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Abstract 

Synthetic Aperture Radar (SAR) plays an important role in disaster management, such as in flood area 

monitoring, as it can withstand severe weather or the rainy season. The main objective of this study was to 

investigate the potential of ALOS-2 (L-band) and Sentinel-1 (C-Band) SAR data for water and flood mapping. 

This study used ALOS-2 and Sentinel-1 to detect water areas from pre- and mid-flood events in Nakhon 

Phanom Province, Thailand. Water areas were determined via the thresholding method. The study assessed 

different polarizations of ALOS-2 (HH, HV) and Sentinel-1 (VH, VV) characteristics, as well as non-filtered 

and filtered images in the detection of water areas. Water extension detection from the optical sensor 

(Sentinel-2) was compared with SAR results. Water detection by ALOS-2 and Sentinel-1 images were 

independently observed with less cloud effect and showed good agreement with Sentinel-2. ALOS-2 HH 

demonstrated higher accuracy (92.46%) than ALOS-2 HV. Sentinel-1 VV provided the highest accuracy 

(95.45%) among all the results analyzed. The differences between L-band and C-band results accounted for 

8.8% of the study area, with major differences appearing in the paddy fields. Water and flood detection by 

satellite images provided not only spatial information but also temporal dimensions. The results of this study 

can help inform decision-making in future flood mapping and disaster management.  

 

 

1. Introduction  

Flooding is a frequent natural disaster in much of 

Asia (Kanta Kafle, 2017). In early August 2018, the 

Asian Disaster Reduction Center (ADRC) reported 

that heavy rain in northeastern Thailand had caused 

the Mekong River to overflow, inundating many 

provinces. Nakhon Phanom Province, the area on 

which the present study focuses, was severely hit, 

with floods affecting all 12 of its districts and more 

than 12,000 households (ADRC, 2019). 

A quick and well-informed response is crucial to 

minimizing the effects of such occurrences. Hence, 

geospatial information has become necessary for 

effective disaster management (Miyazaki et al., 

2015). With this in mind, emergency response, as 

well as post-disaster rehabilitation services, have 

increasingly implemented geospatial technologies 

(Stevens, 2008). Among the tools widely adopted in 

disaster observation and management efforts—such 

as flood monitoring—is remote sensing, which is 

inherently useful for monitoring the earth’s surface. 

Sentinel Asia, a regional cooperation project among 

space agencies and disaster management agencies, 

has applied remote sensing technologies to disaster 

management efforts in Asia (Kaku and Held, 2013), 

including in the area assessed in the present study.  

Optical imagery such as Landsat-8 OLI has 

proven successful in water body identification 

(Acharya et al., 2016 and Xie et al., 2016). 

However, clouds have been known to strongly limit 

the advantages of optical imagery for spatial and 

temporal analysis (Eberhardt et al., 2016). SAR is 

one remote sensing technology that can rapidly 

scope out a disaster-stricken area, since it has few to 

no limitations when faced with clouds or adverse 

weather conditions associated with the rainy season. 

Moreover, SAR sensors provide a greater frequency 

in both day and nighttime observation. In Asia, it 

has been applied to observation and emergency 

response efforts for disasters such as the 2016 

Kumamoto earthquake in Japan (Tamkuan and 

Nagai, 2017 and 2019a) and the 2018 earthquake in 

Sulawesi, Indonesia (Tamkuan and Nagai, 2019b) 

Several remote sensing methods can be utilized 

to detect flood areas, including thresholding and 

unsupervised and supervised classifications. The 

thresholding method has been commonly used for 

inundated area extraction (Nakmuenwai et al., 2017 

and Duy, 2015). It is important to note that different 

SAR sensors have shown different backscattering 

behaviors (Plank et al., 2017). The threshold value 

https://doi.org/10.52939/ijg.v17i3.1895
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of SAR backscattering provides information on 

physical properties distinguishing water from non-

water, which can be applied in flood-related 

assessments. Considering such aspects, the present 

study applied simple thresholding (the Otsu method) 

to evaluate the potential and behavior of each sensor 

as well as polarization. Selected for this study were 

ALOS-2 with L-band and Sentinel-1 with C-band. 

