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Abstract 

The COVID-19 pandemic prompted a search for a new method of preventing the spread of this virus. This 

study established a model of the areas in Bangkok which were vulnerable to the COVID-19 pandemic by 

using a combination of the Bayesian network (BN) and the geographic information system (GIS). The model 

was developed using a data-driven approach and was evaluated with 10-fold cross validation and ROC 

analysis. The results demonstrated that the proposed method effectively predicted the vulnerability of disease 

outbreak. The most vulnerable areas to the pandemic were around the center and in the west of Bangkok, 

while the areas of low vulnerability were found in the north and east of the city. Population density and the 
aerosol index were highly influential factors in the outbreaks, affirmed by sensitivity analysis. Furthermore, 

the model used to conduct a scenario analysis resulted in the identification of vulnerability management 

strategies. 
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1. Introduction 

The coronavirus disease of 2019, also known as 

COVID-19, was an infection of the SARS-CoV-2 

virus that causes respiratory and gastrointestinal 

symptoms. Since the disease can be transmitted 
directly from person to person, it was categorized as 

an emerging disorder in the pandemic. Such 

transmission allows it to spread quickly across 

geographic boundaries (Mourmouris et al., 2021). 

Many countries in the world had to set up 

restrictions in order to limit the outbreak by 

enforcing lockdowns (Naveen and Gurtoo, 2022). 

These regulations and mandates have had very 

serious effects on world trade and the global 

economy because of border closures and travel 

restrictions. (Mouratidis, 2021). Additionally, the 
pandemic also greatly affected the daily lives of the 

world’s citizens. People of all ages needed to 

rapidly adapt to the changes, whether they were 

working from home, learning online, social 

distancing or adopting the new behavior that was 

called the “new normal” (Barbour et al., 2021 and 

Tomikawa et al., 2021). 

Thailand’s first COVID-19 case was detected at 

the beginning of 2020. It was contracted by a 

Chinese tourist who arrived in Thailand from 

Wuhan, China. Afterwards the outbreak expanded to 

Bangkok where it occurred in clusters such as 

boxing arenas and entertainment places 
(Tantrakarnapa and Bhopdhornangkul, 2020). The 

disease then spread throughout the country until the 

Thai government declared COVID-19 to be the 14th 

dangerous communicable disease according to the 

Communicable Disease Act 2020 on February 26, 

2020 (Ministry of Public Health Notification 

Regarding of the Names and Significant Symptoms 

of Dangerous Communicable Disease (No.3) 2020, 

2020). According to a report by WHO (2021) on the 

31st October 2021, Thailand was ranked 24th on the 

number of cases worldwide with an overall total of 
1,912,024 patients. The area with the largest number 

of patients was Bangkok with 332,236 patients. This 

was equivalent to 17.38 percent of the number of 

patients in the country as a whole (DGA, 2021). 

An assessment of spatial spread or the areas 

vulnerable to the disease, based on the exposure of 

communities to various georeferenced factors, was 

an essential basis for an analysis of the pandemic.  
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The most well-used and acceptable method was to 

simulate a geographic information system (GIS) 

model in order to obtain a simplified representation 

of what happens in the real world for the purpose of 

predicting the possibility or severity of the outbreak 

of the disease (Jerrett et al., 2010 and Khashoggi 

and Murad, 2020). A weighted scoring method is 

commonly used for estimating the vulnerability 

index of a disease. Also, it is necessary to rely on 
the opinion of experts or the existing domain 

knowledge to distinguish the criteria (Malczewski, 

2000). In addition, the analytic hierarchy process 

(AHP) has been used to assist in systematic 

weighting decisions in a spatial model of the 

COVID-19 pandemic (Mahato et al., 2020, Rahman 

et al., 2021 and Shadeed and Alawna, 2021). 

However, the results may vary because of the 

complex decision making involved and they cannot 

be assumed to be completely correct (Malczewski, 

2006 and Feizizadeh et al., 2014). 
In order to avoid such problems, a Bayesian 

network (BN), a causal probabilistic model that can 

compute the likelihood of the spread of COVID-19 

based on expert determination and the assessment of 

observation data, had been used in research (Wei et 

al., 2020). For example, studies of the possibility of 

not contracting or contracting mild or severe the 

COVID-19 virus depended on patients’ symptoms, 

background, and previous illnesses (Alsuwat et al., 

2021 and Wu et al., 2021). It was also necessary to 

estimate the occurrence rate of COVID-19 
infections and the fatality rates using disease 

statistics (Neil et al., 2020). This study, therefore, 

exploited spatial elements, as well as the integration 

of BN and GIS, to bridge the existing gap in the 

current methodology. BN assisted in establishing 

relevant geographical links and estimated the 

possibility of outbreaks by learning from empirical 

data, while GIS was used to manage spatial 

variables and to define a spatially explicit model. 

