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Abstract 

Sustainable urban planning and management require reliable land change models, which can be used to 

improve decision-making. Over the years, many urban growth models have been developed and used in the 

developed countries for forecasting growth patterns. In the developing countries, however, there exist a very 

few studies showing the application of these models and their performances. The study encompasses spatio-

temporal land use/land cover (LULC) monitoring (1989–2019) and urban growth modelling (1999–2039) of 

Benslimane, Morocco to deduce the past and future urban growth paradigm and its influence on varied LULC 

classes integrating geospatial techniques and Cellular Automata (CA). The study focused on scrutinizing the 

reliability of the CA algorithm to function independently for urban growth modelling, provided with strong 

model calibration. For this purpose, satellite data of four stages of time at equal intervals along with the 

population density, the distance to the city center, the slope and the distance to the roads are used. The 

satellite-based LULC during 1989-2019 reported an increase of 3.8 Sq. Km (variation of 318%) between 

1989 and 2019. The spatial variation analysis using the principal component analysis (PCA) technique 

exhibit high similarity in classification ranging from 89% to 91%. The projected LULC exhibit that the urban 

area will increase to 5,044 Sq. Km in 2019, primarily in the west and southwest parts. Between 2019-2039, 

urban growth will replace and transform other LULC (net loss of 1,364 Sq. Km), followed by vegetation cover 

(net loss of 0.345 Sq. Km). 

 

 

1. Introduction 

Urbanization is a significant symbol of the growth 

of science, technology, and the greater capacity of 

humanity to reform the natural world. It is also one 

of the required measures to modernize a country (He 

et al., 2011). In the local natural environment, the 

rapid development of urban areas has an impact on 

the complex socio-economic and natural systems, 

such as deforestation, air pollution, and agricultural 

land reduction (Jenerette et al., 2007 and Seto, 

2011). To ensure sustainable urban growth 

(Hersperger et al., 2018) and to explicitly 

understand the spatial distribution of urban areas 

and spatio–temporal patterns, it is important to find 

an effective method to simulate and model urban 

expansion (Arsanjani et al., 2013, Poelmans and 

Van Rompaey, 2010 and Saadani et al., 2020). A 

variety of techniques and models have been 

developed over the last three decades to explain the 

dynamics of urban growth processes (Aburas et al., 

2016 and Musa et al., 2017). The introduction of the 

geographic information system (GIS) into the 

modeling of urban expansion was important at the 

end of the 20th century (Batty et al., 1999 and 

Michalak, 1993), to understand the predictor 

variables of spatio–temporal changes. Regression 

models (Hu and Lo, 2007, Liao and Wei, 2014, 

Mom and Ongsomwang, 2016, Tahami et al., 2018 

and Tayyebi and Pijanowski, 2014), including 

artificial neural networks (ANN) ) (Mohammady 

and Delavar, 2016, Pijanowski et al., 2000, 2002, 

Pourebrahim et al., 2018, Tayyebi et al., 2011 and 

Tian et al., 2016), agent-based models (ABM) 

(Babakan and Taleai, 2015 and Hosseinali et al., 

2013), are used for their efficient spatial 

computational capabilities. Cellular automata (CA) 

models are widely considered to be the most 

functional instruments (He et al., 2006, Li and Yeh, 

2002, Shi and Pang, 2000, Tobler, 1970, Wu and 

Martin, 2002 and Zhang et al., 2011). Tobler first 

suggested the urban CA model in 1970, to simulate 

Detroit's urban growth. In San Francisco, (Clarke et 

al., 1997) simulated shifts in land use using the 

Slope Land use Exclusion Urbanization 

Transportation Hillshade (SLEUTH) CA model. 

Batty and Xie (1994) researched urban sprawl in 

Baffalo using the CA model (Batty and Xie, 1994). 
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To research the urban growth of Guangzhou, (Wu, 