More specifically, the researchers aimed to 

evaluate differences in polarization pertaining to 

ALOS-2 (HH, HV) and Sentinel-1 (VH, VV) 

backscattering coefficients, for flood thresholding 

with filter and non-filter applications, as well as the 

possible capabilities and differences of ALOS-2 and 

Sentinel-1 in terms of water and flood detection. 

The findings obtained on the potential of these SAR 

sensors could greatly benefit future decision-making 

in rapid flood mapping.  

 

2. Methodology 

2.1 Study Area  

Flooding occurred in northeastern Thailand due to 

heavy rainfall and the rising waters of the Mekong 

River from July to August 2018. It affected many 

provinces in this region, especially Nakhon Phanom 

Province (which is adjacent to the Mukdahan, Sakon 

Nakhon and Bueng Kan provinces in Thailand and 

bordered by Laos to the northeast). The study 

focused on Sentinel-1 and ALOS-2 observations in 

the heavily affected district of Si Songkhram and 

some parts of the Na Wa, Na Thom, Ban Paeng, and 

Tha Uthen districts in Nakhon Phanom. The area 

comprises the Mekong River valley, and therefore 

mostly plains, with the main river in the northern 

part being the Songkhram.  

According to Thailand’s Land Development 

Department (LDD, 2015), major land use in the 

province had been split among paddy fields 

(42.1%); perennial crops, orchards and horticulture 

(24.4%); forests (14.0%); rangeland marshes and 

swamps (8.4%); water bodies (7.5%); urban and 

built-up land (3.1%); and other classifications 

(0.5%), as Figure 1 shows. 

 

2.2 Data and Software 

ALOS-2 and Sentinel-1 images were observed in 

this study area as demonstrated in Table 1. The 

ALOS-2 images came from the dual-polarization 

mode (SM3). This mode consists of HH and HV 

polarizations of SAR data characteristics. The 

products were in Level 2.1 format by ascending 

orbit direction, right-side observation. Sentinel-1 

images came from the Interferometric Wide Swath 

Mode (IW mode) by ascending observation. The IW 

mode consists of VH and VV polarizations. 

 

 
Figure 1: Study area information from Land Development Department of Thailand (LDD, 2015) 



  

International Journal of Geoinformatics, Volume 17, No. 3, June 2021 
Online ISSN 2673-0014/ © Geoinformatics International 

41 

A
L

O
S

-2
 a

n
d

 S
e
n

ti
n

e
l-

1
 B

a
c
k

sc
a

tt
e
r
in

g
 C

o
e
ff

ic
ie

n
ts

 f
o

r
 W

a
te

r
 a

n
d

 F
lo

o
d

 D
e
te

c
ti

o
n

 i
n

 N
a
k

h
o
n

 P
h

a
n

o
m

 P
r
o
v
in

c
e
, 

N
o
r
th

e
a
st

e
r
n

 T
h

a
il

a
n

d
  

3
9

-4
8

 

Table 1: Data used in this study 
 

Analysis data 

Sensors Situation Date Type 

ALOS-2 
before flood 06-Apr-18 

SAR 
during flood 10-Aug-18 

Sentinel-1 
before flood 01-Apr-18 

SAR 
during flood 05-Aug-18 

Reference information 

Sentinel-2 
before flood 09-Apr-18 

Optical 
during flood 07-Aug-18 

 

 
 

Figure 2: Digital number of Sentinel-1 and ALOS-2. Image a. corresponds to VH polarization of Sentinel-1, 

and image b. is an HH image of ALOS-2 

 

This mode has a wide swath (250 km swath) and 

5x20 m spatial resolution. The study used ground 

range detected geo-referenced products (Level-1 or 

GRD) for analysis, and optical images of Sentinel-2 

for accuracy assessment. Additionally, the 

researchers used free software including SNAP for 

SAR calibration, OpenCV for thresholding and 

QGIS for analysis and mapping.  

