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Abstract 
The agricultural sector is an important source of national income in many tropical countries, including 

Indonesia. Monitoring agricultural is essential to support the agricultural activities. However, these countries 

have tropical monsoon climate with heavy amounts of rainfall. Therefore, temporal monitoring using 

microwave remote sensing is beneficial to overcome the heavy cloud coverage, which is often an obstacle for 

applying optical remote sensing. Recently, the growing trend of cloud-based geospatial platforms, such as 

Google Earth Engine (GEE), provides processing tools and cloud storage for remote sensing data without 

high specification hardware. In this study, Sentinel-1 synthetic aperture radar (SAR) sensor data from 2017 

and supplementary Sentinel-2 optical sensor data was obtained and processed in GEE to identify two types of 

cropping patterns in paddy fields and to classify agricultural croplands. Four types of polarization 

combination datasets and a random forest classifier set with number of trees to be 25 and 50 were used for 

the classification process. The classification results show that the VH, VV, and the subtraction of VH and VV 

polarization with a random forest of 50 trees was achieved with 76.88% of overall accuracy and the kappa 

value equaled 0.728. The random forest with 50 trees significantly increased the classification accuracy of the 

dataset with fewer band compositions. The Sentinel-1 images are believed to be satisfactorily accurate 

enough for agricultural cropland classification and are sufficient for identifying the two cropping patterns in 

paddy fields. 

 

 

1. Introduction 

The agricultural sector is important for the 

Indonesian economy. According to the Indonesian 

statistics, the agricultural sectors contributed 

approximately 9.9% of Indonesia’s gross domestic 

product in 2017. Many people living in rural areas 

depend on agricultural activities for their main 

source of income. One of the prominent agricultural 

areas on Java Island is found in the upper Solo basin 

of the Central Java Province. This area has rich and 

fertile soil with enough water discharge to make 

agricultural activities viable. However, the dense 

populations of Java and its uneven road structure 

force the agricultural fields to be small in size and 

complex in shape. The agricultural parcels size in 

Indonesia is around 0.3 Ha per household (Agus and 

Manikmas, 2003). Most of the farmers in this area 

manage and cultivate croplands depending on the 

meteorological and topographic conditions. It is 

common to have paddy fields in flat areas and 

upland fields in hilly areas. Paddy is the main crop 

for this agricultural sector as it is consumed by the 

majority of Indonesian people and requires an 

abundant amount of water in the early stage of 

cultivation, which is complemented by the heavy 

rainfalls. Beyond rainfall, the water for paddy 

cultivation is also sourced through irrigation. The 

intercropping method is often practiced to increase 

the farmers’ income. Therefore, it is common to find 

different cropping patterns in these agricultural 

fields throughout the year. 

The Indonesian government has monitored 

agricultural croplands using direct field survey and 

remote sensing technology. A direct field survey is 

time consuming and requires surveyors. Satellite 

remote sensing consists of optical sensor data and 

synthetic aperture radar (SAR) data and provides 

wide range spatial and temporal data. Optical 

remote sensing is susceptible to the atmospheric 

conditions, especially during the tropical monsoon 

season. The SAR satellite offers active remote 

sensing is capable to penetrate the atmospheric 

conditions and provides cloud cover free data. 

Recently, satellite remote sensing data has 

drastically improved in terms of temporal and 

spatial resolution used to produce the large satellite 

images. Developing countries or communities with 

limited budgets could have difficulty accessing 

these satellite images. However, the advanced 
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technology of cloud-based computing provides an 

efficient and low cost alternative for processing 

these images. The Google Earth Engine (GEE) is 

one of the cloud-based geospatial platforms that 

provide numerous collections of geospatial datasets 

and algorithms to process the satellite images. It 

offers flexibility to the users for conducting research 

related to satellite images and geospatial data. Users 

are able to process these datasets as long as an 

internet connection is available. In recent years, 

GEE has been used for many remote sensing 

applications, such as land cover change (Sidhu et 

al., 2018), cropland mapping (Xiong et al., 2017), 

and crop classification analysis using huge amounts 

of multi-temporal data, (Shelestov et al., 2017) 

because of its simplicity and user friendly interface. 