2002) developed a logistic regression CA model. In 

northern China, (He et al., 2005) simulated land use 

shifts by integrating the model of system dynamics 

and the model of CA. The urban growth of 

Dongguan was simulated by (Li and Gar-On Yeh, 

2004), using data mining and CA. (Li et al., 2012) 

applied the GPU technique to the CA model to 

simulate improvements in urban land use in the 

province of Guangdong. Mustafa et al., (2017) 

merged cellular automatons and agent-based 

approaches in Wallonia, Belgium, to model urban 

growth from 1990 to 2000. The urban planning of 

the cities of the Pearl River Delta was analyzed by 

(Liu et al., 2014) by combining the Landscape 

Expansion Index (LEI) and the CA model. In the 

last three decades, research using CA urban growth 

models have proliferated and provided in-depth 

insight into urban growth processes, which 

contributes to the development of urban growth 

strategies to ensure a sustainable urban future (Wu 

and Martin, 2002). The urban modeling and 

forecasting capabilities of CA models have been 

demonstrated and has been used successfully over 

the past fifteen years worldwide (Chaudhuri and 

Clarke, 2013). In this study, we aimed to examine 

the spatio–temporal dynamics of land use/land cover 

(LULC) over the past decades in order to model 

urban development for the municipality of 

Benslimane, Morocco using the CA algorithm. In 

this analysis, the LULC of four separate years: 

1989, 1999, 2009, and 2019 was evaluated. In order 

to achieve this objective,we also considered other 

criteria and growth parameters, such as topography, 

road proximity, proximity to the city center, 

demographic statistics, as well as areas with growth 

constraints. The prediction of the future was useful 

in extrapolating the environmental effects of the 

urbanization of the town of Benslimane, which 

could help improve sustainability. In our analysis, 

we also report on the CA algorithm's accuracy and 

reliability in modeling the urban development of the 

city of Benslimane in Morocco. In recent decades, 

the urban area of Benslimane has expanded, so it 

seems appropriate to examine the urban growth 

trend and deduce its potential impact on other land 

use characteristics. 

 

2. Study Area 

The study was carried out in the municipality of 

Benslimane (Figure 1), capital of the agricultural 

province, bounded by the municipality of Ain 

Tizgha to the east and north, the municipality of 

Ziaida to the south and the municipality of Oulad 

Yahya Louta in the West. In the north-west, the high 

altitudes range from 175 to about 390 m. The area 

of the municipality of Benslimane is about 72 km2, 

the polar coordinates are 33° 36N latitude and 7° 

06W longitude, the Lambert coordinates averages 

are x = 342000, y = 336000. The town of 

Benslimane has a population of approximately 

57101 inhabitants (RGPH 2014). 
 

 
Figure 1: Map of the study area (Benslimane municipality) 
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The city of Benslimane is characterized by a dry 

climate with alternating cold and hot continental 

type (Benchelha et al., 2019). Benslimane's annual 

average temperatures are 23.7 °C for the maximum 

and 10.3 °C for the minimum. As one travels away 

from the Atlantic coast, there are considerable 

variations. The average annual temperature of the 

coastal zone is 17.5 °C, with a mean temperature not 

exceeding 32 °C. The low interior plateaus show 

very high thermal amplitudes, but without sudden 

variations. The average annual temperature on these 

plateaus is 18.5 °C, with a high of 40 °C (Benchelha 

et al., 2019). In the province, the average annual 

rainfall recorded is 350 mm. For the Feddan Taba 

and Malleh Dam pluviometry stations, the average 

annual precipitation measured for the period 1989–

2019 is approximately 363 mm. The average 

monthly distribution of rainfall suggests the 

presence of two distinct seasons: the wet season 

from October to May, during which nearly all rainy 

episodes occurred (86 to 92% of the annual rainfall); 

the dry season from May to September, with just 8 

to 14% of the annual rainfall (Benchelha et al., 

2019). 

 

3. Methods and Data Used 

This research aims to prepare numerous thematic 

layers from satellite images..Different factors 

favoring urban growth with LULC were prepared as 

raster layers for modeling purposes, namely 

population density, Closeness of road networks, 

slope, and the city center's proximity (Figure 2). To 

achieve the best possible threshold values, a model 

has been carefully tuned to keep the simulated 

LULC statistically and spatially close to the real 

LULC. The trend of the obtained threshold values 

was assessed for future built-up projections for the 

years 2029 and 2039. The LULC, road network and 

other thematic layers were prepared in ArcGIS ver. 

10.3, whereas calibration and future projection were 

conducted in Python 3.8, using GDAL 3.0.2, 

Numpy 1.18.1, Matplotlib 3.1.3, and Scikit-Learn 

0.22.2 libraries. 

