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Abstract  

Global Navigation Satellite System (GNSS) has been widely utilized as a navigation solution for a mobile 

vehicle, yet stand-alone GNSS is unable to achieve sufficient accuracy in some applications. For example, in 

aquatic environment, the accuracy position of Unmanned Surface Vehicle (USV) is affected by the wind, 

current, and waves dynamics. In this case, the integration of GNSS and Inertial Measurement Unit (IMU) is 

an approach that can be used to support USV localization to achieve an accurate navigation solution. This 

study integrates GNSS and IMU using Extended Kalman Filter (EKF) to process loosely coupled integration. 

The integration results show that the estimated x-position is 0.3058 m accurately and the y-position has an 

accuracy of 0.2780 m. Then, the loosely coupled integration results of EKF were compared with Unscented 

Kalman Filter (UKF) simulation in the previous studies. The integration of GNSS and IMU using EKF 

produces a higher RMSE value of 2D position and attitude angle than UKF Scenario I. However, due to the 

smoothing process, EKF can provide a visually smoother trajectory than UKF, although it has a significant 

difference from the observed trajectory. On the other hand, the linear velocity estimated by EKF shows better 

stability compared to UKF in both Scenario I and II. 

 

 
1. Introduction 

Generally, the Unmanned Surface Vehicle (USV) is 

designed as an unmanned ship, supported by several 

modules including the propulsion module, main 

controller, localization module, measurement 

system, collision avoidance module, and 

communication module (Peng et al., 2017). 

Researchers are becoming more interested in USVs 

as new kind of automated and unattended platform, 

especially as the amount of scientific application, 

military, and commercial domains like oil and gas 

exploration grows (Gao et al., 2019). One of the 

most critical characteristics in successfully 

completing a dangerous or time-consuming task 

with a USV is accurate navigation (or localization). 

Global Navigation Satellite System (GNSS) is the 

most commonly used navigation sensor in USV 

localization systems. In general, the built-in features 

of high-precision differential GNSS shows a better 

result compared to independent GNSS.  

However, it needs a base station that located nearby, 

which restricts the range of navigation and increases 

the expense of base station development as well 

(Abd Rabbou et al., 2014). Under open-air 

situations, the integrated navigation system which 

merges both Inertial Measurement Unit (IMU) and 

GNSS has been broadly applied in automobile 

navigation. This is caused by both natural and 

purposeful influence which affect GNSS signals, 

such as ionospheric anomalies, jamming and 

spoofing. On the other hand, the IMU is able to 

provide attitude output as well as position and linear 

velocity at a relatively high level with proper 

processing. However, one of IMU's main drawbacks 

is that errors accumulate quickly as time goes 

by.When GNSS is merged with IMU sensors, GNSS 

will show its ability to provide precise position and 

linear velocity data, but IMU has the ability to 

produce reliable attitude data. 
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Thus, the integrated navigation system will be able 

to overcome each other's shortcomings while 

maintaining high-accuracy information. GNSS is 

mainly used to compensate accumulated linear 

velocity and position errors due to IMU, and IMU 

shows a better method during the unavailability of 

GNSS signals. The fusion research for localization 

has been done previously by Deng et al., (2015) 

using Wi-Fi and Smartphone Inertial Sensors at 

indoor locations using the Extended Kalman Filter 

(EKF) method. The results obtained using the EKF 

method show that the average localization error can 

be minimized up to 74.9% compared to stand-alone 

localization. GNSS and Inertial Navigation System 

(INS) loosely coupled integration using EKF are 

also known to be able to reduce the three-

dimensional Root Mean Square Error (3D RMSE: 

latitude, longitude, and altitude) by 5 m (Falco et al., 

2012). The advantages of using EKF in GNSS and 

IMU fusion include relatively lower computational 

load compared to other nonlinear filtering methods 

(Kaviani et al., 2018), more stable tuning of the 

noise covariance concerning tuning parameters 

(Rhudy et al., 2011), and it works well in general 

situations (Wang et al., 2018). 

This study presents a loosely coupled integration 

of GNSS and IMU to compensate for errors of both 

systems using the EKF for the USV localization 

system. The EKF approach is the most widely used 

and advanced method for estimating the system of 

integrated navigation, and it works effectively in 

most cases (situations). Because of its ease of 

implementation and low computational burden, the 

EKF is broadly used to predict navigation status. 

