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Abstract 

Shoreline extraction from Landsat imagery is limited to 30m spatial resolution. The presence of Sentinel-2A 

imagery opens up opportunities for shoreline extraction for larger-scale mapping; thus, it is necessary to 

investigate the capability and limitations of various spectral transformations in mapping multitemporal 

shoreline positions. This study presents a methodology for processing Sentinel-2A imagery and methods for 

semi-automatic shoreline extraction. Experiments were carried out on marine deposition coasts as the coastal 

physical typology developing on most Indonesian coasts. The 20m Sentinel-2A imagery data acquired in 2015 

until 2020 were compared with several spectral transformation methods: Automated Water Extraction Index 

Non-Shadow (AWEInsh), Automated Water Extraction Index Shadow (AWEIsh), Modified Normalized 

Difference Water Index (MNDWI), Normalized Difference Water Index (NDWI), Band Ratio (B3/B11), and 

Single Band (B11). The use of multitemporal imagery aims to test image and method consistencies in 

extracting shorelines accurately. The image acquisition time for each year was selected by taking into 

account cloud cover, land-sea contrast boundary (delimited with Otsu’s image thresholding algorithm), and 

data availability. The accuracy was assessed with small-format aerial photographs of 0.3m spatial resolution. 

The results indicated that MNDWI produced shorelines with RMSE ranging from 32 to 64 m, which meets the 

class-3 standard for 1: 50,000 scale maps per the Indonesian Geospatial Information Agency’s (Badan 

Informasi Geospasial, BIG) Regulation Number 6 of 2018. Therefore, 20m Sentinel-2A can be used as a data 

source in rapid shoreline extraction. Several factors contributing to RMSE that is 3 to 6 times greater than 

the spatial resolution of Sentinel-2A images include cloud cover, mixed pixels, foam, and tidal bias, creating 

data uncertainty values ranging from 28 to 45 m. 

 

 

1. Introduction 

Shorelines change in a short or slow time depending 

on the balance between nearshore sediment motions 

by waves and currents (Triadmojo, 2008), 

topography (Sinaga and Susiati, 2007), coastal 

material, tides, and wind (Dulbahri, 1983). Each 

map can use shorelines with different sea-level 

positions depending on the purpose of the mapping 

(Wicaksono and Wicaksono, 2019b). Shoreline data 

quality is observable from positional, temporal, and 

attribute accuracies. Positional accuracy assessment 

is necessary for evaluating the quality of spatial 

datasets (Girres and Touga, 2010) as it determines 

how close the positions of discrete objects or 

features are to their actual locations on the ground 

(Congalton and Green, 2008). A high water line 

(HWL) is used as a shoreline indicator because it 

appears as the contrast boundary between wet and 

dry coastal sediments from the last maximum tide 

and is thereby easily identified from imagery and 

aerial photographs (Zhang et al., 2002). Remote 

sensing has played an essential role in shoreline 

extraction in several studies (Ji et al., 2009, Rokni et 

al., 2014, Yang et al., 2015, Li and Gong, 2016 and 

Sarp and Ozcelik, 2017).  
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For instance, it produces an instantaneous 

shoreline—the position of the land-sea meeting at 

one time (Boak and Turner, 2005)—but does not 

consider wind, wave, and tidal conditions at the time 

of image acquisition in the process (Boak and 

Turner, 2005). Tucker et al., (2004) state that 

Landsat imagery is suitable for monitoring shoreline 

changes because it is the only data that records land-

sea conditions globally at a spatial scale of 30 m for 

37 years. Apart from being available free of charge, 

it also has multispectral characteristics and easy 

acquisition. With these advantages, it creates a great 

opportunity for researchers to be able to map and 

monitor changes in natural and human phenomena 

that occur in coastal areas. 

Many scholars have applied different methods in 

shoreline extraction, including single-band (Marfai 

et al., 2008), band ratio (Kuleli et al., 2011), 

supervised classification (Gautam et al., 2015), and 

unsupervised classification (Haibo et al., 2011). 