All of these factors raise the question of whether 

BN and GIS can be utilized to conceptualize the 

interaction of spatial indicators related to COVID-
19 transmission and which locations in Bangkok 

could be affected by the pandemic. The objective of 

this research is to establish a model of the area 

vulnerable to the spread of COVID-19 using BN 

with GIS. A vulnerable area refers to the degree of 

susceptibility of an area to the infection of COVID-

19 due to physical and socioeconomic factors. This 

research identifies the characteristics of the spread 

of COVID-19 in terms of the affected areas, which 

can then be used as data to support the planning of 

the health services, surveillance operations, and 
proper disease control procedures for each area, 

which should result in improvements in the health of 

the population, the economy, and people’s quality of 

life. 

 

2. Study Area  

The capital city of Thailand, Bangkok, was selected 

as the research area. It is located between 13° 26′ 

and 13° 57′ northern latitude and 100° 19′ and 100° 

58′ eastern latitude. As illustrated in Figure 1, the 
total area of the study is approximately 1,570 square 

kilometers, which is subdivided into 50 different 

administrative regions. The reason Bangkok was 

used for this research was because it was the city 

with the highest number of detected COVID-19 

patients. Moreover, Bangkok was the first city to 

identify a COVID-19 cluster which then spread all 

over the country. In this investigation, the number of 

people infected with COVID-19 was determined by 

the number of confirmed cases. A total of 332,236 

persons were detected between January 12, 2020, 
and October 31, 2021, which was the period from 

the beginning to the third stage of the outbreak in 

Bangkok. 

 

3. Material and Methods 

3.1 Data 

The data used in this study were obtained from 

various sources, including the number of confirmed 

COVID-19 cases, classified by district from the 

Open Government Data Center, Digital Government 

Development Agency (Public Organization). 
Population statistics, the number of elderly people, 

the poverty rate, and crowded places are all from 

part of the socioeconomic data. The data was 

acquired from Bangkok’s Office of Strategy and 

Evaluation. The aerosol index was calculated using 

data from the European Space Agency’s Sentinel-5 

satellite. The land use of the study area was obtained 

from the Policy and Land Use Planning Division, 

Department of Land Development, Bangkok. The 

data about building locations and the transportation 

network was obtained from the Department of City 

Planning in Bangkok, using a geographic 
information system database with a scale of 1:4,000. 

 

3.2 Conceptual Framework  

The vulnerability of Bangkok to the COVID-19 

pandemic was assessed using BN and GIS in this 

study. The study’s framework is depicted in Figure 

2. Modeling in GIS was done on a grid dataset, each 

cell of which corresponds to an independent 

individual that has predictive indicators and a target 

variable. A table of attributes can be extracted from 

a construct BN model.  
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Figure 1: Geographical location of the study area 

 

 
 

Figure 2: Conceptual framework 

 

 



56 

International Journal of Geoinformatics, Vol.18, No.5 October 2022 

ISSN: 1686-6576 (Printed)  |  ISSN  2673-0014 (Online) | © Geoinformatics International 

In BN, a structural graph was used to show the 

potential relationships between factors and 

parameter learning was used to estimate the 

conditional probability distribution among the 

connected variables. The BN model was then used 

to establish causal inference to obtain COVID-19 

pandemic probability values for each grid square, 

allowing GIS to develop a model reflecting COVID-

19 pandemic vulnerability. 
In this study, the independent variables included 

environmental characteristics (aerosol index, land 

use, building density, and transportation network 

density) and socioeconomic aspects (population 

density, density of the elderly, poverty rate, and the 

density of crowded places which is where social 

gatherings occurred). The COVID-19 morbidity rate 

was one of the dependent variables, and it was 

utilized for both training and testing data to evaluate 

the model’s performance. The research tools used in 

the study include: GeNIe 3.0.R2 (BayeFusion, 
2020), graphic network interface software, was used 

to perform the BN model operations and ArcGIS 

10.8 (ESRI, 2019), GIS software, was applied for 

processing geospatial data and mapping.  

 
3.3 Methodology 

3.3.1 Morbidity rate 

The morbidity rate was used to determine the 

proportion of people in a specific geographical 

location who suffered from a particular disease 

during a specific period of time. It indicates the 

frequency of COVID-19 found in the population. 

