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Abstract 

Land Cover (LC) analyses and quantitiative as well as multi-thematic balances of (land use and) land cover 

are well established steps when identifying biogeoclimatic zones, estimating the potentials for human uses or 

habitat suitability, explore climate change impacts over time or dig deeper into the extent and co-location of 

specific categories like desert, forest, glaciers etc with determining factors in topography, climate or human 

impacts. While there are innumerable examples of land cover analysis in a range of projects at local scales 

covering catchments, smaller administrative districts or planning regions, a ‘big picture’ approach exploring 

national to global scales typically was constrained by the lack of easy access global data sets at high spatial 

resolution, and the resulting computation load hardly manageable on personal workstations. The recent 

availability of a variety of land cover services based on full and regular remote sensing coverage with automatic 

extraction of LC through deep learning approaches, in combination with geospatial cloud computing facilities 

enable researchers to leverage native (sensor) resolution analysis without the hassle of data download, 

preparation and local computational loads, as first implemented in Google Earth Engine. This paper supports 

this point by demonstrating LC analysis against topographic variables for the entire country of Kyrgyzstan. 

This kind of insights will lead to a better understanding of spatiotemporal LC dynamics and inform policy 

decisions from national to global levels. 
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1. Introduction 

Land cover serves as an important constraint for all 

kinds of land use and human activities, and as an 

indicator for natural as well as societal dynamics on 

Earth’s surface. Mapping and monitoring land cover 

(LC) is a key objective of space-based earth 

observation (EO). Since the beginning of regular 

global satellite imagery coverage with the Landsat 

platforms, huge repositories of EO data have been 

built up, recently complemented by a range of other 

platforms, e.g. ESA’s Sentinel family. 

Many of these EO archives now are available 

under open licenses, facilitating the development of 

derivative data products like global land cover as 

presented by Tsendbazar et al., in [1] and Mora et al., 

in [2]. Original imagery as well as data products have 

enormous storage requirements and are subject to 

continuous expansion, enhancement and updating. 

Cloud environments therefore are the only feasible 

architectures where land cover archives and data 

products can be maintained and made readily 

accessible for users worldwide.  

Land cover, as just one example of EO based 

products, is being widely used for mapping and 

establishing context for spatial planning [3], 

environmental monitoring, and land use decisions. In 

addition, it serves as an integrated indicator for 

various spatial processes, and as such is of interest 

whenever a deeper assessment and understanding of 

regional geographies is required. Spatial analysis 

aims at generating information in support of decision 

making, and this information created from a 

‘densification’ of data is the main intended output 

from geospatial methods and tools. This study aims 

at demonstrating the power of cloud based spatial 

analysis, leveraging the online availability of EO 

based land cover data products. It uses the ‘World 

Land Cover 30m BaseVue’ data set originally created 

and published by MDA, and available inter alia 

through Esri’s Living Atlas cloud infrastructure. 
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Land cover (LC) not only is an integrative indicator 

for factors like climate, substrate and the interaction 

of ecological processes, but also is well suited to 

monitoring change induced by global (climate) 

processes [14] as well as regional human activities. 

Land cover also is a factor determining the local 

potential for human habitation and economic 

activities, including its role in complex biogeo-

climatic feedback cycles. While in extreme cases LC 

is essentially ‘nil’ – considering barren rock or soil or 

the special case of water, snow and ice, in most cases 

it requires a scale-dependent and systems-oriented 

definition. This is particularly true for multi-level 

vegetation covers as well as seasonal agricultural 

patterns. Like most mapping tasks, the schema or 

classification employed to identify area categories 

depends on the purpose of the resulting 

representation. This paper is entirely focused on 

remote sensing based and thus phenological 

acquisition [1] [6] somewhat restricting the types of 

LC units which can be distinguished. On the other 

hand, this approach facilitates work with globally 

homogeneous seamless data sets easily available 

through online services. The work performed 

towards this paper aims at determining the analytical 

potential and constraints for regionalized insights 

into LC distribution and dynamics. These again are 

considered highly relevant and factually 

indispensable for the monitoring of impacts from 

direct human action as well as climate change. This 

literally ‘top-down’ approach of global land cover 

monitoring is demonstrated and discussed using a 

Central Asia case study within the borders of the 

Kyrgyz Republic.            