Each method has advantages and limitations in its 

implementation (Yang et al., 2015). In connection 

with shoreline dynamics, it is necessary to employ a 

fast and accurate method of shoreline extraction 

from remote sensing to enable shoreline data 

updating in a short time and complete shoreline data 

that is otherwise difficult to obtain through 

terrestrial and hydrographic surveys (Wicaksono 

and Wicaksono, 2019a). Shoreline detection uses 

bands sensitive to water objects, which can be 

determined from the characteristic spectral 

reflectance of water. Compared to other objects, 

water bodies show a weak reflection, resulting in 

visible wavelength (480‒580 nm). At 480 nm, the 

reflectance is about 4‒5%, but it is reduced by 2‒3% 

at 580 nm. Because water bodies have strong 

absorption in the near and middle infrared bands 

(740‒2500 nm), these wavelengths are used to 

distinguish water from the soil, vegetation, 

buildings, and other land objects (Haibo et al., 

2011). 

However, Liu et al., (2017) state that the biggest 

challenge in utilizing Landsat imagery for shoreline 

acquisition and monitoring is the limited spatial 

resolution, i.e., 30 m, meaning that the minimum 

shoreline change that can be detected covers an area 

of at least 30m x 30m. Sentinel-2A imagery, 

launched in 2013, has a similar wavelength to 

Landsat but a higher spatial resolution (European 

Space Agency, 2015). UAVs have now grown 

rapidly for use in large-scale mapping (Ramadhani 

et al., 2015), but routine databases are not available 

for some locations. The Indonesian Geospatial 

Information Agency (Badan Informasi Geospasial, 

BIG) creates and manages national spatial data for 

country development. As a subagency, Parangtritis 

Geomaritime Science Park (PGSP) in Bantul 

Regency is responsible for collecting data on coastal 

ecosystems in Indonesia and managing small-format 

aerial photographs of part of the regional coast. For 

this reason, the photographs are used as a reference 

in the accuracy assessment of the shorelines 

extracted from Sentinel-2A imagery through 

spectral transformation (Sarp and Ozcelik, 2017, 

Elfatma, 2017 and Kelly and Gontz, 2018). 

This study investigates the capability and 

limitations of various spectral transformations in 

mapping multitemporal shoreline positions from 

Sentinel-2A imagery. The shoreline in Bantul 

Regency is 16.5 km long and is mainly composed of 

marine deposition coasts (Pethick, 1984); only a 

small part of it forms organic coasts (mangroves) 

and land deposition coasts around the estuary. This 

research restricts its analytical scope to shoreline 

extraction in marine deposition coasts using 

Sentinel-2A imagery with a 20m spatial resolution, 

visualized on a 1: 50,000 scale map based on 

Tobler's First Law of Geography (Tobler, 1987). It 

performs several spectral transformations: AWEIsh, 

AWEInsh (Feyisa et al., 2014), MNDWI (Xu, 

2006), NDWI (McFeeters, 1996), B3/B11 Ratio 

(Winarso et al., 2009), and B11 (Kasim, 2011) on 

Sentinel-2A images captured in 2015 through 2020. 

According to the available database, one set of 

images with the least cloud cover represents each 

year of observation, and all selected imagery depicts 

the same season. Like Manaf et al., (2017), this 

study uses DSAS for shoreline validation but does 

not compare the accuracies of land and water 

classifications. It does not use generalized raster 

data resulting from index transformation that 

Kazemi et al., (2009) and Forghani et al., (2018) 

conducted but performs simplification on shoreline 

vector data. The novelty of this research is, among 

others, to present the accuracy of shorelines 

extracted from Sentinel-2A images and the 

adjustment steps required in the automation of 

shoreline extraction. 

 

2. Study Area and Data 

This research is located along the coast of Bantul 

Regency, the Special Region of Yogyakarta, 

Indonesia (Figure 1). Geomorphologically, the coast 

can be broadly divided into two types, fluvial-origin 

with relatively flat topography in the western and 

central parts and solutional-origin (karst) with steep 

cliff-shaped topography in the eastern part. In the 

fluvial-origin, the coast has an aquifer with large 

potential, shallow groundwater level and is 

relatively unaffected by seawater intrusion. 
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Figure 1: The study area 

 

