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Abstract 

Monitoring land use/land cover change at various scales is of foremost importance for the management of 

natural resources and pivotal to achieve effective environmental governance. The purpose of this study was to 

classify land use/land cover and to quantify changes in land use/land cover in Luangnamtha district, northern 

Laos over the past two decades, using remote sensing and Geographic Information System technologies. We 

used Landsat 5 Thematic Mapper (TM) images from 2000, 2005, 2010 and Landsat 8 Operational Land Imager 

(OLI) images from 2017. A supervised classification was achieved by applying the maximum likelihood 

algorithm in the ENVI software. Five land cover classes, namely agriculture, forest, rubber tree, settlement and 

water were thus identified. The nature and extent of change detected was analyzed on the basis of the land use 

maps generated for years 2000, 2005, 2010 and 2017. We applied spatial point process theory to analyze spatial 

relationships between land use classes and with terrain covariables. The overall accuracy of our classifications 

were 86.8%, 89.3%, 90.4%, and 91.7% for the years 2000, 2005, 2010, and 2017, respectively and the Kappa 

coefficients were 0.76, 0.85, 0.85, and 0.89, respectively. The results of these classifications indicated that over 

the 2000 to 2017 period, settled areas increased by 2.35% (5,038 ha), water bodies increased very marginally 

(0.01% or 20 ha), but that rubber tree cover increased by as much as 7.60% (16,314 ha). During the same 

period, agricultural land decreased by 0.11% (224 ha) and the forested area shrunk by 9.84% (21,129 ha). 

Spatial analysis indicates that rubber tree plantations expanded from the lowest part of the landscape, in close 

spatial association with agricultural land, to increasingly higher locations where it most likely replaced forest. 

This study confirms that drivers such as government policies for permanent allocation of agricultural land 

poverty eradication, as well as foreign investments, had a major impact on the expansion of rubber tree 

plantation in Luangnamtha district from 2000 to 2017. 

 
1. Introduction 

The monitoring of land use/land cover change has 

become a central component of environmental 

natural resources management. Land use/land cover 

change is a complex process, resulting from a 

combination of social, political, economic, 

ecological, technological, cultural factors (Fox and 

Vogler, 2005) such as environmental development 

policies, human activities, and natural disaster at 

different scales, from local, regional, to global scales 

(Ram and Kolarkar, 1993, Lambin et al., 2001 and 

Muttitanon and Tripathi, 2005). Across Southeast 

Asia, over the past 100 years, natural resources have 

decreased steadily, due to population growth and 

conversion of forested land for food production, 

initially through the expansion of shifting cultivation 

(Fox, 2000, Sandewall et al., 2001 and Inoue et al., 

2010) and subsequently as a result of national land 

tenure policies and international market pressures 

(Fox and Vogler, 2005). In Recent decades, 

Southeast Asia has undergone the highest rate of 
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 deforestation in the tropics and sub-tropics (Zhao et 

al., 2006). For example, in Menglun, Xishuangbanna, 

the extent of rubber tree plantations increased by 12% 

while forested areas dropped from 49% to 28% 

between 1988 and 2006 (Hu et al., 2008). Global 

externalities of land use change such as tropical forest 

conversion, shifting cultivation and clearing of 

secondary vegetation include increased emissions of 

greenhouse gases in future decades (Fearnside, 

2000). 

In the uplands of northern Laos, shifting 

cultivation has played an important role in rural 

livelihoods for decades (Luangmany and Kanako, 

2013). In recent years, farmers have rapidly moved 

from traditional shifting cultivation to permanent and 

diversified market-oriented cultivation systems 

(Thongmanivong et al., n.d., Phanvilay et al., 2006, 

Thongmanivong and Fujita, 2006 and Vongvisouk et 

al., 2014), particularly since the market liberalization 

in 1986 (Phimphanthavong, 2012). Following road 

network development/improvement and the re-

opening of regional borders in the early 1990s, the 

province of Luangnamtha has undergone accelerated 

conversion from subsistence cultivation into 

permanent agriculture, in particular with Chinese 

investments promoting sugarcane and rubber tree 

cultivation (Thongmanivong et al., n.d.). This 

transition from shifting cultivation to other land uses 

is systematically associated with permanent 

deforestation, forest degradation, loss of biodiversity, 

increased weed pressure, decreasing soil fertility and 

accelerated soil erosion (van Vliet et al., 2012, 

Castella et al., 2013 and Kim et al., 2017). Therefore, 

over the past 20 years, the Government of Laos 

(GoL) has issued several policies such as the Shifting 

Cultivation Stabilization and Arranging Permanent 

Occupations Program in 1989; the Village Land Use 

Planning and Land Allocation Program (LUP-LA) in 

1993; and the Participatory Agriculture and Forest 

Land Use Planning (PLUP) at village and village 

cluster levels in 2010. Through these policies, the 

GoL has aimed to convert shifting cultivation to more 

permanent land use and associated occupations while 

increasing family income and expanding forest cover 

(Ministry of Agriculture and Forestry and National 

Land Management Authority, 2010). As part of this 

process, the GoL has identified the eradication of 

poverty as a priority, and has, as such aimed to 

increase land tenure security in order to encourage 

farmers to engage into intensive farming and to 

eliminate shifting cultivation to protect the 

environment, in a country still rich in forest resources 

(Ducourtieux et al., 2005). Through this process, the 

GoL aims to increase trade and market with 

neighboring countries (mainly China, Vietnam and 

Thailand) via the production of commodity crops 

such as watermelon, maize, sugarcane, vegetables 

and rubber tree (Thongmanivong and Fujita, 2006). 