There are several types of SAR wavelengths 

used in microwave remote sensing, such as X-band 

(2.5–4 cm), C-band (4–8 cm), and L-band (15–30 

cm). Besides penetration through cloud, the SAR 

images could detect the moisture condition as well 

as the canopy or surface structure. Therefore, SAR 

data is advantageous for monitoring agriculture even 

in tropical areas (Nelson et al., 2014). One of the 

SAR satellite images provided by GEE is the C-

band SAR of Sentinel-1. The C-band wavelength is 

shorter than the L-band wavelength, and the C-band 

wavelength could not penetrate deeper than the L-

band wavelength. Sentinel-1 data has been applied 

in several studies for hydrological dynamic in 

wetland area (Cazals et al., 2016) as well as for 

agricultural applications, such as mapping rice 

planted areas (Clauss et al., 2017 and Tian et al., 

2018), temporal behavior of crops (Veloso et al., 

2017), and rice growth monitoring (Torbick et al., 

2017). 

The L-band SAR, ALOS/PALSAR, is often used 

for agricultural cropland classification, such as 

paddy field identification (Zhang et al., 2011), and 

the classification of abandoned paddy fields (Yusoff 

et al., 2016). The L-band SAR, ALOS/PALSAR-2, 

is used for classifying agricultural croplands 

(Mirelva and Nagasawa, 2018). However, the L-

band SAR has a longer revisit time than the C-band 

SAR. This creates the need to consider the 

agricultural fields’ cropping patterns before 

selecting the satellite images to fit the cropping 

pattern of agricultural fields. Sentinel-1 offers high 

temporal images that are useful for understanding 

the cropping pattern, especially in complex 

agriculture croplands with uncertain cropping 

patterns. 

Recently, Ghazaryan et al., (2018) reported the 

effectiveness of Sentinel-1 and GEE for identifying 

the cereal cropping system in one of regions in 

continental Europe. However, few studies have used 

Sentinel-1 and GEE in the Asian region, specifically 

the areas with a tropical monsoon climate. In the 

present study, the combination of Sentinel-1 data 

and GEE was implemented to identify small, mixed 

agricultural crop fields in the tropical Asian region. 

The complex agricultural cropland in the Central 

Java Province (an area of approximately 112 km2) 

was selected because of its irregular cropping 

patterns, various types of cropland, and the other 

surrounding land covers, such as woodland and 

settlement. This study aimed to understand the 

characteristics of Sentinel-1 when classifying two 

cropping patterns of paddy fields and other land use 

or land cover types, as well as the classification 

performed in GEE. 

 

2. Materials and Methods 

2.1 Study Area 

The study area is located on the southeastern slopes 

of the Merapi volcano in the Klaten Regency of 

Central Java in Indonesia. The area is in the 

boundary of the following coordinates: 7º 37′ 10.7′′-

7º 42′ 56.8′′ South Latitude and 110º 29′ 31.89′′- 

110º 35′ 17.02′′ East Longitude. The study area 

coverage appears as a red square on the map and the 

Pleiades image, taken in 2015, was used for 

information on the land use and the land cover in the 

study area as can be seen in Figure 1. The altitude 

varies from 200-600 meters above sea level.  

The Merapi volcano is one of the most active 

volcanoes on the island of Java. Therefore, the soil 

is nutrient-rich which is beneficial for agricultural 

activities. Most people who live in this area work as 

farmers or sharecroppers and depend on agricultural 

production for their livelihood. In general, land 

usage can be divided into northern and southern 

sections. The northern area has a higher altitude and 

is mainly covered by settlement, woodland, and 

upland fields. The southern area is relatively flat and 

is generally covered by settlement and agricultural 

fields, such as paddy and tobacco fields. 

 

2.2 Datasets 

The study materials consisted of 56 satellite images 

of dual polarization of C-band SAR Sentinel-1 taken 

in 2017, the 49 satellite optical images of Sentinel-2 

collected in 2017 and the Pleiades image taken on 

August 26, 2015. Only the Sentinel-1 and Sentinel-2 

were acquired from the GEE data collection. 