Loose sands that make up the area are marine 

deposits accumulating on the coast through 

combined motions of longshore currents and wave 

swashes. This sediment is the erosion products on 

Mount Merapi slopes that the Opak River carries 

southbound toward the Indian Ocean (Wibowo, 

2001), mainly during the rainy season. When 

sediments reach the Indian Ocean, longshore 

currents immediately transport them back to the 

eastern coast while wave swashes move some 

sediments ashore. Geologically, the surface 

sediments of the coastal area and sandy hills are 

composed of alluvium (Santosa, 2016) and 

classified as regosols, which have little to no profile 

development and consist of loose materials. This 

soil has gray or brownish color, coarse texture, fast 

permeability, and relatively high sensitivity to 

erosion. The area has an alluvial-plain shoreline 

and, thus, belongs to the neutral shoreline category. 

The data used are Sentinel-2A (level 1C) 

imagery recorded on December 26, 2015, April 24, 

2016, May 19, 2017, May 14, 2018, May 29, 2019, 

and May 23, 2020. The use of multitemporal 

imagery aims to test the consistency of images and 

methods in extracting shorelines accurately. The 

image acquisition time for each year was selected by 

taking into account cloud cover, land-sea contrast 

boundaries, and data availability (Ghorai and 

Mahapatra, 2020). Small-format aerial photos in 

2015, 2017, 2019, and 2020, as data reference, have 

been orthorectified with a pixel size of 0.3 m. The 

Sentinel-2A imagery used is only 20 m in pixel size 

because it has near and middle infrared bands. The 

2015 image with the least cloud cover is only 

available for December 26, although the cloud cover 

is still there, while the 2017, 2019, and 2020 images 

are relatively clear of clouds. Tide prediction data 

and DEMNAS (National Digital Elevation Model) 

with a spatial resolution of 8.25 m obtained from the 

Geospatial Information Agency 

(www.tides.big.go.id) were used for tidal correction 

between the shorelines extracted from Sentinel-2A 

imagery and small-format aerial photographs 

(Kasim, 2011 and Wicaksono et al., 2018). 

 

3. Methodology 

3.1 Image Pre-Processing 

Sentinel-2A level-1C products are corrected to ToA-

Reflectance and, thus, require a BoA-Reflectance 

correction (level-2A) for use in shoreline extraction. 

The atmospheric correction from level 1C to 2A was 

carried out using the Sen2Cor method on SNAP 

software. The pixel values were then divided by 

10,000 to obtain float values. Because only the 2019 

small-format aerial photos from PGSP use ground 

control points (GCP), photos taken in other years 

were corrected geometrically by first-order 

polynomial image-to-image registration and GCP 
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determination; Around 30 GCPs were distributed 

with the 2019 aerial photos serving as the basis. 

After geometric correction, the Sentinel-2A imagery 

for each year was corrected geometrically by first-

order polynomial image-to-image registration 

(Danoedoro, 2012) with small-format aerial 

photographs serving as the basis, allowed RMSE of 

< 10 m, and 20 GCPs. Cloud masking was carried 

out per year of observation using the cloud 

distribution data available in the file 

MSK_CLDPRB_20m.jp2 when downloading the 

Sentinel-2A image. 

 

3.2. Image Processing 

A spectral transformation is a form of spectral 

sharpening that can highlight information on water 

bodies and distinguish them from other objects. The 

single-band and two-bands index threshold values 

were determined with the commonly used water 

extraction method because its calculation requires 

less time than other approaches (Ryu et al., 2002). 

Water index transformation is a band ratio method 

that uses two multispectral image bands and takes 

advantage of differences in spectral response at 

different land cover types (Sun et al., 2012). 

McFeeters (1996), Xu (2006) and Pardo-Pascual et 

al., (2012) prove that the water index transformation 

method has several advantages: ease of use and 

short processing time in shoreline data extraction. 