EKF works upon system linearization and 

measurement model using Taylor series expansion 

involving derivatives of Jacobian matrices. With 

such a method, the difficulty of nonlinear filtering 

might be solved effectively and a quasi-optimal 

estimate with acceptable accuracy can be obtained. 

Previous studies have compared the Unscented 

Kalman Filter (UKF) and EKF methods in land 

vehicle localization, but still, no one has compared 

the two for USV localization, especially at 6 

Degrees Of Freedom (DOF). In this study, the 

results of loosely coupled integration using EKF 

then compared with the results of the UKF 

simulation based on the research by Cahyadi et al., 

(2021) (in draft) which uses 9 measurements data. 

The main contributions of this paper lies in the 

following aspects: (1) The processing the data 

generated from the recording by the water surface 

vehicle using the EKF and smoothing algorithm, (2) 

The results of the integration of GNSS and IMU 

using EKF are compared with the fusion results 

using the UKF script, (3) The accuracy of the fusion 

results is analyzed based on the variables of 

position, linear velocity, and attitude. EKF and 

smoothing algorithm was chosen because in the 

research by Cahyadi and Rwabudandi (2019) it was 

proven to be able to produce more accurate and 

smoother position than the use of stand-alone GNSS 

due to the smoothing algorithm. 

 

2. Sensor Measurement 

This section briefly introduces the GNSS and IMU 

sensors used in i-Boat localization system, the 

Loosely coupled integration scheme, and the EKF 

algorithm used to integrate GNSS and IMU data. 

 

2.1 GNSS and IMU Data Acquisition 

The i-Boat is a USV developed by Institut 

Teknologi Sepuluh Nopember (ITS) Surabaya to 

carry out several roles, such as shipping saving, 

logistics fulfillment, as well as defense and security 

functions. The i-Boat localization system is 

supported by GNSS and IMU sensors which are 

located on the top of USV i-Boat stand frame as 

shown in Figure 1(a). The Here3 GNSS installed on 

the i-Boat is capable to provide 3D fix mode 

positioning accuracy of 2.5 m. The GNSS utilizes 

the u-blox M8 high precision GNSS modules (M8P) 

receiver with a data update frequency of 8 Hz. 

Meanwhile, the IMU sensors used in i-Boat 

localization consist of accelerometer and gyroscope 

sensors. The accelerometer has an output data rate 

specification of 4-4000 Hz, while the output data 

rate for the gyroscope is 4-8000 Hz. Data 

acquisition was carried out during i-Boat initial 

launching on September 20, 2020, in the waters of 

Shipyard company in Madura, Indonesia. The 

location of data collection is shown in Figure 1(b) 

which is geographically located at 7.171562o South 

Latitude and 112.7174701o East Longitude. The 

environmental conditions and the movement of the 

USV i-Boat during its launching are clearly 

recorded in a video that can be accessed at the 

following link https://youtu.be/uPy6DD1_mDY. 

Before i-Boat was operated, the sensor calibrations 

were not carried out on either GNSS or IMU. 

Therefore, the sensor functions cannot be 

ascertained according to the manufacturer's 

specifications. Besides, the data unavailability 

regarding user selectable parameters during data 

collection has caused deficiencies in identifying the 

parameters that will be used for loosely coupled 

integration. Thus, this study used the IMU sensor 

parameters following the research by Shin (2005) as 

shown in Table 1. 
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(a) (b) 

 

Figure 1:  (a) USV i-Boat using Low-cost GNSS and IMU as Localization System,  

(b) The location of data collection 
 

Table 1:  IMU Tuning Parameter 
 

Parameter Value 

Gyroscope Bias 0.5 
𝑑𝑒𝑔

𝑠
, T = 1 hour 

Accelerometer Bias 0.05 
𝑚

𝑠2 , T = 1 hour 

Gyroscope Scale Factor 1000 PPM, T = 4 hours 

Accelerometer Scale Factor 1000 PPM, T = 4 hours 

Velocity random walk (VRW) 0.6 
 
𝑚

𝑠

√ℎ𝑜𝑢𝑟
 

Angular random walk (ARW) 3.5 
𝑑𝑒𝑔

√ℎ𝑜𝑢𝑟
 

 

 
Figure 2: Scheme of the GNSS/IMU loosely coupled integration using EKF 

 

2.2 Loosely Coupled Integration 

Based on the scheme of loosely coupled integration, 

there is no effort to correct the GNSS signals from 

its errors. The loosely coupled sensor integration 

system covered in this paper is described in Figure 

2. The integral Kalman filter creates a state vector 

estimation based on the GNSS receiver data, which 

is then used to correct the IMU data; 

simultaneously, a connecting block appeared 

between them where the so-called integral Kalman 

filter generates the state vector prediction based on 

the GNSS receiver data. This prediction is used to 

correct the data from IMU. Table 2 shows the 

structure of input and output data in loosely coupled 

integration using EKF which has been conducted in 

this research. 