Sentinel-1 has two polarization types, VH and VV 

polarization. VH polarization transmits microwaves 

in a vertical direction and receives scatter from the 

surface in a horizontal direction. VV polarization 

transmits and receives the microwaves in a vertical 

direction. The Sentinel-1 and Sentinel-2 have a 10 

meter resolution and the Pleiades image has 0.6 
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meter resolution. Table 1 shows the availability of acquisition dates for both Sentinel-1 and Sentinel-2. 

 
 

Figure 1: Study area coverage with Pleiades image taken on 2015 

 

Table 1: Sentinel-1 and Sentinel-2 acquisition date 
 

 Date of acquisition  Date of acquisition 

Month Sentinel-1 Sentinel-2 Month Sentinel-1 Sentinel-2 

January 3, 27 9, 19, 29 July 2, 6, 14, 18, 26, 30 13, 18, 28 

February 8, 20, 24 8, 18, 28 August 7, 11, 19, 23, 31 2, 7, 12, 17, 22, 27 

March 4, 8, 16, 20, 28 10, 20 September 4,12, 16, 24, 28 1, 6, 11, 16, 21 

April 1, 9, 13, 21, 25 9, 19, 29 October 6, 10, 18, 22, 30 1, 6, 11, 21, 26, 31 

May 3, 7, 15, 19, 27, 31 9, 19, 29 November 3, 11, 15, 23, 27 5, 10, 15, 20, 25, 30 

June 8, 12, 20, 24 8, 18, 28 December 5, 9, 17, 21, 29 5,10, 15,20, 25, 30 

 

 
 

Figure 2: Overall framework for cropland classifying in GEE 

 

2.3 Methodology 

The methodology can be separated into two parts, 

pre-processing and the classification process. The 

Sentinel-1 was downloaded and processed in GEE, 

except for the speckle noise filtering process which 

was processed in Sentinel Application Platform 

(SNAP) software (SNAP software). The 

classification process was done in GEE by using the 

random forest classifier. The methodology details 
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are described in the following sections and the framework of methodology can be found in Figure 2. 

2.3.1 Data pre-processing 

GEE data collections provide satellite remote 

sensing data, including Sentinel data. The Sentinel-1 

data used SAR system which capable to penetrate 

cloud coverage.  In addition, it has high temporal 

data which is useful to be used for monitoring 

agricultural condition in Indonesia. In GEE, to get 

one year of data, the Sentinel-1 was filtered by 

setting a boundary area similar to the study area and 

the date range from January 1 to December 31, 

2017. The Sentinel-1 data from GEE data collection 

was already pre-processed using the Sentinel-1 

Toolbox, a software for SAR satellite data 

processing from ESA (European Space Agency). 

The pre-processing steps are thermal noise removal, 

radiometric calibration, and terrain correction by 

using SRTM 30 or ASTER DEM. The ASTER 

DEM is used for the area located above 60 degrees 

of latitude, or when the SRTM is unavailable. Thus 

the SRTM was used in this study. However, the 

speckle noise reduction process was not yet 

performed because GEE has no algorithm to execute 

this process. The speckle noise reduction is 

important because the radar data is often affected by 

the coherent summation of the signals that scattered 

from ground (Saxena and Rathore, 2013). Therefore, 

the speckle noise reduction in Sentinel-1 was 

processed outside the GEE environment by using 

the SNAP software. 

In order to reduce the speckle noise using SNAP 

software, the data collection of Sentinel-1 was 

clipped using the boundary of the study area and 

downloaded from GEE to the user’s local drive. 

Then, a Lee filter with a 5 window size was used to 

reduce the speckle noise in the study area. After the 

speckle noise reduction, the VH and VV 

polarizations images were stacked and re-uploaded 

to the GEE as an asset for the further process. 

Besides the Sentinel-1 data, the subtraction between 

VH and VV polarization (VH-VV) for each image 

were also calculated. The speckle noise process was 

applied to the subtraction of VH and VV 

polarization with similar steps. 

Sentinel-2 images are often affected by clouds; 

therefore, the cloud removal process for Sentinel-2 

was processed in GEE. In general, the cloud 

removal process consists of cloud and shadow 

removal. Cirrus clouds were removed by subtracting 

the bands in each image with the cirrus band or the 

tenth band of Sentinel-2. The cloud area with a 

greater thickness than cirrus was selected with the 

rule condition if the reflectance value in red band, 

green band, and blue band are greater than 1700. 