  
 

 
Figure 2: Procedures adopted in the study 
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3.1 Thematic Layers 

LANDSAT multi-temporal satellite images for the 

years 1989, 1999, 2009, and 2019 were downloaded 

from the USGS website 

(https:/earthexplorer.usgs.gov) and were used to 

prepare LULC maps, using supervised classification 

on selected samples from different land use areas to 

obtain various groups: constructed, vegetation, 

water area, and others. The classification algorithm 

adopted here is a classification method based on 

maximum likelihood. Table 1 and Table 2 present a 

summary of the satellite data used and of the major 

LULC groups. The goal of this research was to 

design the built class of features, which includes 

built areas such as residential areas, institutions, 

informal settlements, and industries. Land was 

classified as vegetation primarily if it was under any 

form of green cover. Streams, etc., were included in 

the water zones, and the remainder was listed as 

other, mainly agricultural land. The satellite maps 

classified by the LULC were validated by the 

accuracy assessment method using randomly one 

hundred points as validation samples. These points 

were validated by a field check and Google Earth 

photos for the images between 2009 and 2019. In 

addition, the knowledge of the experts of the staff 

members of the local authorities including the 

regional directorate of forests, basin agency, 

commune of Benslimane and the old maps were 

used for the images of the years 1989 and 1999. For 

each of the observation years (1989, 1999, 2009 and 

2019), the average accuracy was measured and 

ranged from 80 percent to 89 percent, while the 

coefficient of kappa ranged from 0.73 to 0.85.  

 

Table 1: Input data specifics used in the analysis 
 

Data type Details Date of acquisition 

LANDSAT 5 TM Path : 202 ; Row : 37 1989/08/07 

LANDSAT 5 TM Path : 202 ; Row : 37 1999/07/02 

LANDSAT 5 TM Path : 202 ; Row : 37 2009/06/27 

LANDSAT 8 OLI Path : 202 ; Row : 37 2019/06/23 

Digital Elevation Model 
ASTER Global Digital Elevation Model 

V003 (spatial resolution 30m) 
2000-03-01 

General Population and 

Housing Census  
high commission for morocco plans  

1994, 2004, 2014, 2024 

 and 2030 
 

 

Table 2: Characteristics of land use/land cover maps (LULC) feature class 
 

Feature class characteristics Description 

Built-up Consist of  All man-made structures that are primarily impervious including 

residential areas, commercial areas, with low economic relevance 

proximity  Parks, plantations, lakes, ponds, transport networks 

significance high to moderate population density 

Vegetation Consist of  All green spaces and forests in the urban area and its surroundings, 

including agricultural land, parks, plantations, protected forests, 

agriculture 

proximity  Moderate to low built-up structures and water bodies 

significance Public, private and government preserved area 

Water Consist of  All water bodies 

proximity  Low/high vegetation, open land 

significance Potable/non-potable water, contaminated, irrigational 

Other Consist of  Toutes les caractéristiques à l'exclusion des constructions, de la 

végétation et de l'eau 

proximity  Low / high vegetation, built structures 

significance Belonging to the private domain of the state and or to individuals 
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To examine LULC transition and urban sprawl over 

1989–2019, and then to calibrate the model, the 

finalized LULC maps were adopted. The 

demographic data of the Moroccan census (1994, 

2004 and 2014) were taken into account for the 

simulations and were used for the calibration of the 

model. and, for future forecasting purposes, the 

population density map for 2024-2030 was used. To 

accommodate the geometry of the other 

participating layers, the density was determined in 

the vector layer attribute of the different areas of 

Benslimane, which was then transformed into a 30 x 

30 m raster layer. In all three groups (<3, 3–5,> 5), 

Digital Elevation Model (DEM) of spatial resolution 

30 m acquired from USGS website 

(https:/earthexplorer.usgs.gov) was used to prepare 

the slope maps. 

The main road network was obtained from the 

satellite picture showing proximity to the main 

roads, grading from 250 m by 3 km intervals 

Likewise, several buffer circles across the 

downtown location were sampled at 1 km intervals 

in 8 classes. The vector layers were rasterized at a 

cell size of 30m and cut to match the geometry of 

the old layers with constant magnitude. A layer for 

restriction zones was considered to improve the 

model's ability to reproduce the current growth 

system. The model did not produce pixels 

accumulated in restricted areas representing the 

forest and land inhabited by this binary layer. 