Some of the spectral transformation formulas used 

for shoreline extraction (Equations 1‒6) are as 

follows: 

 

AWEInsh (non-shadow) = 4 x (B3 – B11) - (0,25 x 

B8A + 2,75 x B12) 

Equation 1 

 

AWEIsh (shadow) = B2 + 2,5 x B3 – 1,5 x (B8A + 

B11) – 0,25 x B12 

Equation 2 

 

MNDWI = (B3 – B11) / (B3 + B11) 

Equation 3 

 

NDWI = (B3 – B8A) / (B3 + B8A) 

Equation 4 

 

Ratio Band = B3 / B11 

Equation 5 

 

Single Band = B11 

Equation 6 

 

Where B2 = Blue Band, B3 = Green Band, B8A = 

NIR Band, B11 = SWIR1 Band, B12 = SWIR2 

Band of Sentinel-2A Imagery. The land-sea 

separation was carried out by adjusting the threshold 

on the pixel values of the spectrally transformed 

image. The threshold was obtained with Otsu’s 

image thresholding algorithm (Otsu, 1975). This 

separation enables automatic shoreline detection 

(Wicaksono et al., 2019) using the Binary 

Thresholding Function command on the ArcMap 

software, which is a specific command that 

separates land-sea features using the threshold 

values resulted from the Otsu algorithm. Pixels with 

a value equal to or higher than the Otsu threshold 

were classified as water and given the value 1. On 

the other hand, those classified as non-water objects 

were given the value 0. Water and non-water 

boundaries were defined as a shoreline indicator. 

 

3.3. Shoreline Analysis 

DSAS is a plugin running on the ArcMap software 

that calculates position difference statistics from a 

series of shoreline data (Kuleli, 2010, Kuleli et al., 

2011, Sutikno et al., 2016 and Fuad et al., 2017). 

DSAS, to carry out its functions, needs a database, 

shoreline data, and baseline data. The baseline was 

used as the starting point for all DSAS transects to 

compute position change statistics (Himmelstoss et 

al., 2018). The shoreline obtained from the land-sea 

separation using the Otsu threshold was then 

smoothed out using Polynomial Approximation with 

Exponential Kernel (PAEK) and the maximum error 

tolerance of 100 m (Wicaksono et al., 2019). 

Reference shoreline was visually interpreted from 

shoreline features located at the high-water line 

position (HWL) on small-format aerial photographs 

(Boak and Turner, 2005). It was also observed in the 

field, which appeared as a contrast between wet and 

dry soils (Figure 2) and a mark left by the last high 

tide on the beach (Pajak and Leatherman, 2002 and 

Bachrodin, 2012). Any shifts between shorelines 

extracted from Sentinel-2A imagery and small-

format aerial photograph were calculated based on 

tidal conditions (Table 1) and slope; then, the 

Sentinel-2A shoreline was adjusted using the spatial 

adjustment tool on ArcMap to minimize tide effects. 

Sample points for the shoreline’s geometric 

accuracy assessment were determined on the DSAS 

application. They were created based on the 

intersection of the shoreline and the transect. The 

transects were also made on DSAS by setting the 

length at 550 m and the distance between transects 

at 50 m, which was determined based on variations 

in shoreline geometry (Wicaksono and Winastuti, 

2020).
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Figure 2: Delineation of the High-Water Line boundary on a UAV-derived image with RGB composite 
 

Table 1: Tidal conditions 
 

Imagery 

Acquisition Time Tidal Condition 

(mm-dd-

yyyy) 

(hh:mm:ss) 

GMT 

(hh:mm:ss) 

Local 

Relative 

Height (m) 

Condition 

S2A 12/26/2015 03:00:36.945 10:00:36.945 -0.046 Ebb 

Aerial 

Imagery 
02/11/2015 - 14:00:00 -0.154 Ebb 

S2A 05/19/2017 02:55:49.243 09:55:49.243 -0.132 Ebb 

Aerial 

Imagery 
02/11/2017 - 14:00:00 0.959 Tide 

S2A 05/29/2019 03:00:09.926664 10:00:09.926 0.164 Tide 

Aerial 

Imagery 
02/11/2019 - 14:00:00 -0.035 Ebb 

S2A 05/23/2020 03:00:12.879496 10:00:12.879 -0.593 Ebb 

Aerial 

Imagery 
02/11/2020 - 14:00:00 0.953 Tide 

 

 
Figure 3: Illustration of SCE statistics on the DSAS application (Thieler et al., 2009) 

 

The position difference between the spectral 

transformed shoreline and the reference shoreline 

was calculated with a DSAS statistic tool, i.e., 

shoreline change envelope (SCE) (Figure 3). 