Meanwhile, the shadow was removed based on the 

calculation of green (B3), blue (B2), and red edge 

(B8A) bands. The area identified as a shadow if the 

red edge reflectance value is between 900 and 1800, 

and the division of blue and green band is greater 

than 1.2. These calculations were modified from the 

automatic cloud and shadow detection for optical 

satellite imagery (Parmes et al., 2017). Then, the 

normalized difference vegetation index (NDVI) was 

calculated from the ratio of the near infrared band 

(B8) and the red band (B4). 

 

2.3.2 Classification process 

The GEE provides several types of supervised and 

unsupervised classification algorithms. In this study, 

the supervised classification named “random forest” 

was chosen as the classifier. The random forest 

algorithm, in simple terms, can be defined as a 

forest made of several decision or predictor trees. 

Each tree depends on the value of the random 

sample independently, with equal distribution for 

the entire tree in the forest (Breiman, 2001). The 

study area is divided into classes named upland 

fields, paddy, tobacco fields, settlement, woodland, 

and mixed garden crops. The training and accuracy 

assessment points for settlement, woodland, upland 

fields and mixed garden crops classes were selected 

based on the Pleiades image, with the assumption 

that the land use and land covers change of these 

classes was minimum and could be neglected. The 

class of tobacco fields was selected from the 

Sentinel-2 optical images. Meanwhile, the sample 

points and accuracy assessment points for the paddy 

fields were selected based on Sentinel-1 data. 

The field survey conducted on August 2017 

presented the paddy fields area in diverse stages. It 

was common to have some area in the early 

cultivation stage and the other area in the harvest 

stage. The steps for selecting the sample point for 

these paddy classes were as follows: 

 

(a) The woodland in the northern area and 

settlement areas are masked out. The average 

NDVI of Sentinel-2 in 2017 is calculated and a 

value greater than 0.63 is used as a woodland 

mask. The settlement mask for the average value 

of NDVI is less than 0.38, and the average VV 

band is greater than -3.8 dB. On the other hand, 

the slope area is masked out with the value less 

than -9 dB from the maximum VV polarization 

in one year. 

 

(b) The early stages for paddy fields, like 

transplanting, are crucial for detecting paddies 

using the SAR remote sensing, because this 

stage requires a lot of water. The 39 points from 

the transplanting stage during the field survey on 
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August 2017 was selected for calculating the 

average value of the backscatter coefficient. 

Thus, in this study, the area identified as paddy 

if the backscatter coefficient of each image is 

between -31 to -17.4852 dB (from the average 

value calculation). This step changes images into 

Boolean data, with 0 as false and 1 as true (fulfill 

the rule conditions). 

 

(c) Sentinel-1 images were divided into six 

groups according to the image acquisition 

month: January to February as (a), March to 

April as (b), May to June as (c), July to August 

as (d), September to October as (e), and 

November to December as (f). The total value 

was changed into Boolean values by applying a 

rule greater than 1 for the January to February 

group, and greater than 2 for the other groups. 

These rules are generated because the image 

acquisition in January and February are less than 

in other months. 

 

(d) The paddy fields were often cultivated two or 

three times a year. Therefore, paddy fields were 

separated into two types, paddy planted in 

January, May, or September, and named Paddy-

JMS, and paddy planted in March, July, and 

November, named Paddy-MJN class. The area 

with the value equaling 2 or 3 from the total of 

(a), (c), and (e) groups indicate Paddy-JMS, and 

the area with the value equaling 2 or 3 from the 

total of (b), (d) and (f) groups indicate Paddy-

MJN. The value equaling 1 indicates that the 

area was rarely cultivated as paddy fields and 

more likely to contain other croplands, such as 

maize, cassava, or other vegetable crops. 

Therefore, the area equaling 1 was omitted. 

 

(e) Following that, the images of the Paddy-JMS 

and Paddy-MJN area were converted into vector 

polygons. Both the vector polygons were used to 

generate 90 random points. 