 

3.2 Algorithm Model for CA  

To take into account all the variables that lead to 

urban growth in Benslimane, a script has been 

formulated for the CA model. A kernel of 3*3 size 

kept the test pixel in its middle, as shown in 

Equation 1: 

 

𝐴𝑖𝑗
𝑡 =

[
 
 
 
 𝑎𝑖−1𝑗−1

(𝑡)
𝑎𝑖−1𝑗

(𝑡)
𝑎𝑖−1𝑗+1

(𝑡)

𝑎𝑖𝑗−1
(𝑡)

𝑎𝑖𝑗
(𝑡)

𝑎𝑖𝑗+1
(𝑡)

𝑎𝑖+1𝑗−1
(𝑡)

𝑎𝑖+1𝑗
(𝑡)

𝑎𝑖+1𝑗+1
(𝑡)

]
 
 
 
 

 

 

3*3neighbourhood 

 

Equation 1 

  

The model primarily depends on the test pixel's 

current state, The current condition of the pixels that 

are immediately adjacent, and the set of 

transformation rules (Kumar et al., 2009). Matching 

layer geometry is important to ensure that in all 

raster layers, Any random pixel (ai, j) defines the 

same part of the terrain. According to equation (2), 

the dependence of the future state (t + 1) of the pixel 

on the passage rules (Ø) and the normal state of the 

pixel has been analyzed: 

𝑎𝑖,𝑗
𝑡+1 = Ø (𝑎𝑖,𝑗

𝑡 ) 

Equation 2 

 

The passing rules (φ) were a function of a set of 

threshold conditional statements represented by: 

 

Ø=f (T,B) 

 

Eqaution 3 

 

Equation (3) suggests that the transition rules are a 

function of T, a set of threshold values for all the 

affected parameters, and B, a set of kernel count 

values associated with each set of T. 

 

T= {𝑇𝑅,𝑇𝐶 ,𝑇𝑃,𝑇𝑆} 

 

Equation 4 

T= {𝐵𝑅 ,𝐵𝐶 ,𝐵𝑃 ,𝐵𝑆} 

Equation 5 

 

where the threshold values for road proximity, city 

center distance, population density, and slope value 

are TR, TC, TP, and TS, respectively; BR, BC, BP 

and BS are the corresponding number of pixels 

incorporated in the test kernel for each element 

belonging to T.  

 

3.3 Calibrating the Mod 

Model calibration was adopted to simulate the year 

1999 using LULC satellite data for 1989, then 

LULC satellite data from 1999 to simulate the year 

2009, and finally, LULC satellite data from 2009 to 

simulate the year. 2019. By simulating the LULC of 

time t2 using the LULC of time t1 and the driving 

parameters, the model deduced the best-defined 

threshold values, which represent the nearest result 

to the real world (Kumar et al., 2009), both 

statistically and spatially. The four factors' threshold 

values (TR, TC, TP, and TS) and their 

corresponding integrated pixel count values (BR, 

BC, BP and BS) were obtained through trial and 

error. Moreover, the script also tracked the 

contribution of each factor influencing the new 

integrated pixel generation. Threshold values were 

plotted after calibration, and trend lines were used to 

project thresholds for the future stage to estimate the 

extent of future accumulation (Tripathy, 2019). 

For the sake of precision at each stage of the 

simulation, the PCA (principal component analysis) 

differencing method was used (Tripathy, 2019), 

where the difference between two images was 

determined by spatially subtracting the cumulative 

time pixels t2 from the corresponding time pixels t1.  
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Here, from satellite and simulated LULC images 

from the same time, dichotomous made up layers 

were extracted. In the event of a change, the built-up 

area common to the two images was eliminated by 

subtraction and generated non-zero values (1 or −1). 

For a precise percentage measure, the proportion of 

these non-zero values relative to the total number of 

pixels accumulated from satellite images was 

considered.  

 

4. Results and Discussion 

To infer the land use/land cover and urban sprawl 

trends for 1989-2019, LULC satellite images were 

prepared and analyzed. Later, to calibrate the model 

and project the future extent of the built 

environment, the main factors leading to urban 

growth were analyzed. 

