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Abstract 

Synthetic Aperture Radar (SAR) images show promising results in monitoring maritime activities. Recently, 

Deep learning-based object detection techniques have impressive results in most detection applications but 

unfortunately there are challenging problems such as difficulty of detecting multiple ships, especially inshore 

ones. In this paper, a three-step ship detection process is described and a reliable and sensitive hybrid deep 

learning model is proposed as an efficient classifier in the middle step. The proposed model combines the 

finetuned Inception-Resnet-V2 model and the Long Short Term Memory model in two different approaches: 

parallel approach and cascaded approach. In experiments, the region proposal algorithm and the Non-

Maxima suppression algorithm are applied in the first and last step in the three-step detection process. The 

comparative results show that the proposed approach in cascaded form outperforms the competitive recent 

state-of-the-art approaches by enhancement up to 16.3%, 16.5%, and 18.9% in terms of recall, precision and 

mean average precision, respectively. Moreover, the proposed approach shows high relative sensitivity for 

challenged cases of both inshore and offshore scenes by enhancement ratios up to 81.88% and 24.58%, 

respectively in recall perspective. 

 

 

1. Introduction and Related Work 

Synthetic Aperture Radar (SAR) system is 

considered a perfect source of images (Chaturvedi, 

2019 and Cui et al., 2021) specially for military 

applications, environmental monitor, marine 

monitoring, or any other application that requires a 

relatively high accuracy due to the fact that neither 

weather nor light can affect the imaging process of 

the SAR. With the increasing count of launching 

satellites, such as Sentinel-1, Gafon-3 and Terra 

SAR-X, the availability of SAR images has been 

increased. Maritime transport has an essential role in 

growth and sustainable development that leads to a 

significant increase in the currently ships count. The 

management of marine traffic is one of the most 

important applications of SAR images, from which 

ships can be detected easily due to their bright 

intensity (Cui et al., 2021 and Arivazhagan et al., 

2019). Meanwhile, in real scenario, a SAR image 

contains other objects besides ships, which are not 

interested in, such as sea ice and coastline structure, 

and even speckle noise that may negatively affect 

the ship detection process (Song et al., 2017).  

During the past decades, researchers were 

interested in the field of SAR ship detection and 

many researches have been published. In (Liang et 

al., 2020) Constant False-Alarm Rate (CFAR) 

algorithm is presented that is able to identify targets 

statistically by setting a threshold while maintaining 

a constant false alarm rate. In (Ai et al., 2010) a 2-D 

joint lognormal distribution algorithm, which uses 

the correlation of the gray intensity to model the 

ship targets is demonestrated. A new hierarchical 

scheme for detecting ships in SAR images is 

proposed in (Wang and Liu, 2012), which consists 

of detection and discrimination modules, such that 

ship candidates are obtained by applying CFAR, 

while ship discrimination is performed by using 

one-class classification. Another method in (Hou et 

al., 2013) is proposed to detect ship targets by 

measuring the visual conspicuity of each water 

region and the k-means clustering algorithm. In 

(Zhang et al., 2018) a ship segmentation scheme 

with non-local processing is proposed in order to 

handle the speckle noise and the complicated 

backscattering phenomenology in SAR images. 

These ship detection approaches are based on 

manually extracted features, experienced statistic 

model and traditional image processing methods. A 

prior knowledge is required, and optimization 

difficulty is another challenge.  

In recent years, deep learning, which is able to 

automatically extract features, has encountered 
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another revival especially with the rapid 

development of hardware computing (Fouad et al., 

2020). An impressive work has been done to 

highlight the superiority of methods based on deep 

learning over traditional methods (Wang et al., 2018 

and Carman and Kolhatkar, 2020). A lot of 

Convolutional Neural Network (CNN) architectures 

has already achieved great success for image 

features extraction, classification tasks in computer 

vision field and region proposal-based object 

detectors. For instance, the transfer learning and 

single shot multibox detector (SSD) are combined, 

in (Wang et al., 2018), for ship detection. However, 

the SSD provides a relatively low accuracy. In 

(Kang et al., 2017), a faster region-based 

convolution neural network (R-CNN) is adapted to 

solve the ship detection problem with higher 

accuracy. However, the multi-scale characteristics 

of the SAR ship images are not considered. For 

instance, the approach in (Wang et al., 2019) based 

on RetinaNet (Lin et al., 2017), shows higher 

accuracy for large size ships, however with a small 

detection rate for small size ships. As well, in (Zhou 

et al., 2020), a multi-scale version of the Faster R-

CNN (Ren et al., 2016) is presented to solve the 

detection problem of multi scaled images and small 

sized ships, however, with a small detection rate for 

ships near the port, i.e., complex background. The 

problem of multi scale problem in SAR imagery are 

solved by proposed methods in (Liu et al., 2019) 