 

The classification was run in GEE with the 

proportion around 70% sample points and 30% 

accuracy assessment points for all classes, which is 

described on Table 2. The random forest classifier 

was set with two numbers of trees equal to 25 and 

50. There are four sets combination of Sentinel-1 

polarization images (VH and VV) and the VH-VV 

polarization used for classifications. Table 3 

describes the detail of four sets of polarization 

combinations for the classification. Thus, there were 

eight classifications generated in this study. 

 

3. Results and Discussion 
3.1 Sentinel-1 and Sentinel-2 Data Pre-Processing 

Figure 3 shows the Sentinel-1 image before and 

after the speckle filtering process for an image taken 

on January 3, 2017. The RGB in Figure 3 is set with 

VV, VH, and VH-VV polarizations band composite 

to analyze the effect of speckle filtering. The 

backscatter coefficient became lower and the salt-

pepper noise was decreased after the speckle 

filtering process, as can be seen in Figure 3(b).

 

Table 2: Detail description of sample and accuracy assessment points 
 

Class Name Sample Points 
Accuracy Assessment 

Points 
Total Points 

Upland fields 73 31 104 

Paddy-JMS 62 28 90 

Paddy-MJN 63 27 90 

Tobacco fields 40 16 56 

Woodland 70 28 98 

Settlement  72 29 101 

Mixed garden crops 65 27 92 

Total Points 445 186 631 
 

Table 3: Polarization combination for the classification process 
 

Polarization 

Combination Name Description of Polarization Combination  
Number of 

Images 
25 50 

A_25 A_50 VH and VV polarization 112 

B_25 B_50 VH, VV, subtraction of VH and VV 168 

C_25 C_50 VH, VV, subtraction of VH and VV taken on January to 

February, May to June and September to October 

75 

D_25 D_50 VH, VV, subtraction of VH and VV taken on March to April, 91 
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July to August and November to December 

 
 

Figure 3: The Sentinel-1 image taken on 3 January 2017, (a) before speckle filtering process and (b) after 

speckle filtering process   

 
 

Figure 4: The distribution of Paddy-JMS and Paddy-MJN identification 

 

In addition, the boundary between northern and 

southern area became clearer compared to the image 

before the speckle filtering process. The VV, VH, 

and VH-VV polarizations band composite follows 

(Cazals et al., 2016). In (Cazals et al., 2016) study 

shown that the VV, VH, and VH-VV polarization 

band composite capable to differentiate the flooded 

area with non-flooded area. In Figure 3(b), the dark 

blue color shows low backscatter coefficient and 

indicates areas with higher moisture conditions, 

such as from land irrigation or agricultural activities 

for paddy field cultivation. The cloud cover in 

Sentinel-2 can be eliminated by the cloud removal 

method. However, pixel value content similar to 
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spectral value characteristics were identified as 

clouds or shadows and masked out in this process. 

The shadow removal is more difficult than the cloud 

cover removal due to its similarity with the water 

area and dense vegetation. Even though there is no 

large water body in the study area, the shadow can 

still be found in some part of the study area. Due to 

the high percentage of cloud coverage in several 

Sentinel-2 images, the Sentinel-2 was reduced from 

49 images to 20 images. 

 

3.2 Paddy Fields Area Identification 

The pixel area coverage of Paddy-JMS and Paddy-

MJN were calculated in GEE. The total area 

identified as Paddy-JMS and Paddy-MJN is 

approximately 415.83 Hectare and 548.78 Hectare, 

respectively. Figure 4 shows the area identified as 

Paddy-JMS in magenta and Paddy-MJN in cyan. 

The majority of paddy fields are identified in the 

southern part of study area. However, some bare or 

open fields in the northern part are also identified as 

Paddy-JMS or Paddy-MJN. These areas often 

inundated during rainfall and cause the moisture 

conditions to be higher than their surroundings. The 

backscatter coefficient became low which was 

misidentified as paddy fields. 

The average of temporal backscatter coefficient 

and NDVI from Paddy-JMS and Paddy-MJN areas 

were calculated in GEE, which are shown in Figure 

5. After cloud removal, there are five days that the 

Sentinel-1 and Sentinel-2 acquired the same satellite 

image: June 8, July 18, August 7, October 6, and 

December 5.  

