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Abstract 

This is the first investigation for the use of TanDEM-X data, satellite for the Malaysian coastal waters. This 

aims at utilizing an optimization of the Hopfield neural network to retrieve variation of sea surface current 

along Malaysian coastal waters. In doing so, a multi-objective evolutionary algorithm based on the Pareto 

front is used to minimize the error produced due to non-linearity between TanDEM-X data and sea surface 

movements. This work aimed at retrieving sea surface current from TanDEM-X data along the coastal waters 

of Malaysia. Two approaches have been implemented, the Hopfield neural network algorithm and  Pareto 

optimal solution. The study shows that the Pareto optimal solution has a higher performance than the Hopfield 

neural network algorithm with a lower RMSE of ±0.009. Furthermore, a Pareto optimal solution can determine 

the sea surface current pattern variation along the coastal water from TanDEM-X data. In conclusion, 

TanDEM-X data shows an excellent promise for retrieving sea surface currents. 

 

 

1. Introduction 

The complexity of ocean nature demands accurate 

devices and mathematical models to be 

comprehended. (Jingyang et al., 2001and Anderson 

et al., 2017) Despite the advanced technology of 

ocean in situ measurements, large ocean areas cannot 

survey with effortless. In reality, whether 

circumstances induce storms, which cause disasters 

in the coastal zone that does not allow 

oceanographers and researchers to acquire timeless 

and effortless in situ measurements (Alejandro and 

Saadon 1996, Alejandro and Demmler, 1997 and 

Jingyang et al., 2001). Recently, researchers have 

shown an increased interest in using remote sensing 

technology for ocean studies. (Li et al., 2017) Remote 

sensing images provide information on a large-scale 

ocean and also offer precise information on air-sea 

surface interactions (Marghany 2011a and Li et al., 

2017). Besides, ocean surface features such as fronts, 

oil spills, and upwelling, and mesoscale eddies can be 

detected using remote sensing technology. (Li and 

Zhang, 2014 and Yu  and Yuanzhi,  2014) The 

microwave imaging radar is the only system with an 

all-weather potential to acquire measurements of air-

sea interaction (Romeiser and Runge, 2007 and 

Romeiser et al., 2010). Knowledge of sea surface 

currents is becoming increasingly important 

concerning global climate change (Anderson et al., 

2017). It is well known that synthetic aperture radar 

(SAR) can image the ocean surface current gradient 

(Romeiser et al., 2010).  

Nevertheless, the imaging mechanisms are 

complicated since the sea surface motion variations 

are imaged through energy transfer toward the waves. 

The speculation model for the backscatter from ocean 

winds and currents is based on Bragg resonance 

between the sea surface waves and the radar 

microwaves. The sea surface waves that are 

generated by wind are imitated by a model for the 

wave spectrum. Since the wave spectrum is a 

statistical concept, huge samples prerequisite to be 

assimilated to deliver a constant association between 

wind patterns and ocean waves. Consequently, a 

specific spatial dimension of the ocean surface is 

required to contain an adequate quantity of waves. In 

this regard, SAR techniques for imaging sea surface 

current can be categorized into two approaches: (i) 

Doppler velocity detection, which is triggered by the 

movements of the SAR sensor comparative to the 

ocean surface dynamic, and (ii) the SAR backscatter 

signal which is a function of  Bragg scattering. In 

other words, the modulation of the surface wave by 

an ocean current has an impact on the radar signal 

backscatter.  Conversely, a standing location, for 

instance, land or islands is required for the accurate 

adjustment of the current quantities employing 

Doppler velocity approaches. Indeed, the motions of 
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the sea surface on the scale of meters per second are 

insignificantly rivalled to the SAR sensor’s 

movements which are approximately 7500 m/s for 

RADARSAT-2 SAR (Kudryavtsev et al., 2013 and 

Katherine et al., 2017).  

Therefore, the modulation technique is the 

cornerstone to understand the mechanism of SAR 

imaging sea surface current. In this view, the 

resonance practice between ocean surface waves and 

the radar microwave signal regularly ensues for the 

backscatter signal in the VV-polarization band. 