The COVID-19 morbidity rate per 1,000 persons in 

Bangkok and each district was calculated using the 

Equation (1) (Robert and Thomas, 2020). 

 

𝑀 =
𝐶

𝑃
𝑥 1,000 

Eqaution 1 

 

Where M is the COVID-19 morbidity rate per 1,000 

persons, C is the number of existing cases of 

COVID-19 during a time period, and P is the 

population during the same period of time. The data 

was then represented using a choropleth map in 
GIS. High morbidity of COVID-19 indicates a high 

prevalence or prolonged survival without cure or 

both. On the other hand, low morbidity suggests a 

low incidence, a rapid fatal process, or a quick 

recovery. 

 

3.3.2 Bayesian network 

A BN is a combination of a graph theory and 

probability theory. A comprehensive BN, as shown 

in Equation (2), has both a qualitative and 

quantitative component (Li et al., 2018). 

 

𝐵𝑁 = {𝐺, 𝛩} 

Equation 2 

 

Where G stands for BN structure, which is a 
directed acyclic graph (DAG) with a set of nodes 

corresponding to each variable in X and a set of 

direct edges linking the nodes. In particular, an edge 

from node Xi to node Xj represents a statistical 

dependence between the corresponding variables. 

Node Xi is referred to as a parent of, and Xj, is called 

the child of Xi. As a result, variable Xi influences 

variable Xj. Whereas Θ denote a set of parameters 

which quantify the network while the parameters of 

BN are condensed into conditional probability tables 

(CPTs), which contain the probability distribution of 
each node for each combination of its parent nodes. 

The CPT of node Xi is expressed as {Pi = Pi (Xi | pa 

(Xi))}, which displays the mutual relationship 

between Xi and its parent nodes. 

 

3.3.3 The Development of the BN-GIS Vulnerability 

Model 

This study defined a spatially probabilistic model of 

the COVID-19 pandemic, which consists of five 

procedures: (1) identification of the factors that 

influence the spread of COVID-19; (2) development 
of the BN topology; (3) construction of a BN 

prediction model; (4) evaluation of the BN model 

performance and (5) Inferencing a posterior 

distribution to the map. 

 

(1) Identification of the Factors:  To identify the 

main factors which directly or indirectly affect the 

COVID-19 infection occurrence, the literature was 

reviewed to gather ideas on the recent impact of the 

pandemic. According to the findings, there are eight 

possible factors. 

 
Aerosol Index: The aerosol index refers to the 

concentration of suspended aerosols in the 

atmosphere, which will act as a carrier for the 

COVID-19 virus to condense or attach, 

potentially leading to a virus buildup (Hassan et 

al., 2020 and Sahu et al., 2021). Furthermore, the 

aerosol index may cause a reduced immune 

response, making it easier for viruses to 

penetrate and reproduce (Conticini et al., 2020,  

Martelletti and Martelletti, 2020 and  Zhang et 

al., 2021). 
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Land Use: Land use is one component linked to 

COVID-19 exposure. Different land uses may 

increase in unequal infections (Huang et al., 

2020 and Li et al., 2020). Built-up areas have a 

high epidemic potential, a high industrial 

potential, a moderate agricultural potential, a 

low wetland potential, and a shallow open space 

potential, according to Kanga et al., (2021). 

 
Building Density: Building density is the ratio 

between the total gross floor area and the parcel 

area upon which the building is located. It 

positively impacts the propagation of COVID-19 

at the community level. Building areas of a 

higher density have experienced a faster spread 

of COVID-19 (Choerunnisa et al., 2020 and 

Mokhtari and Jahangir, 2021). The building 

density was calculated using the Kernel density 

approach in this research. 

 
Transportation Network Density: The total 

length of streets and transit networks for each 

area was calculated by multiplying the location 

of the respective site by the Kernel density. This 

can be linked to a greater risk of contact, 

exposure, and interaction between people inside 

and outside the area, all of which can lead to an 

easier epidemic spread (Mollalo et al., 2020,  

Kwok et al., 2021 and Malakar, 2021). 

 

Population Density: Population density is the 
average number of individuals in a population 

per unit of a district. It has a significant effect on 

the spread of COVID-19. According to several 

studies, the more densely populated an area, the 

greater the risk of disease transmission 

(Ganasegeran et al., 202 and Ilardi et al., 2021). 