 

 
Figure 5: The average of VH polarization backscatter coefficient and NDVI value from paddy JMS and paddy 
  

Figure 6: (a) The overall accuracy and kappa value of classification result and (b) the producer’s and user’s 

accuracy of all classes from random forest 50 classification 
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In order to simplify the visual presentation of the 

graph in Figure 5, only three dates were marked in 

black vertical lines. In general, the backscatter 

coefficient and NDVI value have similar temporal 

patterns. The fluctuating patterns of the backscatter 

coefficient in Figure 5 of Paddy-JMS occur from 

May to July. This phenomenon occurred because the 

Sentinel-1 images have two types of orbit modes—

ascending and descending—that have different 

backscatter coefficients. The area identified as 

paddy fields has a low backscatter coefficient and 

NDVI value at the starting time of paddy cultivation 

for both cropping patterns. The low backscatter 

coefficient was influenced by the structure of the 

paddy growing stages. The backscatter coefficient is 

low during the preparation of paddy field cultivation. 

For the Paddy-JMS, cultivation occurs in January, 

from May to June, and from September to October. 

The backscatter coefficient increases until the 

mature stage and then starts to decrease near harvest 

time. The similar backscatter coefficients 

characteristic shows by the paddy cultivated in 

March, July and November. 

However, the changes in backscatter coefficient 

trends came later compared to the NDVI value trend 

at around 20 days, which is the peak of the NDVI 

value in May for the Paddy-MJN, and the peak of 

the NDVI value in June for the Paddy-JMS. The 

NDVI value was derived from the optical remote 

sensing, meaning it is more sensitive to the 

greenness of the surface object. In comparison, the 

backscatter coefficient is more sensitive to surface 

structures conditions. As pointed by (Yang et al., 

2008), the paddy growth parameters such as plant 

height, water content and plant structure are the 

most responsible for backscatter coefficient. 

Therefore, the backscatter coefficient remained high 

because the area was covered by the mature stage of 

paddy field, and the NDVI started to have a lower 

value because the greenness of paddy was fading. 

By contrast, the backscatter coefficient started to 

decrease, similar to NDVI value, immediately after 

the mature stage of paddy fields. 

 

3.3 Classification Result 

Random forest with 50 trees gave higher 

classification accuracy with an average above 70% 

than the random forest with 25 trees, as can be seen 

in Figure 6(a). The highest classification accuracy 

was obtained using a combination B_50, with 

76.88% of the overall accuracy and 0.728 of the 

kappa value. The classification of D_25 gave the 

lowest accuracy, with 65.05% and 0.588 for overall 

accuracy and the kappa value, respectively. These 

results present that the additional bands from the 

subtraction of VH and VV polarizations increased 

both the overall accuracy and the kappa value, as 

can be seen in high accuracy for the classification of 

the B_25 and B_50 polarization band combination. 

Amongst all classes, both of producer’s and 

user’s accuracy of mixed garden crops classes 

remained below 60%. The average accuracy of the 

mixed garden crops class from 8 classifications is 

35.18% and 46.61%, for the producer’s and the 

user’s accuracy, respectively. The Figure 6(b) shows 

the producer’s and user’s accuracy classifications 

using random forest with 50 trees. The mixed 

garden crops class was often misclassified as an 

upland field class and a woodland class. The 

location of mixed garden crops is near the upland 

fields and is similar to upland fields but covered 

with tree canopy. It is because the C-band used for 

Sentinel-1 could not penetrate the dense canopy and 

received only the backscatter of the surface canopy. 

In the previous study (Mirelva and Nagasawa, 2018), 

mixed garden crops could be identified and 

classified better in L-band SAR, because the L-band 

could penetrate the canopy. Therefore, the mixed 

garden crops class tended to have lower accuracy 

and was misclassified as woodland class in C-band 

Sentinel-1. Settlement and woodland class have a 

minimum temporal change which influenced the 

stability of the backscatter coefficient in their 

surface area. Therefore, the accuracy of both classes 

is higher than other agricultural classes. The Paddy-

JMS and Paddy-MJN have an acceptable producer’s 

and user’s accuracy above 65% for all 

classifications. 