 

4.1 Mapping and Urban Development of Land 

Use/Land Cover 

For 1989-2019, actual multi-temporary satellite data 

was used at 10-year intervals to map land use/land 

cover. The data was then used to simulate the 

LULC1999-2039. These simulations were 

associated with the actual LULC satellite during the 

model calibration period (1999 to 2019). We found 

that the actual built-up area (by satellite) increased 

from 1,206 to 5,044 km2 in 1989-2019 with a 

variation of 5,305%. Periodic observations show 

that the built-up area in 1989 was 1,206 km2 

(1,667% of the total area), which increased to 2,147 

km2 (2,969%) in 1999 with an increase of 1,301% 

(Table 3). It increased to 2,999 km2 (4,146%) in 

2009 with an increase of 1,177%. In 2019, the built-

up area increased to 5,044 km2 (6,972%) with a 

growth of 2,827%. The overall variation in the 

vegetation zone was observed at 6,464% between 

1989 and 2019. In 1989, the vegetation cover 

covered 21,392 km2 (29.57%) with a variation of 

9,601%, which rose to 28,337 km2 (39.17%) (1999).  

It then increased in 2009 to 31,223 km2 (43.16%) 

with a variance of 3.989%. In 2019, with a variation 

of −7.127%, the vegetation cover decreased to 

26,068 km2 (36.04%). 

In the class of water characteristics from 1989 to 

2019, the cumulative variation observed was 

0.173%. In 1989, the area protected by water zones 

was 0.077 km2 (0.106%), which increased to 0.266 

km2 (0.367%) with a variation of 0.261% in 1999. 

This area increased to 0.313 km2 (0.433%) ) in 2009 

with a variation of 0.066%. In 2019, with a variation 

of -0.154%, the total area of water zones increased 

to 0.202 km2 (0.279%). In the other class, the 

average decrease was -11,942%. In 1989, all 

remaining objects classified as other occupied a 

total area of 49.66 km2 (68.65%), which decreased 

to 41.59 km2 (57.49%) in 1999 with a variation of -

11.164%. In 2009, with a difference of −5.232%, 

the area of the other class decreased to 37.80 km2 

(52.26%), then to 41.02 km2 (56.71%) in 2019 with 

a difference of 4.454 %.  

Our research illustrates the impact of urban 

sprawl from 1989 to 2019 on other LULC groups. 

LULC's spatio-temporal mapping shows that most 

of the built-up land was concentrated in the central 

region of Benslimane. Later, due to the availability 

of suitable sites and the adoption of the new 

development plan, the building was extended to the 

south and southwest, resulting in an increase in the 

population. Since built-up areas determine the basic 

dynamics between man and the environment, the 

unbuilt elements are intrinsic components of built-

up areas (Figure 3). 

 

4.2 Urban Expansion Modelling 

4.2.1 Contributing factor in urban development 

The study indicates that the densification and the 

formation of subdivisions in remote areas result 

from the impact of the restriction zone under the 

domain of habous. 

 

Table 3: During 1989–2019, the LULC region statistics (satellite-based vs. simulated) 
 

 

Type 

Built-up land Vegetation cover Water body Others 

Area 

(km²) 
% Δ % 

Area  

(km²) 
% Δ % 

Area 

(km²) 
% Δ % 

Area 

(km²) 
% Δ % 

1989 Actual 1,206 1,667 - 21,392 29,57 - 0,077 0,106 - 49,66 68,65 - 

1999  

Actual 2,147 2,969 1,301 28,337 39,17 9,601 0,266 0,367 0,261 41,59 57,49 -11,164 

Simulated 2,330 3,221 1,554 28,104 38,85 9,278 0,255 0,352 0,246 41,67 57,61 -11,043 

2009  

Actual 2,999 4,146 1,177 31,223 43,16 3,989 0,313 0,433 0,066 37,80 52,26 -5,232 

Simulated 3,294 4,553 1,332 30,806 42,59 3,736 0,303 0,418 0,066 37,97 52,49 -5,125 

2019  

Actual 5,044 6,972 2,827 26,068 36,04 7,127 0,202 0,279 0,154 41,02 56,71 4,454 

Simulated 5,533 7,649 3,094 25,870 35,76 6,824 0,195 0,270 0,148 40,78 56,37 3,884 

1989-2019 

Actual - - 5,305 - - 6,464 - - 0,173 - - -11,942 

Simulated - - 5,982 - - 6,190 - - 0,164 - - -12,284 
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Figure 3: LANDSAT satellite images (a to c) (obtained from USGS), satellite-based LULC maps (d to f) and 

simulated LULC map (g to i) of Benslimane for the year 1999 (a, d, g), 2009 (b, e, h), and 2019 (c, f, i) 

 

4.2.2 Land Use/Land Cover 

The conversion of the different classes of LULC 

into built-up land is different. To this end, the other 

class was given a higher rank, followed by 

vegetation. In the modeling, the constructed land 

was planned as a non-transformable class. 