based on merging the strong scattering components 

and super-pixel grouping. These methods can 

achieve 0.85 of recall metric. In (Zhao et al., 2020), 

an attention-based model, is proposed to construct 

fine-grained feature pyramid. The proposed model 

can handle ships of various sizes with complex 

backgrounds based on combination of receptive 

filed and attention blocks. 

In this paper, a hybrid Deep Learning (DL) 

approach, based on Convolution Neural Network 

(CNN) model and Long Short Term Memory 

(LSTM) model, is presented as a reliable and 

sensitive classifier to enhance the detection accuracy 

of the multi scaled small sized ships in the SAR 

images. In work, both the bagging method and 

boosting method, for obtaining more efficient DL 

hybrid approach, are discussed. By the bagging 

method, a proposed parallel approach is generated, 

while a proposed cascaded approach is generated by 

the boosting method. The two proposed approaches 

are evaluated and compared with recent state-of-the 

approaches. The paper is organized in 4 main 

sections. Section 2 explains, in detail, the three-step 

ship detection process, including the proposed 

hybrid DL approach. Experimental work and 

comparative analysis are illustrated in Section 3. 

Finally, conclusions and suggested future work are 

drawn in Section 4. 

 

2. Methodology 

Ship detection process, in SAR images, is a complex 

problem that has three main issues to be considered: 

i) the nature of multi-scale characteristics of ships in 

SAR images, ii) the difficulty of detecting ships in 

complex backgrounds, and iii) the challenge of 

detecting small ships. This section presents the 

detailed stages towards the proposed approach to 

deal with such issues and perform the detection task 

with a relatively high accuracy and reliability.  

In order to perform ship detection, the input 

SAR image should pass through a three-step 

process, as shown in Figure 1. In the first step, a 

Regions of Interest (ROI) generation process is 

applied that accepts an input image and results 

proposals for the locations (ROIs) of the detected 

objects in the image. In the second step, the 

generated ROIs are classified using an efficient 

classifier to decide if the detected object in each 

ROI is a ship or not. In the last step, a process for 

eliminating overlapped bounding-boxes (if any) of 

the classified ships is applied to form a single 

detection bounding box (Pang et al., 2019). 

 

2.1 Region Proposal Algorithm for ROI Generation 

The most traditional methods that are commonly 

used to detect objects in an image are image 

pyramids (Pang et al., 2019) and sliding windows 

(Blue and Brindha, 2020). On the other hand, they 

have two main drawbacks: i) time consuming due to 

the looping process and ii) different detection rates 

as a result of applying parameters with different 

values. The main idea of the region proposal 

algorithm (RPA) (Taghizadeh and Chalechale, 

2020) is that it can inspect the image to define the 

regions, where an object is most likely to be located.  

 

 
Figure 1: General flowchart of ship detection process in SAR images (Pang et al., 2019) 
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Figure 2: Sample generated ROIs using RPA 
 

 
Figure 3: A typical transfer learning technique (Zhuang et al., 2020) 

 

 
Figure 4: The basic network architecture of Inception-Resnet-v2 (Szegedy et al., 2017) 

 

This can be achieved by using superpixel algorithm 

(Shang et al., 2020) for over-segmenting the input 

image. The RPA is considered to be more efficient 

than the traditional object detection techniques, i.e., 

image pyramids and sliding windows for some 

reasons as: i) the count of generated ROIs is few, ii) 

it is faster than exhaustively examining every 

scale/location of the input image, and iii) the 

amount of accuracy lost is minimal. In Figure 2, 

some samples, of the generated ROIs using the 

RPA, are shown, where white pixels represents the 

objects that may be classified as ships and colored 

boxes represent detected objects with different 

spatial resolutions that should be classified later as 

ships or not. 

 

2.2 The Proposed Hybrid DL Approach for 

Classification Step 

2.2.1 The transfer learning technique 

In the scope of DL, transfer learning is performed 

by training a CNN classification model for a certain 

task using a large enough dataset or applying fine-

tuning process to a pre-trained model, i.e., base 

model, using the new dataset targeted to the new 

task (Zhuang et al., 2020), as illustrated in Figure 3. 