 

 

 

3.4 Geometric Accuracy Assessment 

SCE produces the coordinates (X, Y) of the 

shoreline position as a product of the spectral 

transformation, the coordinates (X, Y) of the 

reference shoreline, and the distance between two 

shorelines (expressed in meters) on each transect 

sample made.  



 32 
International Journal of Geoinformatics, Vol. 17, No. 4, August 2021 
ISSN 2673-0014 (Online) / © Geoinformatics International 

From this information, the horizontal RMSE can be 

calculated using Equation 7 (Geospatial Information 

Agency’s Regulation Number 15 of 2014): 

 

Horizontal RMSE =  

√
∑(𝑋 𝑆2𝐴 − 𝑋 𝑈𝐴𝑉)

2
+ (𝑌 𝑆2𝐴 − 𝑌 𝑈𝐴𝑉)2

𝑛
 

Equation 7 

 

where n = sample size, X = coordinate value on the 

X-axis, Y = coordinate value on the Y-axis, S2A = 

indices-derived shoreline, UAV = reference 

shoreline from aerial imagery. 

After the horizontal RMSE value was obtained, 

the horizontal geometric accuracy (CE90 value) was 

calculated using Equation 8, a formula by the US 

NMAS standard (United States National Map 

Accuracy Standards): 

 

CE90=1.5175 x RMSEr 

Equation 8 

 

where CE90 = Circular Error 90% is a measure of 

horizontal geometric accuracy (in meter) in the form 

of the radius of a circle indicating 90% of the error 

or difference between the horizontal position of a 

map’s object and a position considered to be not 

actually greater than that radius, RMSEr = 

Horizontal Root Mean Square Error. Afterward, the 

geometric accuracy (in RMSE) of the shoreline data 

derived from spectrally transformed Sentinel-2A 

images was converted into horizontal accuracy 

(CE90) then compared with the horizontal accuracy 

class written in the Geospatial Information 

Agency’s Regulation Number 6 of 2018 on 

Technical Guidelines for Base Map Accuracy 

(Table 2). The entire research flow is depicted in 

Figure 4. 

 

4. Results 

The pixel value of Sentinel-2A imagery before 

atmospheric correction is in the range of tens to 

thousands, but it has a range of unit values 

afterward. The geometric correction between aerial 

photographs produced an RMSE of 0.78‒6.35 m, 

while the Sentinel-2A images that were 

geometrically corrected with aerial photographs had 

an RMSE of 6.69‒8.2 m. Cloud masking using the 

cloud distribution data from files embedded in the 

Sentinel-2A imagery did not show satisfying results 

because, visually, some cloud cover was not cut off 

and potentially affected the results of further 

processing. Every image in the years of observation 

was subject to the same cloud cutting method. 

 

Table 2. Horizontal accuracy of topographical maps (in meter) 

Map Scale Class 1 Class 2 Class 3 

1:50.000 15 30 45 

 

 
 

Figure 4: The research methodology flow 
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Figure 5: Land-sea separation (Otsu threshold) on spectrally transformed Sentinel-2A imagery recorded on 

May 23, 2020 with: (a) AWEInsh, (b) AWEIsh, (c) B11, (d) B3 / B11 Ratio, (e) MNDWI, and (f) NDWI 

 

Table 3: The land-sea separation for each spectral transformation method using the Otsu’s  

image thresholding algorithm 

Date 
Cloudy 

Pixel (%) 

Cloud 

Shadow 

(%) 

AWEInsh AWEIsh B11 
B3/B11 

Ratio 
MNDWI NDWI 

12/26/2015 28 2.40 -0.34 -0.16 0.12 4.15 0.21 0.04 

04/24/2016 6.15 1.49 -0.32 -0.15 0.12 1.38 0.17 -0.04 

05/19/2017 3.42 1.35 -0.38 -0.24 0.1 5.14 0.17 0.01 

05/14/2018 0.46 0.21 -0.32 -0.19 0.11 1.42 0.13 -0.02 

05/29/2019 4.14 1.16 -0.39 -0.2 0.11 2.49 0.1 -0.07 

05/23/2020 7.52 1.69 -0.37 -0.22 0.1 4.31 0.15 -0.04 

 

After the pre-processing stage, the spectral 

transformation was carried out using equations 1 to 

6 for each year of observation. The range of pixel 

values generated in each method varied, as shown in 

Figure 5. On relatively cloud-free images (e.g., May 

23, 2020), the Otsu algorithm could separate land 

from the sea, and their different appearances are 

even visible at a glance. However, there is a 

mismatch in pixels located on land-sea boundaries 

(i.e., shorelines), especially in the foam along the 

shore and river estuaries. The threshold 

determination for land-sea separation on spectrally 

transformed images for each year of observation 

using the Otsu algorithm is presented in Table 3. 