 

 

 

Low-cost 

GNSS+IMU 
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Table 2: Input and Output Data of Loosely Coupled Integration EKF 
 

Input Output 

GNSS Data IMU Data 

Time (s) Time (s) Acc x (m/s2) Time (s) Roll (deg) Vx (m/s) 

Lat (deg) Gyro x (rad/s) Acc y (m/s2) Lat (deg) Pitch (deg) Vy (m/s) 

Lon (deg) Gyro y (rad/s) Acc z (m/s2) Lon (deg) Yaw (deg) Vz (m/s) 

z (m) Gyro z (rad/s)  z (m)   

 

2.3 Filtering Algorithm 

EKF is a recursive filter to estimate the state of a 

dynamic system from several noisy measurements, 

which were developed from the Standard Kalman 

Filter to overcome nonlinear dynamic systems. At 

each time step, the primary principle of EKF is to 

linearize the nonlinear functions of the state 

equation and measurement function.This study used 

EKF algorithm in conducting loosely coupled GNSS 

and IMU integration to minimize the variance 

estimation. The EKF algorithm is summarized as the 

following steps: 
 

Step Time update: 

𝑥𝑘+1|𝑘 = 𝐴𝑘+1𝑥𝑘|𝑘 

Equation 1 

𝑃𝑘+1|𝑘 = 𝐴𝑘+1𝑃𝑘|𝑘𝐴𝑘+1
𝑇 + 𝑄𝑘+1 

Equation 2 

Step Calculate Kalman Gain: 

𝐾𝑘+1 = 𝑃𝑘+1|𝑘𝐻𝑘+1
𝑇(𝐻𝑘+1𝑃𝑘+1|𝑘𝐻𝑘+1

𝑇 + 𝑅𝑘+1)−1 

Equation 3 

Step Measurement Update: 

𝑥𝑘+1|𝑘+1 = 𝑥𝑘+1|𝑘 + 𝐾𝑘+1(𝑧 − 𝐻𝑘+1𝑥𝑘+1|𝑘) 

Equation 4 

𝑃𝑘+1|𝑘+1 = 𝑃𝑘+1|𝑘 − 𝐾𝑘+1𝐻𝑘+1𝑃𝑘+1|𝑘 

Equation 5 

 

Where 𝑥  is the state matrix,  𝐴𝑘+1  is the state 

transition matrix, which is the Jacobian matrix of 

the nonlinear function f(.), 𝑃 is the error covariance, 

𝑄  is the noise process covariance, 𝐻𝑘+1  is the 

measurement matrix, which is the Jacobian matrix 

of the nonlinear function h(.),  𝐾𝑘+1 is the Kalman 

gain, 𝑅 is the measurement covariance, and 𝑧 is the 

measurement matrix. Both models of the system 

process and the measurement should be arranged in 

linear throughout the creation of the EKF. The "first 

order" approximations to the optimal terms are 

provided by the linearization technique. These 

approximations in the mean and covariance of the 

state estimation produce second order errors, and 

filter divergence might occur as a result (Cahyadi 

and Rwabudandi, 2019). Then, the EKF equations 

are used after the linear model has been generated. 

The time update stage projects the current state and 

error covariance forward to obtain a priori estimates 

for the next stage. The main purpose of EKF is to 

minimize the covariance error at the measurement 

update stage, therefore Kalman Gain needs to be 

calculated first. The last stage of the EKF 

incorporates new measurements into the a priori 

estimate to get a more accurate a posteriori estimate. 

 

3. Application of the EKF in GNSS/IMU 

Loosely Coupled Navigation System 

The following section describes the state vector and 

the function of nonlinear state transition for EKF 

regarding the loosely coupled integration of 

GNSS/IMU and its simulation result. 