There are a variety set of state-of-the-art CNN 

models that can be implemented as base-models for 

transfer learning such as VGG16 (Simonyan, and 

Zisserman, 2014), VGG19 (Wen et al., 2019), 

MobileNet V2 (Sandler et al., 2018), Xception 

(Chollet, 2017), Inception V2 (Alamsyah and 

Fachrurrozi, 2019), Inception-Resnet-V2 (Szegedy 

et al., 2017) and more. 

In the proposed DL approach, Inception-Resnet-

V2 (Szegedy et al., 2017 and Wang et al., 2019), is 

utilized as the base model for transfer learning. 

InceptionResnet-V2 (Szegedy et al., 2017) is a 

CNN-based classification model trained on a large 

scale and available ImageNet dataset (Deng et al., 

2009). InceptionResnet-V2, shown in Figure 4, is a 

combined structure of both Inception networks and 

ResNet networks. Inception networks have their 

own structure, that depends on convolutional filters 

of different sizes with pooling process within one 

layer, while ResNet networks utilize a shortcut 

connection structure which is flexible and dependent 

on the tasks due to its ability to skip one or more 

layers to avoid degradation as a result of deep 

structure and accelerate the training process as well. 

 

2.2.2 Using the LSTM model 

The Long Short-Term Memory (LSTM) model is 

introduced as a special type and an enhanced 

version of recurrent neural networks (RNNs) to 

solve the vanishing and exploding gradient problem 

(Wang et al., 2019). The LSTM model utilizes base 

memory cells (mc) with a cell state and three gates: 

input, output, and forget gate, in each mc inside the 

hidden layer. These applied gates allow the LSTM 
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model to efficiently remember and learn patterns in 

long-term dependencies. While CNN-based model 

has the ability to extract important features from the 

internal representation of the image, the LSTM 

model has the capacity to selectively remember 

patterns for a long duration of time in the target 

image. The LSTM models support different 

schemes, i.e., many-to-many scheme, in which a 

sequence of predicted output values can be 

generated by a sequence of input at a time. 

Moreover, stacking LSTM hidden layers are 

supposed to enhance the prediction efficiency and a 

count of two-layer stacked LSTM, as shown in 

Figure 5, is recommended to avoid the degradation 

problem (Deng et al., 2009).  
 

 
 

Figure 5: General structure of a two-layer stacked 

LSTM (Mahmoud et al., 2021) 

 

In the classification step of the ship detection 

process, the LSTM model based on many-to-many 

scheme, in a two-layer stacked version, is combined 

with the fine-tuned Inception Resnet-V2-base 

model, in a hybrid classification DL-based model. 

The extracted features, from the Inception-Resnet-

V2- base model, will be enhanced with those 

predictions generated from the LSTM model in 

order to ultimately improve the classification 

accuracy, hence the whole detection process. 

 

2.2.3 Approaches of CNN and LSTM in a hybrid 

model  

This study proposes the pre-trained Inception-

Resnet-V2 as a base model for classification step. 

Two different approaches are suggested for 

combining the two-layer stacked LSTM model with 

the Inception-Resnet-V2 base model in a proposed 

hybrid model. The first hybrid model implements 

the pre-trained Inception-Resnet-V2 and the two-

layer stacked LSTM in a parallel form, while the 

second approach implements them in a cascaded 

one. The input size for all approaches are 

224*224*3 that accommodates all ship sizes in the 

data set, as shown in Table 1, which are ranged from 

7*7 to 211*298 in SAR images of size 500*500 in 

average spatial resolution.  

In the first suggested hybrid model, i.e., the 

proposed parallel model as shown in Figure 6, the 

input to the LSTM branch is first transferred to a 

gray scale, i.e., 224*224. Then, each gray scale 

input is reshaped into 28 batches, each is of size 

1792, and fed to the LSTM branch batch by batch. 

The extracted features from the pre-trained 

Inception-Resnet-V2 of dimension 5*5*1536 are 

merged by those predictions form the two-layer 

stacked LSTM of dimension 1536 through element-

wise multiplication with each batch of the 25 

batches output from Inception-ResnetV2. The 

output of the 25 element-wise multiplications with 

the batch of dimension 1536 from LSTM is 

flattened in a merge layer of enhanced extracted 

features of dimension 38400. The enhanced 

extracted features, from the merged layer, are fed as 

input to a classification phase consisting of two 

cascaded fully connected layers of size 256 and 128, 

respectively followed by a Softmax output layer, as 

shown in Figure 7. 