However, the resonance process is trivial in the VH-

polarization band. Consequently, hypothetically, 

two-dimensional ocean surface current features and 

ocean winds can be retrieved mutually from dual-

polarization, i.e, VV, and VH, which are acquired 

simultaneously by TerraSAR and Radarsat-2. 

Moreover, the VH-polarized SAR image in 

RADARSAT-2 dual-polarized (VV and VH) 

ScanSAR mode appears not to overwhelm in high 

wind velocity under such circumstances of the 

tropical cyclone. In addition, dual-polarized SAR 

(VV and VH) such as TerraSAR seems to be linearly 

correlated to the ocean wind speed. In this 

understanding, the C-band VH-polarized radar signal 

is subjugated by ocean wind, while the VV-polarized 

signal comprises both impacts of ocean winds and 

surface currents. The radar signal of VV-polarization 

is modulated by the surface currents across the Bragg 

scattering theory due to the interaction between 

surface Bragg waves on the scale of the radar 

wavelength signal and ocean surface currents (Zhang 

and Perrie 2018). 

Needless to say, the radar backscatter of the sea 

surface is also can be discussed from the point of 

view of the action balance equation. Indeed, all 

information about the sea surface is contained in the 

wave variance spectrum or energy density, 

distributing wave energy over (radian) frequencies 

(as observed in a frame of reference moving with 

current velocity) and propagation directions (i.e., the 

direction normal to the wave crest of each spectral 

component). Usually, wave models determine the 

evolution of the action density in space and time. The 

action density is defined as the ratio between energy 

density and wave frequency and is conserved during 

propagation in the presence of ambient current, 

whereas energy density is not (Zodiatis et al., 2015). 

In this view, the variation of the mean current can 

cause shifting of the wave radian frequency. In other 

words, the association of depth with the current flow 

can induce wave refraction. This can generate high 

backscatter of SAR signal from the sea surface.  The 

theory of wave action balance can be used to retrieve 

sea surface current in SAR data. Consistent with 

Inglada and Garello (2002) and Romeiser et al., 

(2014) the energy transfer between the current 

gradients and the waves is described by the action 

balance equation (ABE) which gives the nonlinear 

relationship between the surface current and the 

perturbation of the wave spectrum from its 

equilibrium. Several studies have been conducted to 

solve the action balance equation by numerical 

methods to compute the normalized radar cross-

section (NRCS) of sea surface roughness, then 

utilizing the modulation model to retrieve the surface 

current. Nevertheless, the linearization of ABE 

allows generating a weak linear hydrodynamic 

modulation, which is involved in the problem of the 

relaxation rate or wave growth. Moreover, Inglada 

and Garello (2002) have used the Volterra series's 

expansion to express the nonlinear relationship 

between the surface current and the SAR image pixel 

intensity. With the Volterra model, they can compute 

the energy contained in the different orders (linear, 

quadratic and higher) and by using the inverse of the 

Volterra model, the sea surface current can be 

estimated. Marghany (2015b) addressed the question 

of the impact of tidal force in inducing ocean current 

movement. This can indicate that the ABE model 

cannot be used to extract sea surface current 

movement in the South China Sea. Conversely, 

Marghany (2015b) examined, two hypotheses: (i)  

Doppler spectra model can compute the sea surface 

gradient variation, and (ii) horizontal sea surface 

current can be retrieved from Doppler spectra 

variation by a computing radial component of SAR 

ocean current to a real ocean current.  

Previous studies have demonstrated that the 

Bragg resonance plays a main role in the VV-

polarized normalized radar cross-section NRCS, but 

is negligible for the VH-polarization NRCS. 

Moreover, the non-Bragg scattering the VH-

polarized NRCS, but is negligible for the VV-

polarized NRCS. Because the sea surface Bragg 

waves on the scale of the microwave radar may 

interact with the surface currents, the radar signal due 

to Bragg resonance may, therefore, be modulated by 

the surface currents. Moreover, the strong currents 

can be captured by VV-polarization backscatter, but 

there are almost no features in the VH-polarized 

backscatter (Kudryavtsev et al., 2014). Recently, 

Marghany (2021) developed a novel theory of ocean 

current features using the speculation of quantum 

mechanics. This theory is termed as the quantized 

Marghany’s front, which is discovered on the east 

coast of Malaysia Peninsular. Further information 

can be obtained from Marghany (2021). 