 

4.2.3 Proximity to major roads 

The road map shows the density of roads in the 

center and south of the city, and the density in the 

northwest and southwest is lower. Road density in 

most suburban areas is low (Figure 4a).  

 

4.2.4 Slope 

The analysis indicates that the relief varies between 

177 and 339 m compared to the mean sea level 

(NGM) of Benslimane. The Benslimane slope map 

shows that most of the region has a slope of less 

than 5°, but small parts have slopes greater than 5° 

to the north, middle, southeast and southwest. 

(Figure 4c). The slope of the land is a factor which 

has a considerable influence on the growth of 

buildings. High landforms and steep slopes result in 

greater runoff and make the terrain less suitable for 

construction, while low landforms and gentle slopes 

provide buildings with a comparatively more stable 

foundation. This could explain why the growth of 

low slope areas has been favored 

 

4.2.4 Population Density 

In the early stages (1994-2014), in the middle of the 

city, in the south and the southeast, the population 

density map in Benslimane indicates a greater 

increase in density. The population density in the 

central zone remained> 15,000 inhabitants per km2 

(Figure 5). Between 1994 and 2004, changes in 

population density were observed in the central 

western regions. The population density maps 

(2030) established by the High Commission for the 

Planning of Demographic Forecasting of Morocco 

indicate an increase in population density in the 

center-north, center-west and south-east, 

highlighting evidence of the future of Benslimane's 

expansion. 
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Figure 4: The leading factors to urban growth (a) proximity to major roads, (b) proximity to downtown, (c) 

digital elevation model (DEM) based slope map, (d) restricted areas, and (e) temporal satellite-based LULC 

classified images of 1989–2019 of Benslimane 
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4.3 Modeling of Urban Development using CA 

As shown in Figure 6, The simulated construction 

was analogous to the actual construction for various 

years. Constructed land is expected to rise from 

5,044 km2 in 2019 to 6,092 km2 in 2029. (20,789 % 

built growth) (Table 5), mostly in the city's west and 

south, and to 6,753 km2 in 2039 (10,844 % built 

growth), with city core densification and scattered 

development predominantly in the western and 

southwestern sections. The coverage of vegetation 

will grow from 26,068 km2 in 2019 to 25,889 km2 in 

2029 (-0.684% variation) and 25,723 km2 in 2039 (-

0.643% variation). It is expected that the area of the 

'other' group will deteriorate, falling from 41,023 

km2 in 2019 to 40,154 km2 in 2029 and finally to 

39,659 km2 in 2039 (Figure 7). 
 

 
 

Figure 5: Urban maps of Benslimane's population density for different times, 

1994, 2004, 2014, 2020 and 2030 

 
 

Figure 6: (a) A graph that shows the actual and (b) simulated LULC change  
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4.4 The Validation of the Simulated LULC 

An evaluation of the precision showed a very high 

statistical and spatial similarity (> 89%) between the 

simulated LULC and the real LULC satellite for the 

known years (1999-2019) as shown in Table 4. The 

calculated confusion matrix was an overall accuracy 

of 97.23% (Table 6), and the area under the curve 

(AUC) of the receiver operating characteristics 

(ROC) graph (Figure 8) was found to be as high as 

0.94. The high precision of the confusion matrix and 

the AUC indicates high accuracy of the modeling. 

This is probably due to the use of an average 

prediction period (10 years) at regular intervals 

during the calibration as well as to the proportion of 

built-up areas which represents only 7% of the total 

area. The transition matrix from 1989 to 2019 

shown in Table 7 shows that most of the built pixels 

remained in the same class (0.960), and a very small 

number of built pixels were transformed into water 

(0.001) and  class other ( 0.039), This may be due to 

misclassification caused by similar reflectance of 

elements as well as improved resolution of satellite 

data in recent years compared to previous years. A 

similar problem was observed in some areas of the 

water class which turned into built-up land (0.126) 

and other class (0.314). Likewise for the class other, 

certain areas have been transformed into buildings 

(0.302) and a small number into water class (0.018). 