In the second hybrid model, i.e., the proposed 

cascaded model shown in Figure 8, the extracted 

features, from the pretrained Inception-Resnet-V2 of 

dimension 5*5*1536, are reshaped to form 25 timed 

series batches, each batch of size 1536. The 

reshaped batches are then fed as 25 input sequences 

to the LSTM model that generates 25 batches of 

predicted values, each batch of size 512. The 25 

predicted batches are reshaped to form enhanced 

extracted features of dimension 12800 in the merge 

layer. The merged enhanced features are directed to 

two fully connected layers of size 256 and 128, 

respectively, followed by the Softmax function as 

illustrated in Figure 9. 

 

2.3.4 Overlapped bounding-boxes elimination using 

non-maxima suppression 

Extra bounding-boxes around the same detected 

object can be eliminated by applying a Non-Maxima 

Suppression (NMS) (Hosang et al., 2017) that can 

collapse those weak bounding-boxes based on a 

given confidence.  
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Figure 6: The parallel form structure of the proposed hybrid model 

 

 
 

 
 

Figure 7: Enhancing the extracted features in the proposed parallel model 

 

 
Figure 8: The cascaded form structure of the proposed hybrid model 
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Figure 9: Enhancing extracted features in the cascaded form 
 

 
Figure 10: Bounding-boxes (a) before and (b) after applying NMS on the overlapped boxes 

 

Table 1: Full description of the open (SSDD) (Li et al., 2017) 
 

Sensors Sentinel-1, RadarSat-2, TerraSAR-X 

Place Visakhapatnam, India; Yantai, China 

Polarization HH, VV, HV, VH 

Resolution 1 m–10 m 

Scene Inshore, offshore 

Num. of images 1,160 

Avg. size of Images 500 × 500 

Num. of ships 2,358 

Avg. Num. of Ships per image 2.03 

Smallest ships size 7 × 7 

Biggest ships size 211 × 298 

 

The benefit of using NMS is to remove all the 

overlapped boxes except only one that perfectly 

surrounds the detected object hence; obtain only one 

detection per object. NMS algorithm starts by 

choosing the boundary box with the highest 

confidence score and suggests that it perfectly 

bounds the object, while the other boundary boxes, 

for that object, are suppressed. For the rest boundary 

boxes the next one with the highest confidence score 

is selected again and the whole process is repeated 

till finishing all the remaining boundary boxes. 

Figure 10 shows the difference between the output 

image before and after using the NMS algorithm. 

 

3. Experimental Work 

3.1 Dataset Description 

The open SAR Ship Detection Dataset (SSDD) (Li 

et al., 2017) is used to verify the effectiveness of the 

proposed model for ship detection through training, 

validation and testing phases. SSDD is proposed in 

2017 and already has been widely used in researches 

as in (Cui  et al., 2019, Chang et al., 2019, Zhang  et 

al., 2019(a), Zhang and Zhang, 2019 and Zhang et 

al., 2019(b). SSDD contains 1160 SAR images with 

a total of 2358 ships. Images of SSDD have 

different resolutions and polarization modes that 

effectively allows to evaluate the robustness of the 

proposed ship detection approach. A full description 

of SSDD is shown in Table 1. 

 

3.2 Training Strategy 

SSDD is randomly divided into 70% for training, 

10% for validation and 20% for testing. The training 

and validation sets are pre-processed by count of 9 

augmentation techniques: 1) horizontal shift, 2) 

vertical shift, 3) horizontal-vertical shift, 4) 

horizontal flip, 5) vertical flip, 6) random rotation, 

7) random brightness, 8) random zoom, and 9) 

Gaussian noise, to generate new image patches that 

is divided into two classes ship and scene. In 

experiments, the learning rate used is 0.0001 and the 

number of epochs is 100. The batch size used is 32 
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and the model utilizes Adam optimizer (Ogaltsov 

and Tyurin, 2019). The workstation used has 10th 

generation Intel core I7-10700T processor with 16 

GB RAM and an ASUS Geforce GTX 1650, 1733 

MHz, 2560 CUDA cores with 6 GB dedicated 

memory GPU. The environmental software includes 

Python 3.6.3, Tensorflow 1.7.0, Keras 2.1.2, CUDA 

9.1 and cudnn 7.1.2. After the training and 

validation phases, i.e., in the test phase, the 

proposed DL model is fed with ROIs generated 

from test images using the RPA for classification 

purposes. Finally, the NMS algorithm will be 

applied to eliminate the unnecessary overlapped 

bounding-boxes in the ROIs of classified ships and 

then generates the final output SAR image from the 

input one, with non-overlapped bounding-boxes 

around the detected ships. 