The main objective of this study is to solve the 

Doppler phase equation to obtain the sea surface 

current by using SAR data. In this paper, we have 

developed a method to address the question of 
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retrieving ocean surface current patterns from 

TanDEM-X data. This is often verified by the 

exploitation of a neural network technique. The three 

hypotheses we have examined are: (i) Hopfield 

neural network-based mostly multi-objective 

optimization via the Pareto dominance algorithmic 

rule is executed to TanDEM-X data; (ii) multi-

objective optimisation via Pareto dominance is used 

as procedures for eliminating inherent speckle from 

TanDEM-X data; and (iii); the nonlinearity of the 

physicist frequency shift is reduced multi-objective 

optimization via Pareto dominance. 

 

2. Data Acquisition  

Two styles of knowledge area unit needed to retrieve 

sea surface current parameters: TanDEM-X of  SAR; 

(ii) and therefore, the real, unaltered sea surface 

current measuring throughout TanDEM-X satellite 

overpasses. 

 

2.1 Satellite Data  

A pair of Terra-SAR-X satellite data were acquired 

by the TanDEM-X satellite on May 6 2017. The first 

image was acquired at 7:27:17 am while the second 

image was acquired at 19:20:06 pm. The data are in 

spotlight mode with X-band and  HH and VV 

polarization.  These data are single look complex 

formatted data.  

The TanDEM-X operational consequence 

involves the coordinated operation of 2 satellites 

flying in an adjacent configuration. The alteration 

constraints for the formation are: (i) the orbits 

ascending nodes, (ii) the angle between the perigees, 

(iii) the orbital eccentricities and (iv) the phasing 

between the satellites. The observance of ocean 

currents is a vital facet of assessing climate changes. 

Spaceborne SAR along-track interferometry (ATI) 

has the promise to considerably contribute to the 

present field. It will offer large-area, worldwide 

surface current measurements. In the word of 

Mittermayer and Runge (2003), 

the velocity component of moving objects may 

be measured with ATI. The sensitivity of the 

instrument principally depends on the measuring 

device carrier frequency and consequently 

the effective time lag between the two 

measurements administered with two antennas and 

receiver chains. These parameters have to be 

compelled to be tailored to the speed range of the 

objects of interest. High-speed objects like 

cars would like solely a really short time lag and also 

the two antennas acquired to be separated some 

meters.  

The matter of mapping relatively low velocity is 

often resolved by formations of SAR satellites that 

yield sufficiently sensitive ATI measurements 

(Frasier  and  Camps  2001, Krieger et al., 2003, 

Romeiser and Runge 2007 and Romeiser et al., 

2014). In this study, the Hopfield algorithm relies on 

the TanDEM-X information. The TerraSAR-X and 

TanDEM-X satellites transmit identical SAR 

instruments working at 9.65 GHz frequency (X-

band). Throughout some devoted operations, both 

satellites are placed associate exceedingly in a very 

special orbit configuration with a brief along-track 

baseline providing a probability for current 

measurements. The data utilized in this study were 

acquired in the StripMap mode (SM), bistatic (TS-X 

active / TD-X passive) mode and VV polarization.  

Consequently, these data have a swath width is 30 

km. Indeed, Stripmap images are typically provided 

comprising an area of 30 × 50 km. The acquisition 

length in Stripmap mode may be extended up to 1650 

km (at 30 km width) (Gebhardt et al., 2016). 

