
 

International Journal of Geoinformatics, Volume 17, No. 3, June 2021 
Online ISSN 2673-0014/ © Geoinformatics International 

49 

C
o

m
p

a
r
a

ti
v

e 
E

v
a

lu
a

ti
o

n
 o

f 
O

p
e
n

 S
o

u
r
c
e
 U

r
b

a
n

 S
im

u
la

ti
o

n
 M

o
d

e
ls

 A
p

p
li

ed
 t

o
 C

o
lo

m
b

o
 C

it
y
 a

n
d

 E
n

v
ir

o
n

s 
in

 S
r
i 

L
a
n

k
a

  
4

9
-6

0
 Comparative Evaluation of Open Source Urban 

Simulation Models Applied to Colombo City and 

Environs in Sri Lanka 
 

Jayasinghe, P.,1 Kantakumar, L. N.,2 Raghavan, V.3 and Yonezawa, G.3 
1Graduate School for Creative Cities, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558- 

 8585, Japan, E-mail: jayasinghe.pavithrap@gmail.com 
2Bharati Vidyapeeth Deemed University, Institute of Environment Education and Research, Pune 411043, 

India, E-mail: Lakshmikanth@bvieer.edu.in 
3Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585,  

 Japan 

DOI: https://doi.org/10.52939/ijg.v17i3.1897 

 

 

Abstract 

Availability of a variety of urban growth models make model selection to be an important factor in urban 

simulation studies. In this regard, a comparative evaluation of available urban growth models helps to choose 

a suitable model for the study area. Thus, we selected three open-source simulation models namely FUTURES, 

SLEUTH and MOLUSCE to compare in their simplest state to provide a guidance for selection of an urban 

growth model for Colombo.  The urban extent maps of 1997, 2005, 2008, 2014 and 2019 derived from Landsat 

imageries were used in calibration and validation of models. Models were implemented with the minimum 

required data with default settings. The simulation results indicate that the estimated quantity of urban growth 

(148.91 km2) during 2008-2019 by FUTURES model is matching closely with observed urban growth (127.37 

km2) during 2008-2019. On the other hand, the SLEUTH model showed an overestimation (250.56 km2) and 

MOLUSCE showed an underestimation (77.11 km2). Further, the spatial accuracy of urban growth simulation 

of SLEUTH (Figure of Merit = 0.26) is relatively better in comparison to FUTURES (0.20) and MOLUSCE 

(0.20). Considering the tradeoff between computational overheads and obtained results, FUTURES could be a 

good choice over SLEUTH and MOLUSCE, when these models implemented in their simplest form with 

minimum required datasets. As a future work, we propose the incorporation of exclusion factor for potential 

surface generation to mitigate the overestimation of urban areas in SLUETH.  

 

 

 

1. Introduction  

The land use change driven by urban growth is one 

of the most influential transformation that can affect 

the natural and social cohesion (Sandamali et al., 

2018). Urban growth models are useful tools for 

simplifying complex socioeconomic and biophysical 

forces that influence the rate and spatial pattern of 

land use change driven by the urbanization. These 

models are helpful in identifying the driving forces of 

urban growth dynamics and capable of simulating the 

anticipating future urbanization based on population 

growth projections, economic trends, and governance 

systems (Gounaridis et al., 2018, and Meentemeyer 

et al., 2013). Numerous urban growth simulation 

models with diverse level of sophistication have been 

developed and their efficacy in accurately predicting 

urban growth have been demonstrated (Clarke et al., 

1997, Jin and Lee, 2018, Meentemeyer et al., 2013 

and Van Berkel et al., 2019). Selecting an appropriate 

model that serves the purpose of the study is often 

arbitrary or depends upon the availability of inputs 

required to run the model or on the arbitrary choice 

made by the researchers. Several studies offer 

guidelines for prior understanding on performance of 

model using validation metrics related to quantity 

and allocation (Olofsson et al., 2014, Pontius and 

Malanson, 2005 and Pontius and Millones, 2011). 