 

3.3 Evaluation Metrics 

The most commonly used metrics for evaluating 

deep learningbased object detectors are Recall, 

Precision and mean Average Precision (mAP). 

These metrics are defined by: 

𝑅𝑒𝑐𝑎𝑙𝑙 =   𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) 

Equation  1 

 

Precision =   𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) 

Equation  2 

𝑚𝐴𝑃 =   ∫ 𝑃(𝑅)𝑑𝑅
1

0

 

Equation  3 
 

where TP is True Positive rate, TN is True Negative 

rate, FN is False Negative rate, FP is False Positive 

rate, P is Precision, R is the Recall, P(R) is 

Precision–Recall (P-R) curve, by which mAP is used 

to represent detection accuracy. Precision is the ratio 

between the True Positives and all the Positives. For 

the target problem statement, it is a measure of 

correctly identified objects as ships out of all 

detected ships. It reflects how reproducible 

predictions are, even if they are far from the 

accepted value, i.e., the reliability of the system. 

Recall is the measure of the proposed model 

correctly identifying True Positives. Thus, for all 

existing ships in the scene, recall reflects how many 

of them are correctly identified as ships, i.e., it gives 

a measure of how accurately the model is able to 

identify the relevant data. Recall reflects the 

sensitivity of the model. So, the model with higher 

recall is more sensitive to ships and can accurately 

detect most of ships in the input scenes regardless 

its scale or location. Precision-Recall Curve P(R), is 

a direct representation of the Precision(y-axis) and 

the Recall(x-axis). Precision-Recall curves 

summarize the trade-off between the true positive 

rate and the positive predictive value for a predictive 

model using different probability thresholds. 

 

4. Results and Discussion 

Experimental results of the proposed parallel model 

shows an accuracy of 94 %, while the proposed 

cascaded model shows an accuracy of 97 %, as 

shown in their ROC curves and the associated 

AUCs in Figure 11. It is concluded that the cascaded 

form of the proposed hybrid model outperforms the 

parallel form in terms of classification accuracy by a 

ratio of 3.19%.  

 

 
 

Figure 11: The ROC curve of the classification module 

 



 

International Journal of Geoinformatics, Vol. 17, No. 6, December 2021 

ISSN 2673-0014 (Online) / © Geoinformatics International 

 

 

 

66  
Table 2: Evaluation metrics of competitive approaches on SSDD 

 

Method Recall(%) Precision(%) mAP(%) 

Faster R-CNN 85.16  81.15 82.66 

RetinaNet 96.70 93.12 95.68 

R-FCN 95.65 92.63 95.15 

SSD 94.51 85.15 92.67 

YOLOv3 96.70 93.62 95.34 

YOLOv1 84.07 84.53 81.24 

YOLOv2 92.86 84.92 90.09 

HyperLi-Net 96.74 90.36 96.08 

Proposed Parallel Model 93.20 87.63 93.71 

Proposed Cascaded Model 97.81 94.57 96.59 

 

 
Figure 12: Improvement ratios (%) in recall, precision and mAP of the proposed cascaded model as opposed 

to the competing approaches 
 

 
Figure 13: Precision–Recall (P-R) curves of all competing approaches 

 

The two proposed hybrid models, in parallel and 

cascaded form separately, are compared with the 

most recent state-of-the-art approaches that utilize 

the same dataset for system training and evaluation 

(SSDD). The competitive approaches are YOLOv1 

(Redmon et al., Wang), YOLOv3 (Redmon and 

Farhadi, 2018), YOLOv2 (Redmon and Farhadi, 

2017), R-FCN (Dai et al., 2016), RetinaNet (Lin et 

al., 2017), Faster R-CNN (Ren et al., 2016), SSD 

(Liu et al., 2016) and HyperLi-Net (Zhang et al., 

2020). The comparative results, as shown in Table 

2, show an outstanding performance of the cascaded 

form of the proposed hybrid model in comparison 

with the competitive approaches by ratios up to 

16.3%, 16.5%, and 18.9% in terms of Recall, 

Precision, and mAP, respectively as shown Figure 

12. The Precision–Recall (P-R) curves for the 

proposed cascaded model and the competitive 

approaches are shown in Figure 13.  
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Table 3: Evaluation metrics of competitive approaches on inshore and offshore scenes of SSDD 