 

2.2 In-situ Measurement 

Following Marghany (2017), sea surface current 

speed and direction are collected by Aquadopp® 

2MHz current meter (Figure 1). Since the surface, 

current knowledge acquisition, the Aquadopp® 

2MHz current meter factory-made by Nortek AS 

(Figure1), the Scandinavian country was used. The 

instrumentality could be a standalone 

instrumentation exploitation Doppler based 

technology to measure surface currents at the 

deployment website. The instrumentation is intended 

with intrinsical memory and an internal battery pack 

wherever it may be designed to record and store 

information internally for self-deployment. The  

Aquadopp® 2MHz current meter was deployed on 

the coastal water of Teluk Kemang, Port Dickson, 

Malaysia on May 6 2017. (Figure 2). Two phases of 

data collection were carried out: (i) at 6:15 am to 8:15 

am and (ii) at 6:15 pm to 8:15 pm. The surface current 

data were measured in intervals of 2 hours for both 

phases. 

 

3. Algorithms 

3.1  Hopfield algorithm  

Marghany (2015b) has implemented Hopfield neural 

networks for RADARSAT-2 SAR data to retrieve sea 

surface current. This section has been retrieved from 

Marghany (2015b) work. Therefore, Hopfield neural 

networks are used with TanDEM-X satellite data.  
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Figure 1: Aquadopp 2Mhz current meter deployment 

 

 
 

Figure 2: Geographical location of in situ measurements 

 

Consistent with Côté and Tatnall (1997), Hopfield 

neural networks are considered as a promising 

method for determining a minimum of energy to a 

function (Marghany, 2011b). For instance, motion 

analysis and object pattern recognitions might be 

coded into an energy function (Cao and Wang, 2003). 

Furthermore, the actual physical constraint, 

heuristics, or prior knowledge of sea surface features, 

nonlinearity and the Doppler frequency shift 

(Marghany, 2003 and Marghany, 2004) can be coded 

into the energy function (Marghany, 2009a). A 

pattern, in the context of the N node Hopfield neural 

network is an N-dimensional vector 

),.......,( 21 nvvvV =  and ),.......,( 21 nuuuU =  from 

space NS }1,1{−= . A special subset of S  is set of 

exemplar },1:{ KkeE k =

),.......,,( 21 n
kkkk eeee = and k  is exemplar pattern 

where Kk 1 . The Hopfield net associates a vector 

form S with an exemplary pattern in E. Following 

Marghany (2009b),  Hopfield net is involved that 
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jiij ww = and 0=iiw . Succeeding, Cao and  Wang, 

(2003), the propagation rule i  which defines how 

neuron states and weight combined as input to a 

neuron can be described by: 

 

ij

N

j

ti wjf )(
1


=

=  

Equation 1 

 

The Hopfield algorithm has consisted of (i) assign 

weights of synaptic connections; (ii) initialize the net 

with an unknown pattern; and (iii) iterate until 

convergence and continue features tracking (Cote  

and Tatnall, 1997). The first step of assigning weight 

ijw  to the synaptic connection can be achieved as 

understands: 

 

1

            if             
              

0                                      
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K K
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Equation 2

 

 

Hopfield neural network could be identified current 

pattern features by mathematical comparing to each 

other to build an energy function (Liang and Wang, 

2000 and Arik,  2002). According to Côté and Tatnall 

(1997) the difference function to determine the 

discriminations between different features ji ff ,  by 

a given formula: 

],"max.
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



distdisJ

HL
l

l

l

l
Gffdiff

ij

jiji

i

j

j

i
ji

−+

−−−−+−=

Equation 3

 

 

where
 

"L  is curvature shape of the current feature, 

ijdis  is the distance between sea surface current 

features if  and jf , and G and H and J are constants 

and   is an angle of orientation of local curve 

element. In addition, "dist  and " are the minimum 

acceptable distance and the maximum acceptable 

rotation angle, respectively before energy function. 

 

3.2 Pareto Algorithm 

Following Atashkari et al., (2004), Multi-objective 

optimization (MOB) is also termed multi-criteria 

optimization or vector optimization. In this regard, it 

has been defined as finding a vector of decision 

variables satisfying constraints to give acceptable 

values to all objective functions. Generally, it can be 

mathematically defined as: find the vector 
* * * *

, ,...,
1 2

T
S SnS S=  

 
to optimize: 

 

( ) ( ), ( ),..., ( )
1 2

T
F S f S f S f S

k
=  
   

 

Equation 4 

 

subject to m inequality constraints: 

 

 

 

Equation 

5 

and p equality constraints: 

 

( ) 0     ,     j 1  to  ph Sj = =  

Equation 6 

 

where 
* nS   is the vector of the decision or 

design variables, and ( ) kF S   is the vector of 

objective functions which each of them is either 

minimized or maximized? However, without loss of 

generality, it is assumed that all objective functions 

are to be minimized. A point 
*S   (   is a 

feasible region in 
n  satisfying equations (4) and 

(6) is said to be Pareto optimal (minimal) concerning 

the all S  if and only if 
*( ) ( )F S F S . 