However, limited number of studies comparing 

model simulation efficacies and trade-offs leads to a 

critical research gap (Pickard et al., 2017). 

Comparative evaluation of models provides a 

guidance in selection of urban growth model and 

highlight trade-offs between selecting one model 

over another. Therefore, this study aims to evaluate 

the simulation outputs from three Open Source urban 

growth models namely, FUTURES (FUTure Urban-

Regional Environment Simulation), MOLUSCE 

(Modules for Land Use Change Simulations) and 

SLEUTH (Slope, Land use, Exclusion, Urban, 

Transport and Hillshade) using Colombo as study 

area. Presently, FUTURES has been tested and 

https://doi.org/10.52939/ijg.v17i3.1897
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validated for urban areas in the United States to 

evaluate land development dynamics in the rapidly 

expanding metropolitan region of Charlotte, North 

Carolina (Meentemeyer et al., 2013) and to analyze 

the impacts of urbanization on natural resources 

under different conservation strategies (Dorning et 

al., 2015). Van Berkel et al., (2019) applied 

FUTURES to evaluate urban growth strategies that 

encourage settlement densification in the South 

Atlantic States to mitigate increasing urban sprawl. 

Further, it was adopted to simulate different urban 

growth strategies in the South Atlantic States in USA 

and propose alternatives to mitigate the region’s 

increasing sprawl (Shoemaker et al., 2019). First 

application of FUTURES, in the context of Asian 

cities was carried out in Colombo city Sri Lanka 

(Jayasinghe et al., 2021) and the results were 

evaluated to provide recommendations for 

development plans of Colombo city.   

The selection of SLEUTH is due to its extensive 

application to study the future urban growth of cities 

around the world (Chaudhuri and Clarke, 2013 and 

Ilyassova et al., 2019). Several studies were used 

SLEUTH for impact assessment of various urban 

scenarios including South Asia (Chaudhuri and 

Clarke, 2019, Kantakumar et al., 2011, Sandamali et 

al., 2018 and Saxena and Jat, 2020). The selection of 

MOLUSCE is due to the reason of its availability as 

a plugin in the widely used QGIS software. Nugroho 

et al., (2018) applied the MOLUSCE model to predict 

land cover changes and direction of spatial 

distribution in Malang City, Indonesia. Hakim et al., 

(2019) used MOLUSCE to identify the spatial 

dynamics and predict LULC changes in Makassar 

city, Indonesia. In comparison to FUTURES and 

SLEUTH, MOLUSCE is not as widely tested. 

MOLUSCE has a user-friendly graphical user 

interface (GUI) interface and easy to implement. We 

considered these three models to evaluate their 

efficacy to simulate the urban growth of Colombo. 

We also focus on comparing the results of the models 

using minimum datasets and in their simplest state.  

 

2. Material and Methods 

2.1 Study Area 

Colombo city core area (Colombo port and 

surrounding) and its adjacent suburbs were selected 

as the study area considering rapid urbanization 

during past few decades. Colombo is the highly 

urbanized area as well as located in close proximity 

to the capital of Sri Lanka. It depicts highest density 

of population and infrastructure network in Sri 

Lanka. Urban areas are densely concentrated within 

35 km buffer zone from Colombo central business 

district (CBD) covering 35 Divisional Secretariat 

Divisions (DSD). Thus, we selected the rectangular 

extent encompassing these 35 DSD as the study area 

(Figure 1).  

 

2.2. Input Data 

As major data input, urban area maps of 1997, 2005, 

2008, 2014 and 2019 were derived from freely 

available Landsat sensor series 30m data (Table 1). 

GRASS GIS r.learn.ml module with k-nearest 

neighbors algorithm (Brenning, 2012) was used to 

produce Land Cover (LC) classification maps using 

from Landsat Thematic Mapper (TM) and 

Operational Land Imager (OLI) data. A minimum of 

50 training samples for each class were digitized and 

used in the classification. Initially classified LC maps 

were cross checked through careful and rigorous 

visual inspection, comparing them with the original 

Landsat and Google Earth imageries. The training 

samples were further refined to extract the final LC 

maps. LC maps for 1997, 2005, 2008, 2014 and 2019 

were re-classified to derive urban and non-urban 

categories considering built-up density.  