 

Method 
Inshore Offshore 

Recall Precision mAP Recall Precision mAP 

Faster R-CNN 70.35 62.05 66.22 98.12 94.32 97.68 

SSD 47.67 87.23 46.52 79.57 99.33 79.38 

RetinaNet 48.26 83.00 45.66 83.60 97.80 83.35 

Attention RPN 85.40 73.30 84.10 96.40  96.40 98.20 

Proposed Parallel Model 66.71 79.30 43.28 80.07 98.34 81.815 

Proposed Cascaded Model 86.70 88.55 85.51 99.13 99.57 99.36 

 

 
Figure 14: Improvement ratios (%) in recall, precision and mAP of the proposed cascaded model 

for inshore and offshore cases 
 

 
Figure 15: Different test scenes for both the proposed parallel and cascaded models, where blue bounding-

boxes means correct detection, red means missed detection, and yellow means false-alarms 

 

A more challenged capability of any ship detection 

process is its ability to reliably detect ships in the 

SAR images regardless their sizes or locations, i.e., 

inshore or offshore. Table 3 presents the 

performance of the proposed cascaded model in 

detecting ships in both inshore and offshore scenes. 

As shown in Figure 14, for the inshore cases, the 

proposed cascaded model shows high efficiency by 

enhancement ratios up to 81.88%, 42.71% and 

97.55% in terms of Recall, Precision and mAP, 

respectively relative to the competing state-of-the-

art approaches. Meanwhile, for the offshore cases, 

the proposed cascaded model can achieve 

enhancements up to 24.58%, 5.57% and 25.17%, 
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respectively for the same metrics. The 

improvements achieved by the proposed cascaded 

model in the recall and precision metrics for both 

inshore and offshore denote a higher combination of 

sensitivity and reliability of the proposed model in 

the challenged cases, especially, i.e., inshore ones. 

Different output samples (ground truth and 

detected ships) in different scenes, from both the 

proposed parallel model and the proposed cascaded 

model, are shown in Figure 15.  

 

5. Conclusions and Future Work 

This paper presents two deep learning hybrid 

approaches, combining the pre-trained Inception-

Resent-V2 and a two-layer stacked LSTM, for ship 

classification in a three-step detection process in 

SAR images. The first proposed approach, 

generated by the bagging method, combines them in 

parallel form, while the other, generated by the 

boosting method, combines them in the cascaded 

form. In detection process the region proposal 

algorithm is applied for ROI generations, while 

NonMaxima algorithm. is implemented for 

eliminating overlapped bounding-boxes.  

Both models are trained using SSDD dataset and 

evaluated using Recall, Precision and mAP 

evaluation metrics. Experimental results show that 

the proposed cascaded model outperforms all 

competitive state-of-the-art approaches, including 

the parallel one, with ratios of 97.81%, 94.57%, and 

96.59% for recall, precision, and mean average 

precision respectively. Moreover, the results shows 

an outstanding efficiency of the proposed cascaded 

model especially for inshore scenes as challenged 

cases, as it achieves 81.88%, 42.71% and 97.55% 

for the same metrics respectively. The outstanding 

results show that the proposed cascaded model 

capable of performing multiple ship detection in 

SAR images with relatively high reliability 

regardless their sizes or locations, i.e., high 

sensitivity model.  

The future work is suggested to be an enhanced 

version of the proposed model that has a better ship 

detection accuracy for both inshore and offshore 

scenes. It is intended to apply attention-based 

techniques, which boost the model to higher 

detection accuracy. Relative to the practical 

implementation, the future work will be focused on 

studying practical implementation of such deep 

learning applications, as intensive codes, on 

embedded platforms, i.e., on-board computers of the 

aerospace vehicles such as Unmanned Aerial 

Vehicle (UAVs) and satellites (Elshazly et al., 

2021). These implementations will be tested in 

different environments: as software on embedded 

micro-controllers, or hardware implementation on 

FPGA and even on both as a hardware and software 

co-design. The future work will focus on optimizing 

these deep learning based models, as high 

computational applications, to work on different on-

board embedded platforms including hardware 

and/or software partitioning, code analysis, code 

transformation, and code re-targeting heterogeneous 

computing platforms. 
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