Alternatively, it can be readily restated as 

 ki ,...,2,1 *{ }S S −  *( ) ( )i if S f S   

 kj ,...,2,1  : *( ) ( )j jf S f S . In other words, the 

solution 
*S  is said to be Pareto optimal (minimal) of 

the ocean current pattern if no other solution can be 

found to dominate 
*S  using the definition of Pareto 

dominance. For a given MOP, the Pareto front ƤŦ  ٭

is a set of the vector of objective functions which are 

obtained using the vectors of decision variables in the 

Pareto set Ƥ٭, that is ƤŦ٭

1 2{ ( ) ( ( ), ( ),...., ( )):kF S f S f S f S S= = Ƥ٭}. In other 

words, the Pareto front ƤŦ  ٭is a set of the vectors of 

objective functions mapped from Ƥ  ٭(Atashkari  et 

al., 2004 and Marghany, 2015a). 

 

4. Results and Discussion  

The sea surface current velocities are simulated and 

modelled from the TanDEM-X data spotlight with 

VV polarization. The simulation has been done along 

the range direction. The simulated velocity is taken 

( ) 0    ,      i 1  to  mg Si  =
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across the location of The  Aquadopp® 2MHz 

current meter (Figure 3). The test area is shown in 

Figure 1 which is inshore the coastal water of the 

Malacca Straits, Malaysia. Figure 4 shows TanDEM-

X data cross-section values increased with the 

increase of the incidence angle where the backscatter 

value is raised to -10 dB. The second curve is the 

result of the Doppler shift frequency. The curve 

shows that the Doppler shift frequency values 

fluctuated with value decreasing in the onshore 2km 

to 5 km. The frequency value in the nearshore area 

was extremely low with 0.1 m/s.  

The spectral peak of the Doppler frequency is 0.04 

with a range frequency of -200 Hz. The average 

Doppler shift frequency in the onshore area was 0.01 

Hz. This could be due to the low tide level of 0.3 m 

which was observed during in-situ data collection. 

This agrees with Marghany and Mazlan (2005). The 

TanDEM-X data with X-band of the spotlight 

product derived from the strip-map mode has been 

utilized in this study. Figure 4 indicates the results 

that are retrieved from the Hopfield rule and Pareto 

rule.  

 

 
Figure 3: Doppler Spectra Intensity of TanDAM-X data 

 

                                          (a)                                                                   (b) 

 
Figure 4: Ocean current pattern simulated  from (a) Hopfield neural network result (b) Pareto optimal solution 
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Figure 5: Significant correlation between Pareto Optimal and in situ measurements 

 

Table 1: Statistical regression of current meter  sea surface current and retrieved one  by Hopfield neural 

network-based Pareto optimal solution 
 

Methods                                           r2                         RMSE (±m/s)                                 P 

Hopfield neural network-                    0.55                               0.2                                  0.0071 

 Current 

 

Pareto optimal solution-                  0.75                             0.009                              0.000076 

Current meter 

 

 

It is attention-grabbing to realize that Pareto 

algorithmic rule has found the most effective solution 

from the sea surface current pattern as compared to 

Hopfield neural network (Figure 4b). The 

morphology of ocean surface current structures is a 

well-known exploitation Pareto algorithmic rule. 

Indeed, random generation of 1000 iterations at 

intervals of 3 min are needed to realize the 

performance of the Pareto algorithmic program. The 

Pareto algorithm delivered a spatial variation of 

surface current from onshore to offshore. Onshore 

surface current is dominated by the maximum value 

of 0.12 m/s while the offshore surface currents have 

a maximum value of 0.2 m/s, which agrees with the 

study of Alejandro and Saadon (1996). 