2. Materials and Methods  

2.1 Study Area  

This exploratory study was conducted covering the 

territory of the Kyrgyz Republic in Central Asia 

(Figure 1). As an approx. 200000 km² country with a 

rich topography spanning different climates from 

sub-mountain, mountain, high-mountain and nival 

zones, it is home to a correspondingly diverse set of 

land cover categories well suited for exploring the 

performance and quality of global LULC data sets. 

From an agricultural perspective Park et al., [7] 

explore the cropland suitability of Kyrgyz lands, 

while other studies like Liu et al., [8] include climate 

change scenarios. The general methodology of 

correlating land cover with other spatial variables 

however is considered transferable to any other 

region. 

 

2.2 Objectives 

Analyzing the distribution of land cover and its 

correlation with topographic parameters at a ground 

resolution of 25m pixels corresponds to the original 

spatial resolution of imagery as well as digital 

elevation models (DEM), and at the same time 

demonstrates the power and potential of extending 

this analysis over huge swaths of land and potentially 

the entire globe, instead of limited local study areas. 

Within this meta-objective of assessing and 

validating the global scope and analytical efficiency 

of creating geospatial insights from a combination of 

cloud-based data sets with fully scalable methods and 

tools, this case study explores the topographic 

patterns of land cover across the Kyrgyz Republic.   

 

 
 

Figure 1: Topographic context of Kyrgyzstan as a study area 
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For the first time not only the balance of land cover 

categories for this country is established, but also LC 

distribution over topographic parameters. These 

examples are intended to showcase the potentials 

arising from combining, aggregating, and analyzing 

easily accessible global data sets with cloud-based 

geospatial methods. 

  

2.3 Data Bases 

This study is focused on (nearly) globally available 

online data sets accessible as online services and 

available for analysis. These products became feasible 

with the advent of sensors like MODIS, AVHRR and 

ETM which for the first time enabled the building of a 

‘global view’ of the state and condition of Earth’s 

surface. The increase in open access to remote sensing 

date up to dekameter range created a decisive impulse 

for the move from project-based and regional needs-

driven LULC classification towards global supply-

oriented coverages. The ‘Global Land Survey’ [9] 

using Landsat ETM+ (after the full opening of Landsat 

archives, and based on earlier precursors) set the stage 

for the emergence of freely accessible worldwide LC 

data. It is important to mention, however, that 

automatic classification of remote sensing data is not 

the only path to land cover data. The European 

CORINE program initiated in 1985 started out with 

manual classifications of Landsat imagery into 44 

categories with an original minimum mapping unit of 

25ha and a focus on environmental monitoring [9]. 

Subsequently this was transitioned into the Sentinel – 

focused Copernicus Land Monitoring Service. 

The geospatial cloud analytics case study 

presented in this data set is predominantly based on 

two global data sets, therefore the general approach 

would be applicable and reproducible essentially 

anywhere. These data sets represent land cover and 

elevation, respectively, and as due to their worldwide 

availability (except for polar regions) provide a 

seamless and complete coverage of Kyrgyzstan. The 

‘World Land Cover 30m BaseVue’ data set [10], see 

Table 1, is a commercial product using a 

multitemporal, semi-automated supervised classifier 

(https://www.maxar.com/products/basevue-lulc). The 

original capture dates were April 2014 to June 2014 

with Landsat 8 with continuous updates until August 

2020 for the data set used by the authors at 

https://arcg.is/Py4ei. Available as a premium service 

on the Living Atlas cloud platform 

(https://livingatlas.arcgis.com) like the other products 

discussed in this section it has a proven record of 

supporting analyses anywhere on the globe in the 

25/30m resolution dimension. These LC data are 

accessible as an image service with query, identify, 

export and raster function capabilities and contain cell 

values according to the following class definitions.  

 

Table 1: Land cover class definitions according to [10] 
 

Class Class Name Description (abbreviated) 

1 Deciduous Forest Trees > 3 meters in height, canopy closure > 35% (<25% intermixture with evergreen species) that 

seasonally lose their leaves, except larch 

2 Evergreen Forest Trees > 3 meters in height, canopy closure >35% (<25% intermixture with deciduous species), of 

species that do not lose leaves (includes coniferous larch) 

3 Scrub/Shrub Woody vegetation <3 meters in height, > 10% ground cover. Only collect > 30% ground cover. 

4 Grassland Herbaceous grasses, > 10% cover, including pastureland. Only collect > 30% cover. 

5 Barren or Minimal 
Vegetation 

Land with minimal vegetation (<10%) including rock, sand, clay, beaches, quarries, strip mines, and 
gravel pits.  