 

Table 1: Input data 
 

Data Year Data source 

Landsat 5 TM 1997, 2005, 2008 EarthExplorer, USGS 

Landsat 8 OLI 2019 EarthExplorer, USGS 

Population 1991, 2001, 2012 Dept. of Census & Statistics 

Road network 2013 JICA  

Water bodies 2013 JICA  

SRTM 30m DEM 2000 EarthExplorer, USGS 

Social infrastructure 

(Hospitals, schools) 

2004 Survey Dept. 

Growth centers 2010 Survey Dept. 

Administrative boundary 2010 Survey Dept. 
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Figure 1: Location of the study area 

 

 

Proportion of built-up pixels within 1 km2 area was 

calculated and used to produce three categories 

namely urban (≥ 50% built-up), sub-urban (< 50% 

and ≥ 10% built-up) and rural (< 10% built-up). 

Further, considering spatial distribution and ground 

understanding, dense urban and sub-urban categories 

were combined into a single class labeled as ‘Urban’ 

and remaining areas were aggregated and labelled as 

‘Non-Urban’. Subsequently, urban class (Figure 2) 

was used for urban growth modeling. The FUTURES 

and MOLUSE models use predictor variables to 

estimate the transition potential. Thus, distance to 

roads, growth centers, hospitals, schools, 

environmental sensitive areas and percentage slope 

were used in this study as predictor variables (Figure 

3). Table 1 shows the input data used along with their 

sources. 
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Figure 2: Input maps (a) True color Landsat OLI image in 2019, Urban area maps in (b) 1997, (c) 2005, (d) 

2008, (e) 2014, (f) 2019 

 

(b) (c) 

(e) (f) 

(a) 

(d) 
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Figure 3: Predictor variables (a) Road network (b) Growth centers, Hospitals, Schools (c) Environmentally 

sensitive areas (d) Slope 

 

(c) (d) 

(a) (b) 



 

International Journal of Geoinformatics, Volume 17, No. 3, June 2021 
Online ISSN 2673-0014/ © Geoinformatics International 

54 

C
o

m
p

a
r
a

ti
v

e 
E

v
a

lu
a

ti
o

n
 o

f 
O

p
e
n

 S
o

u
r
c
e
 U

r
b

a
n

 S
im

u
la

ti
o

n
 M

o
d

e
ls

 A
p

p
li

ed
 t

o
 C

o
lo

m
b

o
 C

it
y
 a

n
d

 E
n

v
ir

o
n

s 
in

 S
r
i 

L
a
n

k
a

  
4

9
-6

0
 

2.3. Urban Growth Models Used 

(i) FUTURES: FUTURES model (Figure 4) 

(Meentemeyer et al., 2013) is a multilevel modelling 

framework consisting of three sub-models namely, 

POTENTIAL, DEMAND and Patch-Growing 

Algorithm (PGA). POTENTIAL sub-model 

quantifies the site suitability based on hypothesized 

environmental, infrastructural, and socioeconomic 

factors. DEMAND sub-model quantifies per capita 

urban land demand among sub-regions based on 

increase in population and concurrent urban change 

specific to each sub-region. PGA is a stochastic 

patch-growing algorithm that determines the shape, 

size and distribution of urban patches. Application of 

each sub-model was performed using r.futures 

extension in GRASS GIS (GRASS Development 

Team, 2020). 