Figure 5 shows significant correlations between 

the result of sea surface current velocities which were 

simulated from TanDEM-X data and the result 

extracted in the in-situ measurement.  Figure 5 

illustrates how the correlation coefficient changes as 

the linear relationship between the two variables are 

altered. While in regression the emphasis is on 

predicting one variable from the other, in correlation 

the emphasis is on the degree to which a linear model 

may describe the relationship between two variables. 

There is a good relationship between the two 

variables with r² of 0.75.  However, this relationship 

is not perfect, but seems to have a positive linear 

relationship, and corresponds to what one would 

expect when considering two variables correlated and 

following the assumption of normality. Table 1 

delivers the accuracy of this study. The Pareto 

optimal solution has an excellent performance than 

the Hopfield algorithm, with a lower P-value of 

0.00006 and RMSE of ±0.009 and the highest r²  of 

0.75 (Table 1). The rate of RMSE is generated due to 

Doppler frequency shift which caused nonlinearity 

between ocean surface current and TanDEMX data. 

However, a Pareto optimal solution has improved the 

accuracy of this study as it found the best optimal 

value for retrieving sea surface current from 

TanDEMX SAR data. 

In term of accuracy, this study confirms the work 

done by Frasier and Camps 2001, Kudryavtsev et al., 

(2013) and Kudryavtsev et al., 2014, that VV-

polarization is an appropriate channel for retrieving 

sea surface current from the SAR images. The 

accuracy of this work can be improved in the future 

based on the physical parameters of the Hopfield 

algorithm and also by using sequences of the 

TanDEM-X SAR data. In fact, on some occasions, 

the weak current can affect the accuracy of the 

algorithm. The fluctuation dynamic current flows are 

required to improve the accuracy and this can be 

achieved by acquiring sequences of TanDEM data. 

Consistent with  Marghany and Mansor (2016) and 

Marghany (2017), the Hopfield neural network is 

anticipated as an optimization tool to reduce the 
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impact of Doppler nonlinearity in the SAR data. 

Subsequently, a multi-objective optimization is fairly 

deliberated as attaining a vector of verdict variables 

satisfying constraints to offer precisely to all 

objective functions. This confirms the study of 

Marghany and Mansor (2016). 

Additionally, the multi-objective optimization via 

Pareto dominance acquires a particular curve that 

reduces the inconsistency between the certain ocean 

surface current from TanDEMX data and in situ 

measurements. In this understanding, the new 

approach supported TanDEMX data and as a result 

of the multi-objective optimization via Pareto 

Dominance, know how to minimize the number of 

the residual faults for retrieving ocean surface current 

from TanDEMX data and delivers precise ocean 

surface current pattern spatial variation. This work 

recommends the work done by Atashkari et al., 

(2014) and Marghany (2015b). Moreover, it is 

suggested to exploit the time series of TanDEMX 

satellite data for watching the daily coastal current 

and its seasonal variations. With the advent of new 

SAR instrument systems, such as TanDEM-X data, 

dual- and quad-polarization SAR data are now made 

available, to possibly yield more useful information 

than conventional single-polarization SAR 

observations. This can help to possibly go beyond the 

present geophysical retrieval algorithms in other 

ocean or sea areas.  

 

5. Conclusions  

This work initiated a new approach for sea surface 

current studies along Malaysian coastal waters. This 

is the first experimentally operated TanDEM-X 

satellite not only in Malaysia but in all the Southeast 

Asian coastal waters. Two approaches are prescribed: 

(i) Hopfield neural network rule; and (ii) Pareto 

optimum resolution. The study shows that the Pareto 

optimum resolution has a higher performance than 

the Hopfield neural network rule with the lowest 

RMSE of ±0.009. Further, the Pareto optimum 

resolution can verify the ocean surface current 

pattern variation using TanDEMX data. In 

conclusion, TanDEMX data reveal a superb 

guarantee for retrieving ocean surface current with 

X-band with VV polarization. 
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