 

3.1 State Vector and State Transition 

Function  

The error state vector of a GNSS/IMU tightly 

coupled integration using EKF is stated below: 

 

𝛿𝑥 = [(𝛿𝑟𝑐)𝑇 (𝛿𝑣𝑐)𝑇 𝜓𝑇  𝑏𝑔
𝑇 𝑏𝑎 

𝑇  𝑠𝑔
𝑇  𝑠𝑎

𝑇 𝛾𝑔
𝑇 𝛾𝑎

𝑇 ] 

Equation 6 

 

Where 𝛿𝑟𝑐 and 𝛿𝑣𝑐 can be written as follows: 

 

𝛿𝑟𝑐 = [𝛿𝑟𝑁 𝛿𝑟𝐸 𝛿𝑟𝐷]𝑇 

Equation 7 

𝛿𝑣𝑐 = [𝛿𝑣𝑁 𝛿𝑣𝐸 𝛿𝑣𝐷]𝑇 

Equation 8 

 

𝜓 denotes the attitude errors; 𝑏𝑔 the gyro biases; 𝑏𝑎 

the accelerometer biases; 𝑠𝑔  represents the gyro 

scale factors; 𝑠𝑎  denotes the accelerometer scale 

factors; and 𝛾
𝑔

 and 𝛾
𝑎

 are non-orthogonalities of 

the gyro and accelerometer triad, respectively. Thus, 

the system noise vector is presented as: 

 

𝑤 = [𝑤𝑣
𝑇  𝑤𝜓

𝑇  𝑤𝑔𝑏
𝑇  𝑤𝑎𝑏

𝑇  𝑤𝑔𝑠
𝑇  𝑤𝑎𝑠

𝑇  𝑤𝑔𝛾
𝑇  𝑤𝑎𝛾

𝑇 ]
𝑇
 

Equation 9 

 

where 𝑤𝑣  and 𝑤𝜓  are the velocity and the attitude 

noise; 𝑤𝑔𝑏  and 𝑤𝑎𝑏  represent the bias noise of the 

gyros and accelerometers; 𝑤𝑔𝑠 and 𝑤𝑎𝑠 are noise of 

the gyro and accelerometer scale factor; 𝑤𝑔𝛾  and 

𝑤𝑎𝛾  are noise of the gyro-triad and accelerometer-

triad non-orthogonalities. 
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3.2 GNSS and IMU Integration 

This section describes the simulation of GNSS and 

IMU loosely coupled integration based. Raw IMU 

data and GNSS data were retrieved during the initial 

launching of i-Boat. During the launch of the i-Boat, 

GNSS and IMU data were captured, and the 

navigation solutions were executed in post-

processing on the laptop's recorded data. The results 

of the estimated solutions are evaluated relative to 

the observation data. The trajectory estimation 

resulted from loosely coupled integration are shown 

in Figure 4. Generally, the result of trajectory 

estimation was well aligned with observation data, 

with some parts that seem smoother than the 

observation data due to the smoothing algorithm. 

The algorithm works by merging forward and 

backward filter solutions to create an ideal estimate 

based on the whole  past, current, and future 

observations. The computational smoothing 

procedure is shown in Figure 3. The time-series 

graph of the estimation results for the x and y 

positions is shown in Figure 5 seems to experience 

estimates that are getting further away from the 

observation data as time goes by. The EKF 

performance in providing positional accuracy 

cannot be carried out on Differential-GNSS 

(DGNSS) references or certain station references 

due to insufficient data. Therefore, the accuracy is 

calculated on the observation data based on Root 

Mean Square Error (RMSE) formula. The RMSE 

values and maximum residuals for positions x and y 

as a result of loosely coupled integration are shown 

in Table 3. The maximum residual is the largest 

differences between estimated variable and 

observed variable. 

 

 
Figure 3: Smoothing computation Scheme (Shin, 2005) 

 
Figure 4: The trajectory result of loosely coupled integration EKF 

 

 

Table 3: RMSE and Max. Residual of loosely coupled integration EKF 
 

Positions RMSE (m) Max Residual (m) 

x 0.3058 1.7559 

y 0.2780 1.4551 
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Figure 5: The time series of x and y position 

 