The threshold values were consistently in the range 

of -0.3 to -0.4 for AWEInsh, -0.15 to -0.25 for 

AWEIsh, around 0.1 for B11, 0.1 to 0.2 for 

MNDWI, and -0.1 to 0.5 for NDWI. Meanwhile, the 

threshold values produced in the B3/B11 ratio 

varied greatly between 1 and 5. In other words, B11 

is the easiest method to determine the Otsu 

threshold value, followed by MNDWI. Meanwhile, 
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the most difficult ones are the B3/B11 ratio and 

NDWI because the threshold values produced for 

each year of observation show a wide variation. 

The spectral transformation-derived shoreline 

and reference shoreline derived from the aerial 

photographs were processed on DSAS using SCE. 

The results showed that the distances between the 

spectral transformation-derived shoreline and the 

reference shoreline varied, as presented in Table 4. 

NDWI and B3/B11 ratio produced shorelines with 

the smallest difference from the reference shoreline 

(< 0.2 m), while AWEIsh produced the largest 

difference (> 350 m). Even so, MNDWI generated 

shoreline data with the smallest average variation 

(i.e. 27 m) and a standard deviation (i.e. 24 m). SCE 

was used to calculate RMSE (equation 7) and CE90 

(equation 8), and the results are presented in Table 

5. Referring to the Geospatial Information Agency’s 

Regulation Number 6 of 2018, all shorelines have 

the horizontal accuracy of class 3 for a 1: 50,000 

map scale. Based on the geometric accuracy 

assessment of the spectral transformation-derived 

shoreline presented in Table 5, for each year, 

MNDWI consistently gave the smallest RMSE, 

even though the number of observed samples in 

each year was different. The RMSE in question 

varied between 32 and 64 m (Table 6), which is 1.5‒

3 times larger than the pixel size of the Sentinel-2A 

image. The MNDWI-derived shoreline map is 

presented in Figure 6. The shoreline was obtained 

automatically from the results of digital image 

processing without removing shoreline data that 

contained errors. The 2017 to 2020 shorelines are 

relatively accurate because they show the actual 

boundaries between land and sea. Meanwhile, the 

2015 and 2016 shorelines (Figures 7 and 8) contain 

errors because some of their segments are located on 

the sea due to high cloud cover on actual shorelines, 

namely 28% and 6%, respectively. 

 

5. Discussion 

MNDWI produces the smallest error in shorelines 

identification on a marine deposition coast 

consisting of volcanic sand beaches. Wet soil 

generally has high spectral reflectance at the mid-

infrared region (B11) but low at the far-infrared 

region (B12) because of the water absorption 

influence.

 

Tabel 4: Descriptive statistics for the shoreline change envelope calculation of spectral  

transformation-derived shorelines 
 

Descriptive 

Statistics 
Date 

Shoreline Change Envelope (in meter) 

AWEInsh AWEIsh B11 
B3/B11 

Ratio 
MNDWI NDWI 

Minimum 

2015 0.57 5.26 5.19 0.86 0.88 0.15 

2017 0.13 1.59 0.09 0.33 0.05 0.02 

2019 0.16 3.98 0.03 0.02 1.25 0.04 

2020 0.17 17.24 0.47 0.05 0.05 0.14 

Average 

2015 60.25 156.14 64.95 108.81 40.46 47.47 

2017 59.18 117.55 40.80 86.06 32.78 33.65 

2019 29.43 86.17 26.40 39.33 27.07 35.85 

2020 56.54 104.13 45.72 32.21 32.23 41.04 

Maximum 

2015 323.23 358.84 192.50 198.74 249.71 218.03 

2017 399.79 384.64 176.90 217.74 90.77 98.92 

2019 337.11 338.94 337.11 98.58 78.60 314.61 

2020 418.38 418.38 415.15 130.45 104.54 372.83 

Standard 

Deviation 

2015 57.81 96.00 50.46 55.84 51.37 60.19 

2017 77.06 93.49 31.67 53.00 21.72 22.85 

2019 46.42 64.36 45.21 22.46 18.65 47.64 

2020 55.18 56.74 53.99 28.36 24.10 42.23 
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Tabel 6:The lowest RMSE of the spectral transformation-derived shorelines at a scale of 1: 50,000 