 

(ii) SLEUTH: SLEUTH model (Clarke et al., 1997) 

is a Cellular Automata (CA) based urban growth 

simulation. The name of the model is an acronym for 

the six layers of raster maps used as input data in the 

model namely, Slope, Landuse, Excluded, Urban, 

Transport, Hillshade. SLEUTH model uses these six 

layers as input to compute transitions over a given 

time period. The SLEUTH model assigns the state of 

urban or non-urban to each cell for urban growth 

simulation using four transition rules namely, 

spontaneous growth, new spreading center growth, 

edge growth, and road-influenced growth. These four 

urban growth rules work sequentially in each growth 

cycle and are controlled by five-growth coefficients, 

namely, diffusion, breed, spread, road gravity, and 

slope resistance. These growth coefficients need to 

be determined by calibration using at least four 

historical urban growth maps. The studies around the 

world have used either one metric or a weighted sum 

or product of several metrics to narrow down on 

suitable growth coefficients (Ilyassova et al., 2019). 

The SLEUTH model produces 13 different metrics as 

a measure of fit between modelled growth to the 

observed historical growth (Dietzel and Clarke, 

2007). The schematic diagram of SLEUTH model 

and its components are shown in Figure 5.  

 

(iii) MOLUSCE: MOLUSCE (NextGIS, 2012) is a 

CA based Open Source model developed as a plugin 

for QGIS. MOLUSCE stands for Modules for Land 

Use Change Simulations. It is a user-friendly QGIS 

plugin that affords users to perform urban growth 

modelling and simulations. Firstly, the model 

calculates the area of change based on the historical 

urban area maps supplied. The second step involves 

Transition Potential Modelling, where MOLUSCE 

provides choice among Artificial Neural Network, 

Multi-criteria Evolution, Weight of Evidence and 

Logistic Regression to derive transition potential. 

The CA algorithm simulate the urban growth based 

on area of change and transition potentials derived in 

first and second step. 

 

 

 
 

Figure 4: FUTURES modelling framework (after Meentemeyer et al., 2013) 
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Figure 5: SLEUTH modelling framework (after Chaudhuri and Clarke, 2013) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6: MOLUSCE modelling framework 

 

MOLUSCE can only simulate the growth for a 

similar time iteration as historical urban maps 

provided to detect the urban change in the first step. 

In other words, if the user provides historic urban 

area maps with 10-year gap, the model can simulate 

only for subsequent 10-year iterations of growth. 

MOLUSCE urban growth modelling steps are 

depicted in Figure 6. 

 

2.4. Model Implementation 

In this study, the three model namely FUTURES, 

SLEUTH and MOLUSCE were implemented on 

study area Colombo, using their simplest state i.e., 

minimum inputs and default settings to run the 

models. 

 

(i) FUTURES: FUTURES model has integrated in 

GRASS GIS under ‘r.futures’ addon (Petrasova et al., 

2016). In this study, r.futures.demand sub-model was 

used to estimate per-capita land demand of each sub-

region. The land area that would potentially be 

transformed into urban was estimated using 

population projection from 2008 to 2019. The 

projection for 2019 assumes status quo situation 

based on the extrapolated relationship between 

observed urban change and population during 1997, 

2005 and 2008. The POTENTIAL sub-model runs 

under r.futures.potential module generates the 

transition potential surface describing the candidate 

locations for future development using Multilevel 

Logistic Regression (MLR). Transition potential 

surface is determined based on selected site 

suitability factors, distance to roads, distance to 

growth centers, distance to schools, distance to 

hospitals, distance to environmentally sensitive areas 

and percentage of slope (Figure 2). Based on 

identified site suitability and demand for new urban 

development, PGA determines the patch size and 

distribution for new patches. r.futures.pga is the 

module used for implementing the PGA. FUTURES 

model result of predicted urban map for 2019 using 

urban 2008 as base is shown in Figure 7(a). 