7 Agriculture, General Cultivated cropland 

8 Agriculture, Paddy Cropland characterized by inundation for a substantial portion of the growing season 

9 Wetland Areas where the water table is at or near the surface for a substantial portion of the growing season, 
including herbaceous and woody species (except mangrove species) 

10 Mangrove Coastal (tropical wetlands) dominated by mangrove species 

11 Water All water bodies greater than 0.08 hectares (1 Landsat pixel) including oceans, lakes, ponds, rivers, 

and streams 

12 Ice/Snow Land areas covered permanently or nearly permanently with ice or snow 

13 Clouds Areas where no land cover interpretation is possible due to obstruction from clouds, cloud shadows, 

smoke, haze, or satellite malfunction 

14 Woody Wetlands Areas where forest or shrubland vegetation accounts for greater than 20% of vegetative cover and the 
soil or substrate periodically is saturated with or covered by water.  

15 Mixed Forest Areas dominated by trees generally greater than 5 meters tall and greater than 20% of total vegetation 

cover. Neither deciduous nor evergreen species are greater than 75% of total tree cover.  

20 High Density Urban Areas with over 70% of constructed materials that are a minimum of 60 meters wide (asphalt, 
concrete, buildings, etc.).  

21 Medium-Low 

Density Urban 

Areas with 30% to 70% of constructed materials that are a minimum of 60 meters wide (asphalt, 

concrete, buildings, etc.).  
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Figure 2: BaseVue land cover service with enlarged sample detail 

 

 
Figure 3: Land Cover categories within Kyrgyzstan - dominated by barren land, shrubs and grassland, with 

minor proportions of forests, agricultural land and water/snow/ice 

 

For the presentation of analyses highlighted in this 

paper the classes 7 and 8 have been consolidated under 

‘Agriculture’, the minimal amount of ‘Wetlands’ has 

been added to ‘Water’ and 20 and 21 were combined 

into ‘Urban’. Classes 10, 13, 14, and 15 were not 

present within the study area. Figure 2 shows the 

original view and standard symbology zoomed into the 

study area with a local more detailed sample around 

the Kyrgyz capital city Bishkek.  

Statistically aggregating the LC classes on the 

BaseVue service within Kyrgyzstan’s boundaries 

shows more than 80% of the land mass covered by 

only three approximately equal categories, barren 

land, shrub / scrub and grassland. Only 6% are 

available for agriculture, and area exceeded by water / 

ice / snow. Forest cover is minimal, and built-up land 

is concentrated in a few major settlements.  
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While this kind of summary statistics is easily 

tabulated, for further analysis and the development of 

change scenarios it is important to allocate LC 

categories to specific topographic, climatic and human 

access contexts – this question will be addressed 

further below. The map in Figure 2 shows a lot of 

detail and serves as a starting point for high resolution 

multi-thematic analyses, but does not really provide a 

quick and crisp overview of spatial LC patterns across 

the country. For more effective communication of the 

‘big picture’ a generalized view was created with a 

hexagonal standard mapping unit of 10km². Within 

each hexagon, the dominant ‘majority’ class was 

selected by zonal statistics and assigned a unique value 

according to the legend provided. While BaseVue 

2013 has been used exclusively in the analysis 

presented below, multiple alternative data sets now are 

available with somewhat different characteristics and 

are referenced here for context: most recently, a ten 

class global land use/land cover (LULC) data set based 

on Sentinel 2 for the year 2020 has been generated at 

10 meter resolution [11]. It distinguishes classes water 

– trees – grass – flooded vegetation – drops – 

scrub/shrub – built area – bare ground – snow/ice – 

clouds and claims an overall accuracy of 86% against 

a validation set [12]. It was produced by a deep 

learning model trained using over 5 billion hand-

labeled Sentinel-2 pixels, sampled from over 20,000 

sites distributed across all major biomes of the world. 

The underlying deep learning model uses 6 bands of 

Sentinel-2 surface reflectance data: visible blue, green, 

red, near infrared, and two shortwave infrared bands. 

To create the final map, the model is run on multiple 

dates of imagery throughout the year, and the outputs 

are composited into a final representative map of 2020 

(https://arcg.is/0Kemuy). In addition, the processing 

workflow has been established in a way to allow future 

global as well as regional replication based on updated 

sensor data, thus facilitating updating and change 

detection. Acknowledging that the quest for global LC 

data sets is already dating back at least three decades, 

the original GLC can be considered a baseline data set 

which only much more recently has been made 

accessible as an online service. The table below 

provides a quick look at the evolution of monitoring 

global land cover since then (Table 2).  