 

Density of the Elderly: Old persons, classified as 

those aged 60 or above, are at higher risk of 

contracting COVID-19 and dying due to their 

weakened physical condition, which causes their 

immunity system to deteriorate. The higher the 
density of older adults, the greater the risk of 

virus diffusion is expected to be (Ali et al., 2020 

and Cutrini and Salvati, 2021). 

 

Poverty Rate: The poverty rate is defined as the 

percentage of people living below the upper 

poverty line as a percentage of the total district 

population. The majority of low-income earners 

live in unstable homes with insanitary 

conditions. Inequality of access to basic services 

is another barrier that raises the probability of 
COVID-19 infection and leads to poor outcomes 

(Pourghasemi et al., 2020 and Kianfar and 

Mesgari, 2022). 

 

Density of Crowded Places: COVID-19 can 

quickly spread in situations where many people 

assemble to undertake activities or come into 

contact with the same objects, such as public 

handrails, doorknobs, coins or bank notes 

(Ramadan and Ramadan, 2021 and Razavi-
Termeh et al., 2021). This study looked at the 

Kernel density of transit stations, markets, 

temples, churches, mosques, and petrol stations. 

 

In GIS, all the factors were integrated to create 

an aggregated raster used to insert attribute data 

into the BN learning process in steps (2) and (3).  

 

(2)  Development of BN Topology: BN topology 

depicts the potential relationships between the 

factors influencing the COVID-19 pandemic 
through a DAG. The aforementioned factors were 

regarded as nodes in the BN structure graph with the 

edges that show the relationships among the 

different nodes. In this study, BN topology was 

determined by the COVID-19 morbidity data, called 

structural learning. The greedy thick thinning (GTT) 

algorithm was selected to evaluate if there should be 

a connection between two nodes based on a 

conditional independence test. It has been tested 

several times until it is recognized as a highly 

efficient algorithm (Kelangath et al., 2012, 
Ruangudomsakul et al., 2018 and Fan et al., 2019). 

The formula is Equation (3). 

 

𝐼(𝑋𝑖, 𝑋𝑗|𝑉) = ∑ 𝑃(𝑥𝑖, 𝑥𝑗 , 𝑣)

𝑥𝑖,𝑥𝑗,𝑣

× log
𝑃(𝑥𝑖, 𝑥𝑗|𝑣)

𝑃(𝑥𝑖|𝑣) × 𝑃(𝑥𝑗|𝑣)
 

 

Eqaution 3 

 

Where 𝑉  is a set of nodes, and 𝑋𝑖  and 𝑋𝑗  are two 

nodes that can be deemed independent when 

𝐼(𝑋𝑖𝑋𝐽|𝑉)  is less than a threshold, implying no 

connections between them; otherwise, a connection 

exists. 

 

(3) Construction of the BN Prediction Model: The 

BN model was developed to predict the probability 

of the spreading of COVID-19. The parameter Θ, or 

CPT, given the G obtained from structural learning, 

is estimated using the expectation-maximization 

(EM) algorithm, which was widely adopted in 

previous studies (Ruggieri et al., 2020 and Huang et 

al., 2021). The maximum posterior probabilities are 
the output. It is determined by Equation (4). 
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𝑝(𝑉𝑖|𝐷) =
𝑃(𝐷|𝑉𝑗)  ×  𝑝(𝑉𝑗)

∑ 𝑃(𝐷|𝑉𝑖)  ×  𝑝(𝑉𝑖)𝑚
𝑖=1

 

 

Eqaution 4 

 

Where 𝑝(𝑉𝑗|𝐷)  is the posterior probability of an 

event 𝑉𝑗  with evidence 𝐷 , 𝑝(𝑉𝑗)  is the prior 

probability of 𝑉𝑗 , and the denominator 

∑ 𝑝(𝐷|𝑉𝑖)𝑚
𝑖=1 × 𝑝(𝑉𝑖) is the probability of evidence 

𝐷. 

 

(4) Evaluation of the BN Model Performance: The 

developed model’s prediction ability was verified 

using k-fold cross validation. This procedure 

randomly splits the entire dataset into k groups, 

called folds. Each group was considered the 

validation set of model building, while the 

remaining groups were treated as a training dataset 

for evaluating the built model. This process was 
repeated k times, and the model’s performance was 

then summarized by accuracy and F-1 score. The 

commonly used value for k in such a case is 10 

(Marcot and Hanea, 2021). 

Moreover, the Receiver Operating 

Characteristics (ROC) curve was carried out to 

measure the overall efficiency of the model. It is a 

graphical presentation of sensitivity versus 1 – 

specificity as the threshold varies. The area under 

the ROC curve is referred to as Area Under the 

Curve (AUC), which values range from 0 to 1. 