Inputs Output Processes 
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Figure 7: Simulated urban areas for 2019 by (a) FUTURES, (b) SLEUTH, (c) MOLUSCE 

 

(ii) SLEUTH: SLEUTH model requires a minimum 

of four historic urban area maps, two maps of 

transportation network representing early and later 

stages, slope, hill shade and exclusion layer. The 

model is executed in three phases, namely, test phase 

used to verify the model; calibration phase used to 

derive a set of growth coefficients specific to an 

urban area under investigation; and prediction phase 

used to simulate the future urban growth of the study 

area. In the present case, the urban area maps for the 

year 1997, 2005, 2014 and 2019 along with the 

transportation network maps for the year of 1997 and 

2019 were used. Further, the percentage of slope, an 

exclusion layer (exclusion of the water bodies) and a 

hill shade layer were provided as other inputs. In this 

study, brute force calibration along with the 

Population metric (least squares regression score for 

modeled urbanization compared to actual 

urbanization for the control years used in calibration) 

were used to estimate the calibration coefficients and 

evaluate the goodness of fit respectively. We have 

used an independent urban area map of 2008, which 

was not considered in calibration process of 

SLEUTH to initiate the prediction mode to simulate 

the urban growth from 2008 to 2019. The predicted 

urban area map of 2019 from SLEUTH model using 

urban 2008 as base is shown in Figure 7(b).  

 

 

(iii) MOLUSCE model: The MOLUSCE model has 

graphic user interface and FUTURES and SLEUTH 

models are command-line based. Input data for 

MOLUSCE model include urban area maps for 1997 

and 2008 to estimate areas that have changed to urban 

during this time interval. Predictor variables used to 

include distance to roads, distance to growth centers, 

distance to schools, distance to hospitals, distance to 

environmentally sensitive areas and slope. The 

transition potential was estimated based on the 

Artificial Neural Networks using the default settings 

consisting of 10 hidden layers and 1000 training 

samples. Final step was CA simulation to generate 

the predicted urban map of the study area.  The 

predicted urban area map of 2019 from MOLUSCE 

model using urban 2008 as base is shown in Figure 

7(c).  

 

2.5 Model Validation  

All three models were initialized for simulation using 

urban area map 2008 to predict the urban area map of 

2019. The predicted urban growth from 2008 to 2019 

from three models were compared pixel by pixel with 

remote sensing derived urban growth map from 2008 

to 2019 to produce confusion matrices. Confusion 

matrix is composed of Hits (H), Misses (M), False 

Alarms (FA) and Correct Rejections (CR).  

 

 

(a) (b) (c) 
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Where H refers to observed change simulated as 

change, M refers to observed change simulated as 

persistence, CR refers to observed persistence 

simulated as persistence and FA refers to observed 

persistence simulated as change. Confusion matrix 

used to estimate various validation metrics namely, 

Producer Accuracy (PA) (Equation 1), User 

Accuracy (UA) (Equation 2), Overall Accuracy (OA) 

(Equation 3), Specificity (S) (Equation 4), Mathews 

Correlation Coefficient (MCC) (Equation 5), Figure 

of Merit (FoM) (Equation 6). 

 

𝑃𝐴 =  
𝐻

𝐻 + 𝑀
 

Equation 1 

 

𝑈𝐴 =  
𝐻

𝐻 + 𝐹𝐴
 

Equation 2 

 

𝑂𝐴 =  
𝐻 + 𝐶𝑅

𝐻 + 𝑀 + 𝐹𝐴 + 𝐶𝑅
 

Equation 3 

 

𝑆 =  
𝐶𝑅

𝐶𝑅 + 𝐹𝐴
 

Equation 4 

 

𝑀𝐶𝐶 =  
(𝐻 × 𝐶𝑅) − (𝐹𝐴 × 𝑀)

√𝐻 + 𝐹𝐴)(𝐻 + 𝑀)(𝐶𝑅 + 𝐹𝐴)(𝐶𝑅 + 𝑀)
 

Equation 5 

 

𝐹𝑜𝑀 =  
𝐻

𝐻 + 𝑀 + 𝐹𝐴
 

Equation 6 

 

Producer's accuracy (PA) is the proportion of 

correctly simulated urban pixels by the model to 

observed urban pixels in the reference data, User 

Accuracy (UA) is the proportion of correctly 

simulated urban pixels to total number of simulated 

urban pixels by the model and Overall Accuracy 

(OA) is  the proportion of both correctly simulated 

urban and non-urban pixels to total number of pixels 

in the study area (Olofsson et al., 2014). The 

Matthews Correlation Coefficient (MCC) is a 

measure to assess the balanced quality of a model 

when categories of a map are in significantly 

different sizes (Boughorbel et al.,  2017). The Figure 

of Merit (FoM) is a measure to examine how the 

simulated change overlaps with the reference change 

(Pontius et al., 2008). Specificity is used as a measure 

true negative rate that measures the model ability to 

avoid simulation of non-urban pixels that are not 

suitable for urbanization (Kantakumar et al., 2019).  