4. Discussion 

Loosely coupled integration has also been carried 

out in the research by Cahyadi et al., (2021) (in 

draft) using UKF algorithm. The integration of 

GNSS and IMU is based on USV movement at 6 

DOF. The state vector and measurement model in 

UKF simulation were compiled based on the 

dynamic and kinematic model of USV movement in 

wide waters by differentiating the forces acting on 

the i-Boat (see Table 1.SM). The UKF simulation 

flow starts from the initialization stage, sigma point 

calculation, state prediction, measurement update, 

and Kalman Gain calculation until state estimation 

as shown in Figure 1. SM. The UKF simulation 

consists of 2 simulations, namely in Scenario I and 

Scenario II. Scenario I used 9 variables of 

observation data while Scenario II only used 6 

variables of observation data by excluding attitude 

observation data. The comparison of 2D accuracy of 

integration results using EKF and UKF is presented 

in Table 4, which is the accuracy value calculated 

from the observation data. The 2D accuracy is 

calculated by:  
 

𝜎𝟐𝑫 = √𝑹𝑴𝑺𝑬𝒙
𝟐 + 𝑹𝑴𝑺𝑬𝒚

𝟐 

Equation 10 

 

In general, UKF simulation provide better results of 

2D accuracy than EKF estimation, which only 

achieve accuracy of 0.4132 m. The accuracy of 

UKF Scenario II which uses less observational data 

than UKF Scenario I produces better accuracy 

because the attitude data contains a large amount of 

noise. Although the EKF accuracy is lower than the 

accuracy generated by UKF simulation, the EKF has 

shown a smoother trajectory visually than UKF 

because of the presence of smoothing process in 

EKF. There is a significant difference in one of the 

trajectory part of EKF and UKF estimation results 

as shown in Figure 6. Integration of GNSS and IMU 

using EKF is able to produce smoother and more 

stable trajectories than the observation data. The 

forward and backward filtering strategy was created 

to smoothen the EKF estimation output. Besides, it 

caused by the appearance of smoothing algorithm in 

EKF integration, EKF is known to be more stable 

against low covariance tuning noise (Rhudy et al., 

2011). The EKF modification also shows good 

stability in overcoming large initial yaw angle errors 

(Jane, 2018) and produces state and internal 

parameter estimates (Wang et al., 2019). Smoothing 

is done by using data up to the current timestep to 

estimate the state of the USV. To make the initial 

value smoother, smoothing is done by using the 

localized EKF result directly. Then the smoothing 

trajectory uses span as the number of points used to 

calculate the current state estimate. In some cases, 

the existence of smoothing algorithms provides 

slightly better estimates but tends to be more 

sensitive about numerical accuracy, process, and 

noise measurements (Ko et al., 2018). 
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Table 4: Horizontal Accuracy Positioning 
 

Accuracy EKF UKF Scenario I UKF Scenario II 

2D (m) 0.4132 0.1048 0.0402 

 

a) b) 

 
 

c) d) 

  
 

Figure 6: The significant trajectory difference of EKF and UKF: (a) the whole observation trajectory; (b) the 

magnified EKF estimation trajectory; (c) the magnified UKF Scenario I estimation trajectory; (d) the 

magnified Scenario II estimation trajectory 

 

On the other hand, UKF Scenario II produces a 

rougher trajectory than the observation data, since 

there is no smoothing algorithm can be found in 

UKF.  

The comparison of the attitude estimation results 

is shown in Figure 7 showing that UKF Scenario I 

has the best estimation performance, where the 

estimation results are closer to the attitude 

observation data. Meanwhile, UKF Scenario II 

shows a fluctuating trend over a long period of time 

compared to EKF. Compared to UKF estimation, 

EKF estimation results are more volatile, mainly in 

the pitch and yaw estimation. The stability attitude 

estimation in the UKF Scenario I can be achieved 

because there is attitude measurement data in the 

measurement model as part of the update stage of 

the UKF. The existence of data in the measurement 

model can provide accurate estimates of the 

variables that correspond to the data (Kaviani et al., 

2018). The RMSE values and standard deviations 

are shown in Table 5 confirm that UKF Scenario I 

estimates the most accurate attitude compared to 

UKF Scenario II and EKF with the smallest RMSE 

values and standard deviations. Both UKF 

simulations by Cahyadi et. al., (2021) (in draft) and 

EKF processing in this study did not use linear 

velocity measurement data. However, both of them 

estimated the linear velocity as shown in Figure 8.  
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Figure 7: The significant difference attitude estimation of EKF and UKF 

 

 
 

Figure 8: The linear velocity estimation difference of EKF and UKF 
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Table 5: RMSE and Standard Deviation of Attitude Estimations 
 

Filtering Method Variables RMSE (rad) Standard 

Deviation (rad) 