When AUC is equal to 1, it indicates the best 
performance. However, when AUC is below 0.5, the 

model performs no better than random guesses 

(Wixted et al., 2017). 

 

(5) Inferencing Posterior Distribution to Map: This 

step involved importing the posterior probability 

computed from the BN model into GIS. These 

metrics reflected the likelihood or risks of COVID-

19 exposure in the presence of certain variables. The 

result was the map depicting the degree of COVID-

19 vulnerability in places where the pandemic could 
occur in each grid cell of input data. 

 

3.3.4 Model Application 

(1) Sensitivity Analysis: A sensitivity analysis was 

performed to measure the sensitivity of the changes 

in the posterior probabilities pf query nodes when 

the parameters and input changed. Let x be a 

probability parameter, y be a query, and e be 

evidence entered into the BN model. The posterior 

probability p(𝑦|𝑒)(x)  is a fraction of two linear 

functions of x as follows: 
 

p(𝑦|𝑒)(x) =
αx + β

γx + δ
 

Eqaution 5 

 

Then the partial derivative of p(𝑦|𝑒)(x) on x can be 

expressed as: 
∂p(𝑦|𝑒)

∂x
=

α − βγ

(γx + 1)2
 

Equation 6 
 

When calculating the value of x in Equation (6), the 

result of the sensitivity value of query y will be at x 

given e (Wang et al., 2002). The higher the 

sensitivity value obtained, the more significantly the 

parameters affect the COVID-19 outbreak. 

 

(2) Scenario Analysis: Scenario analysis is a process 

of examining and evaluating possible events that 

could take place in the future. It also predicts 

various feasible results or possible outcomes of the 

scenario. Using the BN model is a way to select 
state combinations for the relevant nodes, and it 

leaves all other nodes in the default state. In this 

study, scenarios were designed specially from nodes 

processed by the sensitivity analysis and found to 

have a high impact on disease vulnerability. 

 

4. Results 

4.1 The Morbidity of COVID-19 

After analyzing the overall COVID-19 morbidity 

rate, the result showed that Bangkok’s rate reached 

59.78 per 1,000 persons. When this result was 
analyzed per district via a choropleth map, and 

separated into four equal interval levels, it was 

revealed that the highest morbidity rate occurred in 

the inner area, as shown in Figure 3. The highest 

number was in Pathum Wan district, which recorded 

146.89 per 1,000 persons, followed by the 

Ratchathewi area, with 120.40 per 1,000 persons, 

the Pom Prap Sattru Phai area, with 117.51 per 

1,000 persons, and the Samphanthawong area, with 

114.14 per 1,000 persons, respectively. The lowest 

morbidity rate was in Saphan Sung district with only 

23.27 per 1,000 persons and the Bueng Kum area 
with 28.80 per 1,000 persons, respectively. 

 

4.2 Processing of Spatial Datasets 

The value of seven quantitative variables was 

divided into four levels: low, moderate, high, and 

very high. They were classified automatically using 

equal interval levels, as shown in Table 1. Whereas 

land use is naturally grouped into eight categories: 

(1) agriculture (2) commerce, (3) industry, (4) 

institutions, (5) forest, (6) open spaces, (7) 

residential areas, and (8) water. 
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Figure 3: COVID-19 morbidity rate per 1,000 persons in Bangkok 

 

Table 1: Classification of different quantitative vulnerability factors 
 

Factors 
Classes 

Low Moderate High Very High 

Aerosol Index 
(no unit) 

< -0.41 -0.41 –  -0.23 -0.22 –  -0.04 > -0.04 

Building Density 
(unit per square kilometer) 

< 2,406 2,406 – 4,812 4,813 – 7,219 > 7,219 

Transportation Network Density 
(kilometer per square kilometer) 

< 8 8 – 16 17 – 25 > 25 

Population Density 
(person per square kilometer) 

< 6,194 6,194 – 11,634 11,635 – 17,075 > 17,075 

Density of Elderly 
(person per square kilometer) 

< 1,600 1,600 – 3,110 3,111 – 4,621  > 4,621 

Poverty Rate 
(percent) 

< 1.88 1.88 – 2.82 2.83 – 3.77 > 3.77 

Density of Crowded Places 
(unit per square kilometer) 

< 1.50 1.51 – 3.00 3.01 – 4.50 > 4.50 

 

All factors were converted into raster, and the city 

of Bangkok was divided into 39,250 grids with a 

size of 200m x 200m as presented in Figure 4.  