3. Simulation Results and Discussion 

In order to evaluate of FUTURES, SLEUTH and 

MOLUSCE for performance, we compared the 

simulated urban growth from 2008 to 2019 after 

masking the initial urban area 2008 from simulated 

urban 2019 with the observed urban growth from 

2008 to 2019 derived from Landsat images. 

Simulated urban growth maps are shown in Figure 7. 

Urban growth models are approximation of complex 

urban system. Therefore, the validation of 

simulations produced by an urban growth models are 

essential to determine capability of models to 

replicate urban growth with sufficient accuracy 

(Kantakumar et al., 2019). As a first step in 

validation, we compared the simulated urban growth 

to observed urban growth of the study area (127.37 

km2) during the 2008-2019 period. The FUTURES, 

SLEUTH and MOLUSCE models simulated urban 

growths as 148.91 km2, 250.56 km2 and 77.11 km2 

respectively. Among simulation results, SLEUTH 

model showed an over estimation and MOLUSCE 

model showed an under estimation while FUTURE 

model matched closely with the observed urban 

growth. The FUTURES model considers sub-region 

wise urban change and population growth to 

determine per capita land demand which could be the 

reason for better estimation of urban growth. The 

over estimation of SLEUTH model simulations could 

be as a result of permitting unrestricted growth at all 

locations (except water bodies) without considering 

other criteria for site suitability. Another reason for 

the overestimation of SLEUTH urban growth 

prediction can be explained by SLEUTH’s rigid 

modeling requirements of four time-steps to assess 

changes which cannot be calibrated beyond linear 

extrapolations of the amount of change. SLEUTH’s 

requirement of four time-steps determines the time 

period for linear extrapolation, where the amount of 

newly developed cells are regressed. User defined 

estimates can account for such changes (nonlinear 

trends) which is possible with FUTURES as it is the 

only model that allows user defined quantity of 

change in this study. 

In addition, to the overall comparison of areas of 

simulated and observed urban growth, the model 

performances were also evaluated by making a pixel-

by-pixel comparison to produce confusion matrices. 

The results of validation were presented in the form 

of hits, misses, false alarms, correct rejections are 

presented in Figure 8 and Table 2, and the validation 

metrics are listed in Table 3.The results show that, the 

OA of all three models are over 90%, indicating the 

higher agreement of simulated pixels for both urban 

and non-urban. 
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Figure 8: Validation maps for (a) FUTURES, (b) SLEUTH, and (c) MOLUSCE 

 
 

Table 2: Elements of confusion matrix 
 

  

  

FUTURES SLEUTH MOLUSCE 

Area (km2) % Area (km2) % Area (km2) % 

Hit 45.64 1.8 77.30 3.0 33.76 1.3 

Misses 81.74 3.2 50.08 2.0 93.62 3.7 

False Alarm 103.27 4.0 173.26 6.8 43.35 1.7 

Correct Rejection 2323.94 91.0 2253.95 88.2 2383.86 93.3 
 

Table 1: Validation metrics 

 