UKF Scenario I Roll 0.0158 0.0367 

Pitch 0.0158 0.0369 

Yaw 0.0158 1.7881 

UKF Scenario II Roll 3.3500 3.2022 

Pitch 0.4481 0.4380 

Yaw 5.2373 5.3928 

EKF Roll 0.4787 0.4787 

Pitch 0.7639 0.7628 

Yaw 3.6549 2.6376 
 

Table 6: Standard Deviation of Linear Velocity Estimation 
 

Variables 
Standard Deviation (m/s) 

UKF Scenario I UKF Scenario II EKF 

Vx 2.6936 265.4383 1.1797 

Vy 2.8375 278.1957 1.5216 

Vz 0.7905 197.1744 0.6018 

 

  
Figure 9: The significant difference of horizontal norm residual (right side) and norm attitude (left side) 

 

The worst linear velocity estimation is shown by 

UKF Scenario II with a very volatile value. 

Meanwhile, EKF produces a more stable linear 

velocity estimation than UKF Scenario I, which 

sometimes produces peak estimates. Similar to the 

trajectory analysis in Figure 6, the linear velocity 

estimation in Figure 8 show that the EKF is more 

stable than the UKF when dealing with low 

covariance tuning noise (Rhudy et al., 2011). In 

Konatowsk and Pieni's (2007) study, the estimated 

linear velocity using EKF and UKF did not show a 

significant difference because the system noise was 

not too large. If there is a large noise jump in the 

system then it is possible that the filtering method 

used will give a poor linear velocity estimate. UKF 

Scenario II produces an linear velocity estimation 

with the largest standard deviation compared to 

UKF Scenario I and EKF both on the x, y, and z-

axes as shown in Table 6. 

For the comparison performance between EKF 

and UKF algorithms by Cahyadi et al. (in draft), the 

norm error estimation of the horizontal position (∆p) 

and attitude (∆A) were chosen for this analysis and 

calculated using : 

∆𝑝 = √∆𝑥2 + ∆𝑦2 

Equation 11 

 

∆𝐴 = √∆𝜙2 + ∆𝜃2 + ∆𝜓2 

Equation 12 

 

The calculation result shows that EKF presents the 

most volatile estimation than both of UKF Scenario 

I and UKF Scenario II as shown in Figure 9.  
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Figure 9 (right side) shows that UKF produces 

estimation which tends to be stable with a narrower 

range of norm residual error than EKF estimation. A 

similar is shown in Figure 9 (left side), the norm 

attitude, from UKF is changed stable over time 

compared to EKF. Attitude estimation in UKF 

Scenario I simulation provides better accuracy than 

UKF Scenario II and EKF since the attitude 

measurement data was used in the simulation. 

Meanwhile, the attitude estimation on the EKF 

produced high- fluctuating estimation. 

 

5. Conclusions 

The EKF performance in this paper is assessed in a 

GNSS/IMU loosely coupled integration. The 

accurate prediction of EKF is examined towards 

observation data. The position accuracy of 

integration results show that the accuracy of the 

horizontal position of integration result is 0.413 m. 

The integration result using EKF were compared to 

the integration using UKF by Cahyadi et al., (2021) 

(in draft). The comparison of 2D accuracy shows 

that UKF produces more accurate estimation than 

EKF. However, the EKF estimation trajectory 

visually shows smooth results due to its smoothing 

algorithm. EKF produces estimation that is not as 

good as UKF in attitude estimation, because the 

value is very volatile. However, in linear velocity 

estimation, EKF produces a more stable estimation 

than the other 2 Scenario of UKF. EKF processing 

that has been carried out needs to be improved, 

especially in terms of attitude estimation. It is 

necessary to devise a solution that assesses the 

accuracy to the reference DGNSS or station 

reference in the future. Furthermore, it is necessary 

to investigate the case of GNSS outages to show the 

loosely coupled integration performance where the 

vehicle has to reach a high positioning accuracy 

while guaranteeing the safety of other vessels. 
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Supplementary Material 

 

Table 1.SM. Mathematical Modeling of Sensor Fusion using UKF (Cahyadi et. al. in draft) 

 