 

 
 

Figure 4: 10km² hexagons assigned the majority class within each hexagon 
 

Table 2: Overview of select global land cover data sets 
 

Data set Global Land Cover 1992-2019 LC BaseVue 2013 Global LULC 2020 

Accessed at https://arcg.is/XWq4j https://arcg.is/Py4ei https://arcg.is/0Kemuy 

Sensor  AVHRR, SPOT, PROBA et al Landsat 8 Sentinel-2 

SRS GCS WGS84 Web Mercator Web Mercator UTM-WGS84 

Resolution  300m 30m 10m 

Acquisition  1992 ff 2013-2017 2020 

classes 36 (hierarchical) 14/16 (US only) 10 
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The below presented exemplary analyses, however, 

are not predominantly focused on change monitoring 

and detection, even though this has been the main 

objective for the creation of the above introduced 

coverages. The authors rather want to emphasize the 

potential for analysis across thematic domains, like: 

- LC distribution and dynamics across different 

morphometric features, 

- LC relative to population densities and human 

activities, 

- LC differences within and between national 

jurisdictions. 

 

These kinds of cross-domain analyses are facilitated 

by global data sets similarly accessible like the above 

introduced LC services, in particular the Airbus 

WorldDEM used in subsequent analyses 

(https://www.intelligence-

airbusds.com/imagery/reference-layers/worlddem/). 

To work with topography across the study area in the 

following analyses, the global multi-resolution terrain 

elevation service from the Living Atlas was accessed 

at https://arcg.is/feefK at the (25m) resolution of the 

WorldDEM data.    

 

2.4 Data Analysis 

Multi-thematic analysis long has been a mainstay set 

of methods within the field of spatial analysis. 

Exploring correlations and systematic 

interdependencies between coverages of spatial data is 

an important starting point for understanding spatial 

distributions of observations – like land cover. Having 

a clear picture of the impact of independent spatial 

variables like terrain, zonal climate factors and human 

action on land use and land cover ultimately helps with 

modeling distributions [13] as well as developing 

scenarios for anticipating change. Applicable overlay 

methods depend on the type of data involved. Metric 

data sets, like elevation vs precipitation lend 

themselves to simple correlation quantifying a degree 

of interdependence – although due to the typical 

presence of a high degree of spatial autocorrelation 

inferential statistics have limited value. At the core of 

exploratory analyses in this paper is the traditional map 

algebra approach of zonal analysis, generating 

descriptive statistics of a metric, continuous spatial 

variable like terrain elevation within the spatially 

discrete zonal categories of e.g. land cover.  

Outlined already in the foundational book by 

Tomlin [14], zonal analysis per se obviously does not 

qualify as a novel approach in geospatial analysis. 

Within the context of this paper however it is applied 

to demonstrate the immense added value derived from 

two recent developments: the services-based open 

access to global data sets with high spatial and 

temporal resolution, and the emancipation of 

processing frameworks from personal workstations 

towards cloud computing. The combination of these 

developments significantly lowers the hurdles for 

exploratory analysis of land cover distributions and 

dynamics on e.g. national scales without having to go 

through the previously required enormous efforts of 

data preparation and staging of analyses. This 

evolution of analytical frameworks is tightly 

connected with the establishment of Spatial Data 

Infrastructures [15] [16] and Digital Earth twins [17], 

as demonstrated e.g. through the European INSPIRE 

Spatial Data Infrastructure presented by Minghini et al 

[2].  

A spatial resolution of 25m was explicitly defined 

for all subsequent analysis steps, fully leveraging the 

nominal 25m resolution for terrain elevation and 

reasonably close to the 30m original Landsat ETM 

resolution underlying the BaseVue land cover service. 

Values of derivatives like slope therefore must be 

considered within the constraints of this resolution.  

 

3. Results 

To demonstrate the power and potential of cloud-

based multi-thematic analysis over large regions 

covering entire countries, the BaseVue 2013 land 

cover data set zones were analyzed against 

topographic variables at a 25m spatial resolution. For 

full appreciation of the data volume involved and the 

scale of these cross-tabulations of categorized data 

through zonal operations it shall be kept in mind that 

each layer (land cover, elevation and slope) include 

approx. 320 million data points each. The entire 

workflow has been implemented in the Esri 

‘ecosystem’, leveraging data from the Living Atlas 

infrastructure, using ArcGIS Pro for analytical steps 

and ArcGIS Online for presentation including 

storymapping. 