The OA of the MOLUSCE model is the highest 

compared to SLEUTH and FUTURES.It is important 

to note, the use of OA cannot be interpreted as a 

direct method of model efficacy, due to 

pervasiveness of non-urban area in the study area as 

compared to urbanized area (Kantakumar et al., 

2019). Therefore, MCC was used to avoid the 

unbalanced effect of pervasiveness and change. The 

MCC is higher for SLEUTH (0.39) compared to 

FUTURES (0.29) and MOLUSCE (0.31). The PA 

and FoM values of SLEUTH is comparatively higher 

than other models, thereby indicating that SLEUTH 

can effectively simulate urban pixels with better 

spatial accuracy as compared with FUTURES and 

MOLUSCE. Using 2014 urban map in calibration 

stage of SLEUTH, which was not used in case 

FUTURES and MOLUSCE models, could be a 

reason behind predicting urban pixels with better 

spatial accuracy by SLEUTH. The over estimation of 

urban area by SLEUTH model could be reflecting in 

the higher MCC, FoM and PA values. The 

comparatively higher OA and UA reflected in 

MOLUSCE can be ascribed to the under estimation 

of urban growth in the model. However, previous 

study of FUTURES model implementation in 

Colombo (Jayasinghe et al., 2021) has shown a better 

Models 
Producer 

Accuracy 

User 

Accuracy 

Overall 

Accuracy 
Specificity 

Matthews 

Correlation 

Coefficient  

Figure of 

Merit  
Kappa 

FUTURES 0.36 0.31 0.93 0.96 0.29 0.20 0.69 

SLEUTH 0.61 0.31 0.91 0.93 0.39 0.26 0.66 

MOLUSCE 0.27 0.44 0.95 0.98 0.31 0.20 0.75 

(a) (b) (c) 
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overall accuracy with 30% overall disagreement 

(sum of quantity and allocation disagreement) and 

0.73 kappa value. Moreover, that study accurately 

predicted the expected landscape expansion pattern 

type (infilling) within coming decade according to 

the diffusion and coalescence theory (Dietzel et al., 

2005). 

Apart from model performances, user-

friendliness of FUTURES and MOLUSCE offers an 

advantage as these models are tightly integrated into 

Open Source GRASS and QGIS desktop GIS 

environment. SLEUTH model is Open Source 

standalone implementation and is not seamlessly 

integrated in desktop GIS environment. Such 

integration affords easier analysis and visualization 

of obtained results. SLEUTH model requires 

minimum number inputs and more computational 

resources for calibration in comparison to the 

FUTURES and MOLUSCE. Thus, taking all these 

trade-offs into account, it is difficult to unequivocally 

conclude either models as offering the best solution, 

especially when they have implemented with 

minimum required datasets and default settings.  

 

4. Conclusion  

Based on our study, we found that the 

implementation of MOLUSCE is easy in comparison 

to the FUTURES and SLEUTH. FUTURES is a 

robust, easily customizable model with flexibility in 

incorporation of complex policy scenarios through 

trends related to population dynamics and a range 

power functions to control transition potentials. The 

FUTURES model urban area estimates are closer to 

the observed changes as compared to SLEUTH and 

MOLUSCE. FUTURES offers the advantage of 

incorporating potential surface as well as per capita 

land demand via DEMAND sub-model which can be 

considered as the main reasons for its better 

performance in estimating urban growth. Although 

the SLEUTH calibration is a computationally 

intensive, we have found that the model is scalable 

and yield higher spatial accuracy in simulation. 

Incorporation of  exclusion factor for potential 

surface generation could mitigate the overestimation 

of urban areas observed in the results of the SLEUTH 

model. Besides discussed comparison criteria, 

FUTURES and SLEUTH both models allow to test 

various urban growth scenarios such as status quo, 

infill growth and sprawl which is not available with 

MOLUSCE model.  

The aim of the study was to evaluate the 

performance of FUTURES, SLEUTH and 

MOLUSCE models in their simplest case. The 

present results reveal that keeping the variations of 

implementation techniques and procedures involved 

in these models, it could be inappropriate to 

unequivocally conclude which model performed 

better. However, considering the tradeoff between 

computational overheads and obtained results, it 

could be suggested that FUTURES offers a good 

solution for simulation of urban growth. Our future 

studies will focus on customizing the models by 

using the same method for estimating the transition 

potential surface and incorporating into FUTURES, 

SLEUTH and MOLUSCE as exclusion layer in order 

to make more objective evaluation. 
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