 

2.3 Data Pre-Processing  

SAR data (high-level product - raw pixel value) are 

presented in terms of digital number (DN) or 

intensity of backscattering energy from the earth's 

surface. DN can also be directly analyzed via the 

thresholding method, but the ranges of intensity 

vary regarding different sensors. In Figure 2, the 

ALOS-2 DN is put between 0–42000 and the 

Sentinel-1 DN between 0–900, depending on each 

instance. ALOS-2 and Sentinel-1 were converted to 

backscattering properties in decibel units to be more 

useful and comparable between sensors. First, the 

ALOS-2 image was calibrated from digital number 

(DN) to backscattering (Sigma 0). Digital number in 

the PALSAR-2 JAXA standard product was 

converted to backscattering coefficient (sigma 

naught, sigma zero) (JAXA, 2019) using Equation 

1. 

𝜎0(𝑑𝐵) = 10 ∙ 𝑙𝑜𝑔10〈𝐷𝑁2〉 + 𝐶𝐹1 

 

Equation 1 

 

σ0: Backscattering coefficient (Sigma naught or 

Sigma zero) [unit: dB] 

DN: Digital number 

CF1: Calibration factor [unit: dB] (CF1 is -83)  

 

For the calibration of Sentinel-1, the GRD product 

was used and the radiometric calibration 𝜎𝑖
0  was 

applied via the information provided in the 

calibration lookup table (LUT) (ESA, 2019). The 

radiometric calibration was applied by Equation 2.  
 

 

𝑣𝑎𝑙𝑢𝑒 (𝑖) =
|𝐷𝑁𝑖|

2

𝐴𝑖
2  

 Equation 2 

 

Here, depending on the selected LUT, Value (i) is 

one of 𝛽𝑖
0  , 𝜎𝑖

0 or 𝛾𝑖  or original DNi . Ai is one of 

betaNought(i), sigmaNought(i), gamma(i) or dn(i).   
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Then, Equation 3 converted value (i) to decibel unit. 

 

𝜎0(𝑑𝐵) = 10 ∙ 𝑙𝑜𝑔10〈𝜎𝑖
0〉 

Equation 3 

 

2.4 Water Thresholding and Detection  

This study aimed to assess two different sensors (L-

band and C-band) for water and flood detection. 

Thresholding is the most rapid classification of a 

binary image. The Otsu method entails thresholding 

methods and was used in this study as it can be 

automatically investigated in the detection of water 

areas. Moreover, the Otsu algorithm performed 

powerfully in mapping inundated areas during flood 

events in Kerala, India, in 2018 (Tiwari et al., 2020).  

The automatic image thresholding was 

performed by calculating a probability distribution 

over pixel intensities and finding the optimal 

threshold. The threshold value is determined by the 

minimum within-class variance or the maximum 

between-class variance (Otsu, 1979 and Huang et 

al., 2011). Good samples for Otsu thresholding 

should present a bimodal distribution (histogram 

with two peak distributions), and this method 

investigates the optimal threshold between two 

peaks. This study selected regions of interest (ROI) 

that included half area of water and non-water to 

calculate for local threshold value in 50 samples 

(Figure 3). Next, the mean threshold value was 

adopted for each image.  

This study applied Lee-sigma to reduce SAR 

speckle noise. It compared two sensors, including in 

ALOS-2 and Sentinel-1, with non-filter and filter 

applications by considering these variables:  

 

- Independent variable: Input of non-filtered 

and filtered ALOS-2 (HH, HV) and 

Sentinel-1 (VV, VH) images  

- Control variable: Otsu method, same 

training areas (ROI) for thresholding 

calculation regarding each group in “before 

flood” and “during flood” (about 50 

samples)  

- Dependent variable: output of different 

threshold values and map results 

 

At least two images could distinguish between 

permanent water bodies and floodwaters. This study 

utilized water thresholding extensions towards flood 

detection by images from events pre- (“before”) and 

mid- (“during”) flood. 