 

Year Best Method RMSE (m) 

2015 MNDWI 64.96 

2017 MNDWI 39.3 

2019 MNDWI 32.84 

2020 MNDWI 40.19 

 

 
 

Figure 6: MNDWI-derived shorelines on Sentinel-2A imagery in 2015-2020 

 

 
 

Figure 7: Indices-derived shorelines on Sentinel-2A imagery on December 26, 2015 
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Figure 8: Indices-derived shorelines on Sentinel-2A imagery on April 24, 2016 

 

For this reason, the pixel value of water objects in 

MNDWI is more positive (and that of the land 

object is more negative) compared to AWEI and 

NDWI; hence, the smallest RMSE in MNDWI 

shorelines, especially when the threshold was set at 

zero (Table 2). Moreover, based on the temporal 

analysis results, the MNDWI shorelines consistently 

have the smallest RMSE in shoreline identification 

for each year of observation compared to other 

spectral transformations (standard deviation is 

presented in Table 3). 

The shoreline accuracy results classify MNDWI 

as the best shoreline identification method, and 

several studies have found evidence to support this 

assertion. Using Landsat TM, Xu (2006) and Sun et 

al., (2012) explain the superiority of MNDWI in 

extracting water bodies surrounded by non-built-up 

land and waters with low sediment concentrations. 

Wicaksono and Wicaksono (2019b) state that 

MNDWI provides the lowest RMSE compared to 

NDWI and AWEI in shoreline extraction in land 

deposition, marine deposition, and volcanic coasts 

using Landsat 8 OLI. Wicaksono and Wicaksono 

(2019a) further confirm that the same case is true 

for shoreline extraction in volcanic coasts with 

sandy beaches. Despite the research of Xu (2006), 

Sun et al. (2012), Wicaksono and Wicaksono 

(2019a and 2019b) use Landsat imagery as a data 

source, but the MNDWI transformation method still 

yields the best results of shoreline identification 

compared to other methods. However, Kasim (2011) 

shows different results in that the single band 

method, such as band 5 and B5/B2 ratio in Landsat 

5 TM and Landsat 7 ETM + imagery, is highly 

suitable for determining land-sea boundaries in 

sandy coastal areas. Using Landsat TM, Feyisa et 

al., (2014) propose that AWEI can suppress 

classification disturbances from shadows and other 

non-water dark surfaces. However, the resulting 

RMSE is not smaller than the 2015 and 2016 

shorelines extracted with MNDWI from images 

with relatively wide cloud cover. 

In the shoreline data derived from spectral 

transformations, the land-sea separation is a crucial 

factor. Yang et al., (2015) suggest that the 

spatiotemporal variation of objects around a water 

body can lead to variability in the threshold; 

therefore, users must consider the conditions during 

the image recording and specific water 

characteristics when selecting spectral 

transformations. Besides, as Ji et al., (2009) 

observed, the presence of water, soil, and vegetation 

fractions in mixed pixels due to less detailed spatial 

resolution leads to incorrect classification because it 

increases threshold variability. Shorelines extracted 

from different locations require different threshold 

settings even though they share the same coastal 

physical typology and land cover classification. The 

source of errors in shoreline extraction from the 

imagery, as reviewed by Wicaksono et al., (2019), 

includes cloud cover, cloud shadow, and foam. 