 

4.3 BN Prediction Model 

The structure of the BN model was computed using 

the structure learning process elaborated above, and 

it is illustrated in Figure 5. Each node in the network 

represents one factor and the arrows depict the 

connections among different factors. The states of 

these nodes are portrayed by bars, and the 
percentage of the bar reflects the degree of 

vulnerability of each state. For example, the node 

for the density of the elderly is related to the 

vulnerability classification mentioned in Table 1, in 

which “low” means that density of the elderly is 

below 1,600 persons per square kilometer and its 

probability is 19 percent;  “moderate” indicates that 

density of the elderly is between 1,600 and 3,110 

persons per square kilometer with a probability of 

23%; more than two fifths of the density of the 

elderly is between 3,111 and 4,621 persons per 

square kilometer which is represented using the 

“high” state, and less than a fifth is over 4,621 
persons per square kilometer which is classified as 

“very high”. 
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Figure 4: Factors influencing the spread of COVID-19 in Bangkok, (a) Aerosol index; (b) land use, (c) 

Building density; (d) Transportation network density; (e) Population density; (f) Density of the elderly; (g) 

Poverty rate; (h) Density of crowded places 
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Figure 5: BN model for predicting vulnerability to the COVID-19 pandemic 

 

This network describes all the eight factors which 

are relevant to COVID-19 morbidity in Bangkok of 

which six factors are directly connected to 

morbidity i.e. the aerosol index, transportation 

network density, population density, density of the 

elderly, poverty rate, and density of crowded places. 
Two factors, land use and building density, have an 

indirect effect on COVID-19 morbidity as a result of 

other parameters that are directly related to 

morbidity. For instance, land use influences the 

aerosol index, and the aerosol index affects 

morbidity, therefore, it can be claimed that land use 

affects the COVID-19 morbidity by having an effect 

on the aerosol index which is directly tied to 

morbidity. 

 

4.4 Combination of Probability Distribution 
The posterior probabilities of the COVID-19 

pandemic under different combinations of factor 

levels in Bangkok were processed in the parameter 

learning procedure. Since there were six factors 

causally associated with morbidity, and each 

variable had four alternative levels, the probability 

distribution of the COVID-19 pandemic generated a 

total of 46 = 4,096 possible combinations. 

Evidence of most of the combinations do not 

exist on the map, for example, there are no samples 

of places with a very crowded density, high poverty 

rate, moderate road density, low aerosol index, low 
population density, and low density of the elderly. 

All CPTs of missing combinations of evidence are 

considered meaningless, because these CPTs are not 

trained by the samples and any predictions from 

these combinations are either random or constant. 

After eliminating the useless CPTs, there were 210 

valid combinations of evidence and thus 210 valid 

CPTs. In Table 2, for example, according to the last 

column, when the aerosol index at a certain place 

was very high, the road density moderate, the 

population density very high, the density of elderly 
very high, the poverty rate low, and the density of 

crowded places low, the risk of COVID-19 

morbidity being very high was 88.55 percent, high 

morbidity 11.19 percent, while there was a 0.13 

percent risk of moderate morbidity and 0.13 percent 

of low morbidity. 

 

 



62 

International Journal of Geoinformatics, Vol.18, No.5 October 2022 

ISSN: 1686-6576 (Printed)  |  ISSN  2673-0014 (Online) | © Geoinformatics International 

Table 2: Examples of some CPTs of COVID-19 morbidity 
 

Evidence 

Aerosol Index Moderate Very High Very High Very High Very High 
Transportation Network 

Density 
Low High High Moderate Moderate 

Population Density Low Moderate Moderate High Very High 

Density of the Elderly  Low Low Low Moderate Very High 

Poverty Rate High Moderate Low Moderate Low 

Density of Crowded Places Low Low High Low Low 

Probabilities 

of different 

morbidity 

levels 

Low 81.25% 27.92% 0.54% 0.21% 0.13% 

Moderate 6.25% 71.94% 98.38% 54.37% 0.13% 

High 6.25% 0.07% 0.54% 45.21% 11.19% 

Very High 6.25% 0.07% 0.54% 0.21% 88.55% 
 

Table 3: Accuracy and F1 score of 10-fold cross validation 
 

Fold Accuracy F1-score 

1 0.7942 0.7718 

2 0.8457 0.7694 

3 0.8624 0.7711 

4 0.7932 0.7682 

5 0.7844 0.7951 

6 0.8260 0.7719 

7 0.7962 0.7826 

8 0.7846 0.7637 

9 0.8521 0.7842 

10 0.7849 0.7697 

Mean 0.8124 0.7748 

 

