remaining on steeper slopes while ice and
snow of course are determined mostly by elevation.
Again, slope serves as but one factor in a multi-
thematic land cover analysis and demonstrates the
enormous benefits derived from openly and readily
accessible global (digital terrain) data sets for a broad
range of analyses.
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Figure 6: Distribution of land cover categories across 5° slope classes. Second column from left represents
overall slope frequency within the country

4. Discussion and Conclusions

The demonstration of integrated cloud-based analysis
of openly available global information layers not
only showcases the benefits of global monitoring
from satellite platforms and highly automated
semantic information extraction through Al, ML and
DL, but also highlights the potentials of directly
working with geospatial information through live
web services instead of offline data sets decoupled
from their sources. Spatial analysis is entering a new
era through these dual developments allowing near
real time insights largely independent from scale and
spatial as well as temporal extents of research
domains. Furthermore, even though only LC and
DEM services have been used as demonstrators in
this paper the practical impact of the cloud services
and computation paradigm is of course not limited to
these types of spatial information. To name just one
other example of openly accessible data services with
obvious interdependencies with the above we would
like to emphasize the disaggregated and gridded world
population layers [18] [19] [20] providing valuable
insights into the densities and patterns of human
habitation and impact.

Overall, we understand the above examples as a
call for action to move from the currently still
prevalent desktop-centric paradigm of analyzing
static collections of spatial data towards dynamic
analytical insights facilitated by online services and
scalable cloud computing.
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