 

2.5 Accuracy Assessment  

Accuracy assessment was evaluated by optical 

images of pre- and mid-flood events. Reference 

water and non-water areas were detected by the 

supervised classification method.  

Sentinel-2 has been used efficiently in landcover 

mapping (Chymyrov et al., 2018). Therefore, this 

study selected Sentinel-2 to evaluate the results of 

the SAR analysis. The related classifications were 

“water,” “non-water,” and “other,” made via 

maximum-likelihood algorithms using a semi-

automatic classification plugin (SCP) installed in 

QGIS (Congedo, 2019). Thresholding methods 

divided results into classes including “water” and 

“non-water” areas for SAR images. Thus, other 

classes (Sentinel-2) which do not fall within these 

two classes (“cloud” and “unclassified”) were 

grouped into “no-data” (black color) and excluded 

from this accuracy assessment (Figure 4). The 

accuracy was performed as “overall accuracy.” 

Water detection accuracy from pre- and mid-flood 

events was considered as “overall multi-temporal 

accuracy.” 

 

 
Figure 3:  Samples of “before flood” and “during flood” ROI for determining threshold value 
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3. Results  

ALOS-2 and Sentinel-1 could detect water and 

flood in the rainy season with less atmospheric 

effects compared to the Sentinel-2 optical sensor. 

These satellite images were observed in the same 

areas and in “near-time” acquisition to compare 

characteristics and differences. Two SAR images 

(“before” and “during” flood) were implemented for 

water and flood detection using the Otsu method. 

All results provided high accuracy: more than 85% 

compared to Sentinel-2. However, each sensor 

provided different characteristics for water and 

flood detection.  

 

3.1 Threshold Value in Decibel unit Using ALOS-2 

and Sentinel-1 for Water Extraction  

After SAR pre-processing, the water threshold, in 

decibels, was identified by the Otsu method. 

Different sensors and polarizations had different 

thresholding values, as shown in “Table 2: Water 

threshold value for ALOS-2” and “Table 3: Water 

threshold value for Sentinel-1.” Water areas were 

delineated by the Otsu thresholding of 50 samples.  

Images of pre- and mid-flood events could come 

to present flood extension. The water area presented 

by SAR images had low backscattering, between -

25 and -15 dB for all polarizations. Co-polarized 

images of ALOS-2 HH and Sentinel-1 VV had a 

higher threshold value than cross-polarized images 

of ALOS-2 HV and Sentinel-1 VH.  

 

3.2 Extension of Water Thresholding to Flood 

Detection by Images “Before” and “During” Flood  

Seasonal conditions affected the backscatter 

thresholding value in classifying “water” and “non-

water.” Therefore, mean threshold values (from 

Tables 2 and 3) were applied to each temporal 

image, as shown in Figure 5 and Figure 6. The 

results demonstrated that ALOS-2 and Sentinel-1 

can be used to extract open-water bodies with good 

agreement to water extraction, using Sentinel-2 

images by supervised classification (Figure 4). The 

accuracy of filtered images slightly improved. The 

results of non-filtered images displayed a signal 

noise higher than the filtered images.  

 

3.3 Accuracy Assessment of ALOS-2 and Sentinel-1 

for Water and Flood Detection  

All results were compared to Sentinel-2, with water 

and non-water areas being detected for two periods: 

“before flooding” and “during flood” (Figure 4). 

Overall accuracy was calculated as shown in Table 

4 and Table 5. The results of filtered images 

exhibited higher accuracy than those of non-filtered 

images. For ALOS-2, the HH image offered higher 

accuracy (92.46%) than the HV for flood detection. 

The VV image of Sentinel-1 displayed the highest 

accuracy level, at 95.45%, not only for its product 

(VH) but also at a level higher than the HH and HV 

images of ALOS-2 results, as demonstrated here. 