Table 4: Classification of the vulnerability of the COVID-19 outbreak in Bangkok 
 

Level Number of Grids 
Area 

(square kilometers) 
Percentage 

Low 21,125 845 53.82 

Moderate 16,500 660 42.04 

High 1,099 44 2.80 

Very High 526 21 1.34 

 

4.5 BN Prediction Model Performance 

A 10-fold cross validation method was used to 

further test the BN model. The results are 

summarized in Table 3. It can be seen that the 

accuracies of each fold varied between 0.7844 and 

0.8624. The small differences in the performance 
and training sets suggested that BN model 

overfitting is minimal. The average accuracy of the 

model is 0.8124, which means this model is 81.24% 

accurate in making a correct prediction. The F1 

average score equals 0.7748, which demonstrates 

that it can precisely capture the proportion of 

COVID-19 cases that were correctly identified. 

When considering ROC cures according to Figure 6, 

this model has high overall efficiency with an 

average AUC of 0.90 with a generally high 

accuracy, as the AUC score in all levels of 
morbidity is higher than 0.85. This means that the 

model can efficiently distinguish between this level 

and other levels. Therefore, the BN model can 

perform quite consistently in predicting morbidity. 

 

4.6 Predictive Vulnerable Map 

Inferencing the posterior probabilities of the 
COVID-19 pandemic from the BN model into GIS, 

the levels of vulnerability of COVID-19 in terms of 

the pandemic map were predicted as shown in 

Figure 7, and the predicted values for each 

vulnerable class are summarized in Table 4. Just 

over half of the study area was classified as having a 

low vulnerability, and 42.04 percent as moderately 

vulnerable, indicating that these areas were less 

likely to be affected; however, 2.80 percent was 

determined to be highly vulnerable, with another 

1.34 percent as very highly vulnerable.  
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Figure 6: Roc curve comparing different levels of vulnerability prediction 

 

 
Figure 7: Model of vulnerability to the COVID-19 outbreak in Bangkok 

 

The COVID-19 vulnerability level in the center of 
Bangkok was relatively higher than in the 

surrounding districts, while the northern and eastern 

sectors, with minimal property, appeared less 

vulnerable. 

 

 

 

4.7 Sensitivity Analysis 
According to Figure 8, the sensitivity analysis 

showed that population density and aerosol index 

have a much higher contribution in predicting the 

pandemic vulnerability, especially when compared 

to variables such as the density of the elderly and 

crowded places, transportation network density, 

poverty rate, respectively. 
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Figure 8: Sensitivity analysis of individual nodes on the probability of the COVID-19 outbreak 

 

 
Figure 9: Areas vulnerable to the outbreak of COVID-19 under scenario 1 when population  

density was at a low level 
 

 
Figure 10: Areas vulnerable to the outbreak of COVID-19 under scenario 2 when the aerosol 

index was very high level 
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4.8 Scenario Analysis 

The scenario analysis was employed by taking the 

factors most influencing the outbreak to design two 

different scenarios. It aims to identify changes in the 

probability distribution of the relevant variables. In 

the current study, the following scenarios were 

analyzed: 

 

The first was an optimistic scenario, with 
population density at the lowest level. It was 

shown in Figure 9, which indicated that if the 

population density in the area were controlled, 

the probability of virus outbreaks would be 

reduced. After applying this scenario, the 

epidemic’s vulnerability level dropped overall, 

especially in the inner parts of Bangkok. The 

normal vulnerability levels in this region were 

often high, reaching 0.51 percent in Pathum Wan 

district. Meanwhile, the forecasted COVID-19 

vulnerability in other districts remained 
relatively unchanged. 

 

The second was the pessimistic scenario, where 

the aerosol index rose very high in simulated 

situations. This scenario was displayed in Figure 

10, which showed that disastrous events would 

occur when the number of aerosols increased. 

The entire region recorded an elevated 

vulnerability level. There was 60.19 percent and 

37.01 percent of the areas with moderate and 

high vulnerability, respectively. Nonetheless, the 
inner region continued the highest in terms of 

vulnerability and had recorded a slight increase 

from previous rates. 

 

5. Discussion 

As a means of determining probability inference of 

the COVID-19 pandemic, BN offers several specific 

advantages over the traditional approach, especially 

when operated within the context of GIS. BN 

supports model construction based on the real-world 

training dataset without requiring expert opinions. 