The transition matrix from 2019 to 2039 shown 

in Table 8 shows that the pixels of the built class 

have not changed (1). Pixels of the vegetation class 

turned into built-up terrain (0.148). The water class 

pixels have not received any changes (1). Pixels of 

the other class generated pixels of the built class 

(0.138). 

 

4.5 Influence of Potential Urban Growth on Various 

LULC 

An increase of 1,708 km2 in urban areas and an 

urban growth rate of 33.88% between 2019 and 

2039 was demonstrated by the built-up expansion 

illustrated by the urban growth model based on CA 

(Table 5). This will affect the other classes: loss of 

1.32 km2 of vegetation cover, loss of 0.44 km2 of 

areas covered with water and loss of 3.32 km2 of 

areas classified as other. Research shows that during 

the period 2019-2039, the urban growth rate in 

Benslimane will not be high. 

 

Table 4: The statistical variability as per satellite-based and simulated photos of built-up land 
 

Variables 
Built-up areas in km² 

1999 2009 2019 

Actual (Km²) 2,147 2,999 5,044 

Simulated (Km²) 2,330 3,294 5,533 

Spatial accuracy 91,28 89,34 90,34 
 

Table 5: Area statistics of varied classes for the year 2019 and projected 2029 and 2039 with the 

percentage change 
 

 2019 (Km2) 2020 Km2 2039 Km2 % Change 2019-2039 

Built-up 5,044 6,0921 6,7527 33,887 

Vegetation 26,068 25,8894 25,7229 -1,322 

Water 0,202 0,2007 0,2007 -0,446 

Others 41,023 40,1535 39,6594 -3,324 
 

Table 6: Confusion matrix for actual and simulated 2019 built-up pixels 
 

 Predicted Percentage correct Overall accuracy 

Non-built-up Built-up   

Actual Nonbuilt-up 111491 3037 97.35%  

 Built-up 224 3108 93.28% 97.23% 
 

Table 7: Transition matrix (satellite-based 1989 to 2019) 

 LULC Built up Vegetation Water  Others 

Built up   0.960       0   0.001 0,039 

Vegetation   0.130    0,867      0 0,003 

Water    0.126       0   0,560 0,314 

Others   0,302       0    0,018 0,680 
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Figure 7: Cellular automata (CA) model-based simulated built-up growth for (a) 2029 and (b) 2039 

 

 
Figure 8: Receiver operating characteristic (ROC) curve for the actual and simulated built-up 

land during 2019 
 

Table 8: Transition matrix (satellite-based 2019 to 2039) 
 

  Built up Vegetation Water  Others 

Built up 1                  0 0 0 

Vegetation 0,148 0,852 0 0 

Water  0 0 1 0 

Others 0,138 0 0 0,862 
 

5. Conclusions 

The research covers the spatio-temporal monitoring 

of the Benslimane LULC (1989-2019) and the 

modeling of urban growth (1999-2039) to study the 

effect of urban growth on the variety of land use / 

cover at using the CA model. During the period 

1989-2019, the real and simulated LULC showed 

considerable urban growth (net increase of 3,838 

km2 and 4,327 km2), resulting in a land use 

transition in Benslimane. The classe other have been 

modified by the urban growth: - 11.94% followed 

by the vegetation cover (6.46%) and the classe wate 

(0.173%). The simulated CA-based LULC shows 

that the urban area will expand from 5.044 to 6.09 

km2 in 2029 and 6.75 km2 in 2039 mainly in the 

western and southwestern sectors. In the period 
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2019-2039, urban development will replace and 

transform the “other” category of LULC (loss of 

1.36 km2) and the category of vegetation cover (loss 

of 0.34 km2). In the simulated and satellite LULC 

during the years described (1989–2019), the 

transition dynamics were parallel. For the years 

1999 and 2019, the study of the spatial variance 

carried out using the PCA technique showed high 

construction precision. The overall precision of the 

confusion matrix (97.23%) and of the area under the 

receiver operational characteristics (ROC) curve 

(0.94) underlines the high precision of the modeling. 

An attempt was made to demonstrate the 

relationship between variables related to the phase 

of spreading over time (1999–2039), which 

highlighted the strong impact over time of proximity 

to built-up areas and the city center during the initial 

observation period, although the population density 

contribution increased later . 
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