 

Table 2: Water threshold value of ALOS-2 
 

Filter Bands 

Water before flooding Water during flooding 

mean (dB) 
Standard 

deviation 
mean (dB) 

Standard 

deviation 

Non-filtered 
HH -16.97 1.91 -16.48 1.87 

HV -24.86 1.83 -24.11 1.97 

Filtered 
HH -16.21 2.05 -15.66 1.49 

HV -24.29 1.66 -23.61 1.78 
 

Table 3: Water threshold value of Sentinel-1 
 

Filtered Bands 

Water before flooding Water during flooding 

mean (dB) 
Standard 

deviation 
mean (dB) 

Standard 

deviation 

Non-filtered 
VH -20.40 0.93 -21.05 0.78 

VV -15.98 0.89 -15.24 1.17 

Filtered 
VH -20.02 0.80 -20.64 0.68 

VV -15.73 1.00 -14.67 0.91 
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Figure 4: Water and non-water classification using Sentinel-2 images 

  

    
Figure 5: Flood detection using ALOS-2 images before and during flood  

 

Table 4: Accuracy Assessment for water extraction between Sentinel-2 and ALOS-2 
 

Filter Bands 
Before flood During flood Multi-temporal 

accuracy (average) Accuracy  Accuracy 

ALOS-2 

Non-filtered 

HH 93.01% 86.06% 89.54% 

HV 87.43% 85.29% 86.36% 

ALOS-2 

Filtered 

HH 96.38% 88.55% 92.46% 

HV 91.53% 87.00% 89.26% 
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Table 5: Accuracy Assessment for water extraction between Sentinel-2 and Sentinel-1 
 

Filter 

 

Bands 

 

Before flood During flood Multi-temporal 

accuracy (average) Accuracy Accuracy 

Sentinel-1 

Non-filtered 

VH 88.91% 91.29% 90.10% 

VV 95.95% 92.14% 94.05% 

Sentinel-1 

Filtered 

VH 93.55% 92.20% 92.88% 

VV 98.16% 92.73% 95.45% 
 

   
Figure 6: Flood detection using Sentinel-1 images from before and during flood  

 

Table 6: Comparison between ALOS-2 HH and Sentinel-1 VV for water extraction (“during-flood” images) 
 

Similarity and difference 
ALOS-2 HH 

Non-water Water 

Sentinel-1 VV 
Non-water 71.41% (similar) 2.68% (different - B) 

Water 6.12% (different - A) 19.79% (similar) 
 

Table 7: Land use types of different water detection between ALOS-2 and Sentinel-1 
 

Land use types (LDD, 2015) 
Different – A 

(sq.km) 

Different – B 

(sq.km) 

Total 

(sq.km) 
Percentage 

Paddy field 73.31 18.12 91.43 77.75% 

Perennial crop, orchard, horticulture 1.42 2.07 3.49 2.97% 

Forest 0.20 0.32 0.52 0.44% 

Rangeland, marsh and swamp 1.91 9.59 11.50 9.78% 

Water body 5.90 4.52 10.42 8.86% 

Urban and built-up land 0.17 0.08 0.25 0.21% 
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Figure 7: Different water detection areas between ALOS-2 and Sentinel-1 

 

3.4 Comparison between ALOS-2 L-band and 

Sentinel-1 C-band 

Co-polarized images (ALOS-2 HH and Sentinel-1 

VV) were compared for differences between these 

sensors as they provided the highest overall 

accuracy for each sensor. Based on “during-flood” 

images, similarity between ALOS-2 and Sentinel-1 

was 91.2% (71.41% + 19.79%) and difference was 

8.8% (6.12% + 2.68%) in this area, as presented in 

Table 6. The major difference for water area 

detection using the thresholding method was found 

in the paddy fields, at 77.75 % of the detection 

between ALOS-2 and Sentinel-1, as shown in Table 

7. The different L-band and C-band wavelengths 

were probably the main reason for this. For L-band, 

paddy fields appeared dark, the same as open water 

and flood areas. On the other hand, C-band’s short-

wavelength was more sensitive and reflected the 

energy atop the paddy fields, showing bright pixels 

(Figure 7).  