Although the land cover in the study area is 

relatively homogeneous, these noises cause mixed 

pixels to interfere with the shoreline extraction 

process. The image used to identify the shoreline 

position in each year of observation has the 

minimum percentage of cloud cover for that year 

(Table 3).  
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Table 7: Shoreline uncertainties of Sentinel-2A imagery 
 

Date 

(mm/dd/yyyy) 

Uncertainty (in meters) 
Total 

Uncertainty 
Geometric 

Accuracy RMSE 
Pixel Size 

Horizontal Offset 

of Tides 

12/26/2015 6.64 20 1.37 28.01 

05/19/2017 8.20 20 13.84 42.04 

05/29/2019 6.69 20 2.52 29.21 

05/23/2020 5.76 20 19.61 45.37 

 

However, the percentage is still relatively high (28% 

in 2015), and the cloud cover is right above the 

shoreline (Figures 7 and 8), thus obscuring the 

shorelines underneath. The high RMSE of the 

shoreline derived through spectral transformation 

(Table 5) reaches 1.5‒3 times greater than the pixel 

size of the Sentinel-2A image (20 m). Apart from 

several sources of error, it is also attributed to the 

high uncertainty of the data sources used. Kelly and 

Gontz (2020) calculated the uncertainty based on 

geometric accuracies of data, pixel size, and 

horizontal offset of tides. In the current study, the 

uncertainty of the shoreline data sources used in 

Table 7 varied between 28.01 and 45.37 m. Errors in 

geometric correction between images have resulted 

in an RMSE smaller than half the pixel size, but this 

value has not been augmented by the bias of HWL 

that represents an instantaneous shoreline indicator. 

The 2015 image was the only one recorded during 

high tide (Table 1), whereas the 2017, 2019, and 

2020 images were captured in different tidal 

conditions—the information they present is 

validated with aerial photograph data. Unavailable 

field data as a comparison creates an obstacle for 

this study.  

This study shows that tidal correction is 

necessary, even in an image with a pixel size of 20 

m, because the local topography in the marine 

deposition coast observed consists of relatively flat 

to gentle slopes (0‒2°). The difference in the 

shoreline position between before and after tidal 

correction can reach 7.5 m. The marine deposition 

coast in Bantul Regency is ideal for shoreline 

geometric accuracy experiments because it has a 

low sediment concentration and relatively 

homogeneous land cover. However, clouds and 

cloud shadows create a limitation to remote sensing 

research of passive systems in tropical regions 

(Wicaksono and Wicaksono, 2019b). The wavy 

shoreline geometry (Retnowati et al., 2012) makes 

shoreline variation undetectable in Sentinel-2A 

imagery with a pixel size of 20 m (Wicaksono et al., 

2019). This study also found that in using HWL as 

an instantaneous shoreline indicator in addition to 

the physical characteristics of the research area 

(Boak and Turner, 2005), it is necessary to pay 

attention to the tidal conditions of the images used. 

The horizontal offset of tides will be lower when the 

test data and validation data have the same tidal 

conditions or when the test data are recorded at high 

tides. 

 

6. Conclusions 

Sentinel-2A imagery with a pixel size of 20 m can 

be used to extract multitemporal shorelines at a 

scale of 1: 50,000 using several options of spectral 

transformation methods: single band, band ratio, and 

water index transformation (AWEI, MNDWI, 

NDWI). Based on the geometric accuracy of the 

shoreline—assessed with the standard issued in the 

Geospatial Information Agency’s Regulation 

Number 6 of 2018, all spectral transformation 

methods meet the standards of class 3. Among the 

methods used, MNDWI produces shoreline data 

with the lowest RMSE (i.e., 32‒64 m). This study 

has several limitations: (1) the small-format aerial 

photos were not recorded at the same as the 

Sentinel-2A images due to database limitations and 

(2) the shoreline in Bantul Regency is highly 

dynamic because of oceanographic and 

anthropogenic factors (i.e., iron sand mining), which 

makes the reference shoreline contain bias even 

after the geometric and tidal corrections. 

This research investigates the ability of Sentinel-

2A imagery with a spatial resolution of 20 m to 

extract shoreline data. Furthermore, it has more 

wavelength options than the one with a 10m spatial 

resolution, enabling the comparison of various 

spectral transformation methods. It is highly 

suggested that further research on the geometric 

accuracy assessment of satellite-derived shoreline to 

use and compares images with a spatial resolution of 

10 m or higher and to perform image processing 

with fusion method (pan-sharpening) to increase the 

pixel size and, consequently, produce maps in 

detailed scale. 
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