  

3.1 Hypsometric Distribution of Land Cover 

Categories  

The summary table presented as Figure 5 summarizes 

the zonal analysis of BaseVue LC classes against 

WorldDEM elevation, aggregated into 100m 

elevation steps and cut off above 5000m. The column 

labeled ‘HYPSOMET’ shows the rather unusual 

hypsometric curve of this country. A peak around 

1600m elevation highlights the huge lake area of 

‘Issyk Kul’ in the northeastern region, and the 

dominant elevations between 3000m and 3500m are 

characteristic for the large tracts of land with only 

very limited economic potential as seasonal pastures.  
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Figure 5: Hypsometric distribution of land cover categories across Kyrgyzstan 

 

The coloured graphic bars within the chart represent 

the relative per-LC-class elevation distribution and 

have to be interpreted with reference to the total share 

of these classes as indicated in Figure 3. Agricultural 

uses and human settlements dominate only below 

1500m elevation, from there a few forests and a lot 

of grassland and shrub in dryer areas take over with 

barren land dominating above 3500m followed by 

nival high mountain environments. This overview 

could of course be translated back into a multivariate 

selection map (not shown here for space reasons) 

highlighting e.g. low lying semi arid and currently 

unused areas which potentially could be made 

available for agriculture through irrigation. Or those 

shrublands can be identified offering opportunities 

for afforestation, or for conversion into productive 

grasslands. Clearly these would be naïve approaches 

requiring finetuning with additional factors and 

constraints to deliver any kind of useful policy 

recommendations. Climate variables, soils, 

feasibility of irrigation, access to markets and other 

criteria would have to be included with only slope 

inclination addressed as an additional factor below – 

as the main thrust of this paper aims at demonstrating 

the application of regional analysis through cloud 

computing and leveraging of online LC services, not 

pursuing specific development and policy questions. 

3.2 Slope Patterns of Land Cover Categories  

Topographic gradients, commonly referred to as 

‘slope’ are another important constraint for the 

development of land uses and the assessment of 

regional potentials. In Figure 6 again the entire 

national land mass was classified in 5° slope 

categories using the 25m WorldDEM with direct use 

of server-side processing. The frequency distribution 

including sizable proportions of rather steep slopes – 

nearly half the country is in the steeper than 20° 

bracket. Again the slope frequencies in the respective 

columns have to be interpreted relative to those LC 

categories as quantified in Figure 3. Besides the 

obvious flat area and gentle slope preferences of 

settlements and agriculture (and of course water 

bodies) grassland due to its use as pastures dominates 

hilly slopes. Shrub and barren land depends less on 

slope than on substrate and humidity and therefore 

does not exhibit a clear slope frequency profile, with 

forests remaining on steeper slopes while ice and 

snow of course are determined mostly by elevation. 

Again, slope serves as but one factor in a multi-

thematic land cover analysis and demonstrates the 

enormous benefits derived from openly and readily 

accessible global (digital terrain) data sets for a broad 

range of analyses.  
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Figure 6: Distribution of land cover categories across 5° slope classes. Second column from left represents 

overall slope frequency within the country 

 

4. Discussion and Conclusions  

The demonstration of integrated cloud-based analysis 

of openly available global information layers not 

only showcases the benefits of global monitoring 

from satellite platforms and highly automated 

semantic information extraction through AI, ML and 

DL, but also highlights the potentials of directly 

working with geospatial information through live 

web services instead of offline data sets decoupled 

from their sources. Spatial analysis is entering a new 

era through these dual developments allowing near 

real time insights largely independent from scale and 

spatial as well as temporal extents of research 

domains. Furthermore, even though only LC and 

DEM services have been used as demonstrators in 

this paper the practical impact of the cloud services 

and computation paradigm is of course not limited to 

these types of spatial information. To name just one 

other example of openly accessible data services with 

obvious interdependencies with the above we would 

like to emphasize the disaggregated and gridded world 

population layers [18] [19] [20] providing valuable 

insights into the densities and patterns of human 

habitation and impact. 

Overall, we understand the above examples as a 

call for action to move from the currently still 

prevalent desktop-centric paradigm of analyzing 

static collections of spatial data towards dynamic 

analytical insights facilitated by online services and 

scalable cloud computing. 
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