 

4. Discussion 

This study found that co-polarized images (ALOS-2 

HH and Sentinel-1 VV) showed higher accuracy 

than cross-polarized images (ALOS-2 HV and 

Sentinel-1 VH) using Otsu thresholding. Sentinel-1 

VV provided the highest overall accuracy.  

The results corroborated previous research where 

co-polarization (Sentinel-1 VV) showed higher 

accuracy than cross-polarization (Sentinel-1 VH) for 

flood mapping using the thresholding method 

(Clement et al., 2018 and Cao et al., 2019). 

However, different detection methods may reveal 

different levels of accuracy for water body 

extraction.  

Although the Sentinel-2 images compared with 

SAR images were not taken on the same dates, the 

observation dates were within three days of each 

other (Figure 8). Co-polarized images displayed 

higher accuracy compared to water extraction by 

Sentinel-2. Hence, results recommend the 

application of co-polarized images for the detection 

of open water and floodwater in emergency 

response.  

Sentinel-1 VV revealed higher accuracy 

compared to ALOS-2 HH both pre- and mid-flood. 

This is likely due to the wavelength of Sentinel-1 

(5.6 cm) being closer to Sentinel-2 (443–2190 nm) 

than ALOS-2 (21 cm). It is important to note, 

however, that this case pertained to long-term 

inundation; SAR utilization is more difficult and 

challenging during flash floods, since water quickly 

moves away from the affected area. 
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Figure 8: Comparison of SAR to Sentinel-2 and observation dates for water detection  

 

The Otsu method was used to classify bimodal 

histograms into two classes (“open water” and “non-

water”). Nevertheless, flood behavior is not limited 

to reducing SAR backscattering: Some types of 

vegetative floods could, conversely, induce high 

backscattering (double-bound effects) depending on 

the wavelengths and surface conditions related to 

wetlands (Wohlfart et al., 2018). For that reason, 

vegetative floods could not be represented by a 

simple (two-class) thresholding method. Yet overall, 

the study found that the thresholding method could 

be used for rapid processing in emergency response 

efforts.  

In the accuracy assessment, only “open water” 

and “non-water” (including paddy fields) were 

evaluated, using the Otsu method. Other vegetative 

flooding instances (of perennial crops, etc.) were 

excluded from this analysis. Hence, future studies 

should consider other advanced techniques for 

classifying water areas (“open water”, “open 

floodwater” and water in vegetated areas).  

Moreover, this study investigated only two 

satellite sensors. Other sensors should be analyzed 

and compared to gain knowledge on characteristics, 

physical properties and offset among different 

sensors. This could be useful for preliminary 

analysis in an urgent situation. Having additional 

multi-temporal images at hand would be more 

beneficial for monitoring flood dynamics and 

supporting disaster management. Considering multi-

sensors could also increase the opportunities and 

speed in emergency response and disaster mapping. 

 

4. Conclusion  

This study attempted to gauge the ability to utilize 

ALOS-2 and Sentinel-1 images for water and flood 

detection. The thresholding method was used to 

determine the threshold values of backscattering 

coefficients for detecting water and flood areas in 

Nakhon Phanom province. The study was designed 

to compare filter effects (“filtered” and “non-

filtered”) and the capacity of all polarization images 

for ALOS-2 and Sentinel-1. When compared with 

water and non-water area detection from Sentinel-2, 

Sentinel-1 VV has a higher overall accuracy level 

(95.45%) in this study area. Moreover, co-polarized 

images (ALOS-2 HH and Sentinel-1 VV) with filter 

application (“filtered”) displayed higher accuracy 

than cross-polarized images (ALOS-2 HV and 

Sentinel-1 VH) for the same sensor. The 

comparison between ALOS-2 HH and Sentinel-1 

VV indicated an 8.8% difference and mainly 

appeared on paddy fields (vegetative floods). 

Based on these results, the study recommends 

the use of co-polarized images for water and flood 

detection via the thresholding method. These 

findings can be useful for disaster mapping and 

management. For future research, further imaging, 

methods and data fusion should be considered to 

improve the accuracy and speed in getting 

information about disasters. 
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