This would reduce bias and avoid inadequate system 
knowledge issues. When evaluating the performance 

of the BN prediction model with 10-fold cross 

validation, it was found that the model had an 

accuracy of 801.24 percent, an average F1 score of 

0.7748, and an aggregate AUC of 0.90. The results 

indicated that the model has good predictive 

performance. Therefore, it was proven that the BN 

model is a feasible and reasonable method of 

assessing outbreak vulnerability, similar to Fuster-

Parra et al., (2016) and Ruangudomsakul et al., 

(2018). Heterogeneous data sources can be 
integrated into the model to represent the causal 

probabilistic relationship among a set of random 

variables in the BN model. This study found that 

population density is the most influential factor in 

the COVID-19 outbreak. This study yielded similar 

findings to the reports of Malaysia (Ganasegeran et 

al., 2021), Mexico (Benita and Gasca-Sanchez, 

2021), Italy (Ilardi et al., 2021) and Indonesia 

(Widiawaty et al., 2022). However, the findings 

contradicted studies of outbreaks in China, where 

population density cannot affect COVID-19 
spreading under strict lockdown policies (Sun et al., 

2020), and several cities in the USA due to superior 

health care systems (Hamidi et al., 2020). In 

addition, aerosols, which act as a carrier for the 

virus to be transmitted in the air, are also factors that 

correlate with the COVID-19 outbreak. This result 

was consistent with Hassan et al Integration of 

probability approach into GIS allowed the 

researcher to quantify and visualize uncertainties in 

a spatially explicit manner and ability to locate 

vulnerability of COVID-19 outbreak (Figure 7). The 
study results revealed that central Bangkok was the 

most vulnerable area, especially in Pathum Wan 

(2021).  

Ratchathewi and Pom Prap Sattru Phai districts. 

As the distance from the urban center increased, the 

vulnerability would be reduced. When comparing 

with the actual morbidity distribution (Figure 3), the 

results were found to be consistent. This indicated 

that the analysis models were spatially accurate. The 

BN model can also update the prediction of the 

likelihood of the COVID-19 outbreak by simulating 
scenarios that may occur when the variables are 

changed. The study results enabled the researchers 

to propose two approaches to handling the COVID-

19 pandemic situation, namely (1) Mitigation 

strategies - these strategies aimed at controlling 

population density by minimizing close contact 

between individuals, such as social distancing 

measure, which is very effective in reducing 

outbreaks in many areas (Girum et al., 2021), 

lockdown, as well as controlling population density 

via city planning law, such as the allocation of 

public utilities to be sufficient for population density 
in each area;  (2) Environmental control strategies 

involve the introduction of a law to control aerosol-

generating activities to eliminate transmission 

disease carriers and review new city planning to 

improve air circulation in the area. This strategy 

should be strictly implemented and enforced, 

especially in the inner-city and southwestern areas, 

with very high outbreak vulnerability, to suppress 

the epidemic clusters from spreading to other parts 

of the area. Nevertheless, one of the limitations of 

this study is data ability. Some of the potentially 
valuable factors such as literacy rate and the 

percentage of people with health insurance were 
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unavailable due to a lack of individual or district 

level data. The locations of COVID-19 infected 

patients would also have been beneficial for training 

and testing data. Unfortunately, this data was not 

available at the time of undertaking the study owing 

to privacy concerns. 

There is, however, always scope for 

improvement. Future researchers could apply 

additional structure learning or parameter learning 
algorithms to deduce such a COVID-19 

vulnerability model by updating the data. More 

characteristics, such as ethnic variables, healthcare 

facilities, and other additional indicators, could 

strengthen the study. The subsequent study could 

also include the spatial-temporal components or 

comparisons between places to provide more 

detailed results. 

 

6. Conclusion 

The BN-GIS model was developed in this study to 
estimate the probability of COVID-19 outbreak 

vulnerability using an epidemiological dataset. The 

BN quantifies the impact of causal factors on the 

probability of contracting the virus based on a 10-

fold cross validation and ROC curve test. The case 

study revealed that the developed BN model could 

successfully predict the likelihood of an outbreak. 

Based on the spatial distribution of different 

vulnerability levels in GIS, it was found that 

COVID-19 outbreak vulnerability in Bangkok 

decreased from the central area to the surrounding 
areas. The sensitivity analysis results revealed that 

population density and the aerosol index had the 

highest impact on the COVID-19 outbreak in 

Bangkok. Furthermore, the model was also used to 

conduct scenario analysis to evaluate the impact of 

potential future situations to allow management of 

the area vulnerability to be more effective. 

Therefore, the model proved itself to be worthwhile 

and beneficial for this investigation. 
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