In Figure 7, the experimental part of study area 

sized 4 km2 of land uses and land covers consisting 

of settlements, paddy fields, and tobacco fields, 

which was selected to evaluate the classification 

results. The Sentinel-2 was taken on May 19, 2017, 

with band 4, band 3, and band 2 as RGB composite 

image. Some areas of the Paddy-JMS and the 

Paddy-MJN class were misclassified as tobacco 

fields because the tobacco fields were planted in the 

paddy field area during the dry season. The visual 

interpretation of Sentinel-2 indicates that the 

plantation of tobacco fields started in the middle of 

May 2017 and finished around the end of September 

2017. As a result, the net cover for tobacco 

plantation was removed and the area became paddy 

fields in October. Therefore, the tobacco fields were 

correctly identified in A_50, B_50, and C_50. 

However, in D_50, some areas, which were 

identified with a yellow circle, were classified as the 

paddy fields and upland fields because the fields 

were cultivated after harvesting the tobacco fields. 

Figure 8 shows the average of VH polarization 

backscatter coefficient for all classes. 



 
 

International Journal of Geoinformatics, Volume 15, No. 3, July-September 2019 

Online ISSN 2673-0014/ © Geoinformatics International   

29 

 

 
Figure 7: The image of Sentinel-2 taken on 19 May 2017 and classification result for (a) A_50, (b) B_50, (c) 

C_50 and (d) D_50 with experimental part shows in red square 
 

 
 

Figure 8: The average of VH polarization backscatter coefficient for all classes 
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The backscatter coefficient of tobacco fields is 

relatively low, around -16 dB during wet season in 

January and December after the harvest of tobacco 

field. Therefore, the tobacco fields were often 

misclassified as paddy fields. The other classes, 

such as woodland and settlement, have the most 

stable VH polarization. In this study, the complex 

agricultural area and two paddy fields cropping 

pattern can be identified and classified using 

Sentinel-1 in GEE. In VH polarization, the Paddy-

JMS, the Paddy-MJN, and the tobacco fields class 

have a lower average backscatter coefficient than 

other classes. A study conducted by (Tian et al., 

2018) confirmed that the backscatter coefficient of 

paddy fields was lower than the backscatter 

coefficient of other land covers. The backscatter 

coefficient of tobacco fields reached the highest 

backscatter coefficient on May 3, 2017, and May 30, 

2017, which are almost equal to other classes, such 

as woodland, settlement, upland fields, and mixed 

garden crops. The low moisture from land 

preparation for tobacco fields affected the low 

moisture in the soil, which shows in high 

backscatter coefficient. 

 

4. Conclusion 

The temporal microwave satellite images, such as 

Sentinel-1, could contain a large amount of data, 

and require a lot of storage for processing. However, 

GEE provides cloud-based storage for processing 

satellite images, including Sentinel-1. In this study, 

the Sentinel-1 data assisted with Sentinel-2 were 

successfully classified for the complex agricultural 

area in GEE platform. The threshold of backscatter 

coefficient less than -17.4852 dB and greater than -

31 dB generated a paddy fields area. As a result, the 

cropping pattern of paddy fields was calculated 

based on how many times paddy fields were 

cultivated. In this study, the cropping patterns were 

separated into two types, Paddy-JMS (paddy planted 

in January, May, and September) and Paddy-MJN 

(paddy planted in March, July, and November). The 

average producer’s and user’s accuracy for both 

paddy fields was above 65%. A comparison of the 

backscatter coefficient and NDVI value of these 

paddy fields classes shows the backscatter 

coefficient was more sensitive to the surface 

structure, which led to the shifting time between the 

backscatter coefficient and NDVI. The random 

forest with 50 trees gave higher accuracy than the 

random forest with 25 trees, especially accuracy for 

the dataset with less polarization band combination. 

The combination band of VH, VV, and the 

subtraction of VH and VV polarization classified 

with the random forest with 50 number of trees 

obtained the highest overall accuracy and kappa 

value as 76.88% and 0.728, respectively. In this 

study, the Sentinel-1 was found to be very useful for 

agricultural croplands, especially paddy fields with 

different cropping patterns. The Sentinel-2 provides 

NDVI and the images for selected sample points and 

accuracy assessment points. As a result, the 

processing of Sentinel-1 and Sentinel-2 using GEE 

could successfully be applied in the agricultural 

croplands classification in tropical areas. 
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