Kinematic Model 

𝑥̇ = 𝑢 𝑐𝜓𝑐𝜃 + 𝑣 (−𝑠𝜓𝑐𝜙 +  𝑐𝜓𝑠𝜃𝑠𝜙 ) + 𝑤  (𝑠𝜓𝑠𝜙 +  𝑐𝜓𝑐𝜙𝑠𝜃 ) Equation 1 

𝑦̇ = 𝑢 𝑠𝜓𝑐𝜃 + 𝑣 (𝑐𝜓𝑐𝜙 +  𝑠𝜙𝑠𝜃𝑠𝜓) + 𝑤 (−𝑐𝜓𝑠𝜙 +  𝑠𝜃𝑠𝜓𝑐𝜙) Equation 2 

𝑧̇ = 𝑢 (−𝑠𝜃) + 𝑣 𝑐𝜃𝑠𝜙 + 𝑤 𝑐𝜃𝑐𝜙  Equation 3 

𝜙̇ = 𝑝 + 𝑞 𝑡𝜃𝑠𝜙 + 𝑟 𝑡𝜃𝑐𝜙   Equation 4 

𝜃̇ = 𝑞 𝑐𝜙 + 𝑟 (−𝑠𝜙)   Equation 5 

𝜓̇ = 𝑞 (
𝑠𝜙

𝑐𝜃
) + 𝑟 (

𝑐𝜙

𝑐𝜃
)   Equation 6 

 

In the equation: 

s · = sin (·). c  · = cos (·). dan t  · = tan (·) 

Dot notation state the derivation of time. 

● x. y. z are the position of the surge. sway. and heave motions. respectively. 

● ϕ. θ. ψ are the angle of roll. pitch. and yaw motions. respectively. 

● u. v. w are the linear velocity in the surge. sway. and heave motions. respectively. 

● p. q. r are the angular velocity in roll. pitch. and yaw motions. respectively. 

 

Dynamic Model 

𝑢̇ =
𝑋−(𝑚+𝑚𝑥)𝑞𝑤+(𝑚+𝑚𝑥)𝑟𝑣

(𝑚+𝑚𝑥)
      Equation 7 

𝑣̇ =
𝑌−(𝑚+𝑚𝑦)𝑟𝑢+(𝑚+𝑚𝑦)𝑝𝑤

(𝑚+𝑚𝑦)
      Equation 8 

𝑤̇ =
𝑍−(𝑚+𝑚𝑧)𝑝𝑣+(𝑚+𝑚𝑧)𝑞𝑢

(𝑚+𝑚𝑧)
      Equation 9 

𝑝̇ =
𝐾−(𝐼𝑧𝑧−𝐼𝑦𝑦)𝑞𝑟

(𝐼𝑥𝑥+𝐽𝑥𝑥)
         Equation 10 

𝑞̇ =
𝑀−(𝐼𝑥𝑥−𝐼𝑧𝑧)𝑝𝑟

(𝐼𝑦𝑦+𝐽𝑦𝑦)
                 Equation 11 

𝑟̇ =
𝑁−(𝐼𝑦𝑦−𝐼𝑥𝑥)𝑝𝑞

(𝐼𝑧𝑧+𝐽𝑧𝑧)
                    Equation 12 
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Figure 1SM: The UKF Algorithm 

 

 

 

(1) Compute sigma point and weights 𝑋𝑖 , 𝑊𝑖         (𝑥𝑘−1, 𝑃𝑘−1, 𝑘) 

 

(0) Set initial value 𝑥̂0 , 𝑃0 

(2) 
Predict state and error covariance (𝑥𝑘

−, 𝑃𝑘
−) = 𝑈𝑇(𝑓(𝑋𝑖), 𝑊𝑖, 𝑄 

(3) 
Predict measurement and covariance (𝑍̂𝑘 ,  𝑃𝑧) = 𝑈𝑇(ℎ(𝑋𝑖),  𝑊𝑖 ,  𝑅 

(4) 
Compute Kalman Gain  

𝑃𝑥𝑧 = ∑ 𝑊𝑖{𝑓(𝑋𝑖) − 𝑥𝑘
−}{ℎ(𝑋𝑖) − 𝑧̂𝑘}𝑇

2𝑛+1

𝑖=1

 

𝐾𝑘 = 𝑃𝑥𝑧𝑃𝑧
−1 

 

(5) 
Compute the estimate  𝑥𝑘 = 𝑥𝑘

− + 𝐾𝑘(𝑧𝑘 − 𝑧̂𝑘
−) 

(6) 
Compute the error covariance  𝑃𝑘 = 𝑃𝑘

− − 𝐾𝑘𝑃𝑧𝐾𝑘
𝑇 