In Luangnamtha district, rubber tree planting started 

in 1994 at Ban Hatyao, which became the first rubber 

producing village of Laos, with tapping operations 

starting in 2002. At the time, the trading price of para 

rubber was high and farmers were getting high 

income from latex sales. As a consequence, rubber 

boomed in 2003, promoted by foreign traders and 

companies, with the official support of government 

policies (Alton et al., 2005, Manivong and Cramb, 

2007 and Shi, 2008). Promoting rubber tree 

plantation was seen as a means to replace opium 

cultivation, reduce shifting cultivation, provide 

permanent occupations, increase family income, 

protect natural forests, and sustainably eradicate 

poverty (Vongvisouk and Dwyer, 2017). 

Consequently, while many farmers initially 

converted their agrarian and fallow fields to cultivate 

cash crops such as sugarcane, maize, and cassava, 

they eventually moved to rubber tree plantations 

(Alton et al., 2005). The resulting expansion of 

smallholder rubber tree plantations has been one of 

the most extensive and rapid land use change in the 

uplands of northern Laos (Manivong et al., 2003). 

Awareness and the knowledge of land use/land cover, 

and of how they vary with time at a range of scales 

are very important to understand natural resources, 

their utilization, conservation and management 

(Nagamani and Ramachandran, 2003). Many studies 

have used remotely sensed data to classify land use 

types and analyze, land use/land cover change at 

different scales in order to develop management 

strategies for sustainable land resource use (Hu et al., 

2008, Rawat et al., 2013, Zhang et al., 2014, Butt et 

al., 2015 and Liu et al., 2016;). Indeed, quantifying, 

analyzing and interpreting geographical dynamics 

such as land cover change is an effective 

methodology for monitoring, assessing and planning 

the impacts of land use/land cover change. 

Understanding land use/land cover type is very 

important to assess and manage areas of critical 

concern for environmental control such as flood 

plains and wetlands, energy resource development 

and production areas, wildlife habitat, recreational 

lands, and areas such as major residential and 

industrial development sites (Anderson et al., 1976). 

Many publications have discussed that land use and 

land cover classification is a process that depends on 

the purpose of study and its scale (Anderson et al., 

1976, FAO, 2000 and Hu et al., 2008). While such 

detailed studied have covered nearby regions of 

Xishuangbanna (Hu et al., 2008), there is a paucity of 

studies on recent land use change in Lao PDR, 

despite reports and ancillary data that indicate the 

occurrence of extensive land use change across the 
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 country (Shi, 2008 and Vongvisouk and Dwyer, 

2017). In this perspective, the main objective of this 

study was to classify the categories of land use/land 

cover, and to quantify land use/land cover change 

over the 2000 to 2017 period, in Luangnamtha 

district, northern Laos, using remote sensing and 

Geographic Information System technologies. 

Further to the results of a supervised classification 

based on applying the maximum likelihood 

algorithm, we present and discuss land use/land cover 

change detected as well as some spatial interactions 

between land use classes and covariables. 

 

2. Materials and Methods 

2.1 Study Area  

Luangnamtha district is located to the northeast of 

Luangnamtha province between latitudes 204551 

N and 211522 N and longitudes 1010929 E and 

1014635 E, corresponding to and area of 214,662 

ha. The Luangnamtha district shares a border with the 

People’s Republic of China to the North and with the 

Oudomxay province to the East while Nalae, 

Viengphoukha and Sing districts of Luangnamtha 

province lie to its southern and western borders. 

Elevations range from 472 to 1,993m a.s.l. and 

approximately 75% of the district is mountainous, 

37% with slopes >10°, while 25% is plateau and plain 

areas. The climate of Luangnamtha district 

undergoes two seasons: the dry season from 

November to April, and the rainy season from May 

to October. The annual rainfall averages 

approximately 1,420 mm, and the annual average 

temperature is 25°C (Agricultural Land Research 

Center, 2008). In 2015, Luangnamtha district had 

54,089 inhabitants, equivalent to about 31% of the 

total population of Luangnamtha province; the 

population density was of the order of 19 inhabitants 

per Sq.Km. and the population growth rate was 1.9% 

(Lao Statistics Bureau, 2015). The main industries of 

Luangnamtha are agriculture, wood processing, 

lignite and copper mining, handicraft production, 

transportation and tourism. Most inhabitants of the 

study area are engaged in agriculture, planting rice, 

corn, vegetables, cassava and peanuts. Other 

important agricultural products include buffalo and 

other cattle, fish, chicken, rubber, teakwood, 

watermelon, sugarcane and pepper. Forest products 

such as bamboo shoots, mushrooms, rattan, 

cardamom and ginger are also important sources of 

income for the rural population (Tourism Marketing 

Department, 2012). Moreover, the study area 

includes parts of the Nam Ha National Biodiversity 

Conservation Area (Nam Ha NBCA) established by 

Prime Minister’s (PM) Decree No.164, 29 October 

1993, which covers an area of 222,400 ha or 23.85% 

of Luangnamtha province (MoNRE-IUCN, 2016), 

117,709 ha or about 54.83% being located in the 

Luangnamtha district (Figure 1).  

 

2.2 Data Preparation  

 In this study, the Landsat 5 Thematic Mapper (TM) 

and Landsat 8 Operational Land Imager (OLI) 

images were obtained from the U.S. Geological 

Survey Earth Explorer Website 

(http://earthexplorer.usgs.gov/). These images have a 

spatial resolution of 30m. We used images from four 

different periods, namely, 2000 acquired on 12th 

February, 6th March and 7th April; 2005 acquired on 

16th February and 25th February; 2010 acquired on 7th 

and 14th February, and 2017 acquired on 5th and 14th 

March. The period at which these images were 

acquired was chosen because it corresponds to the 

period of the dry season during which cloud cover is 

minimal. However, for the four investigated years, 

we could not obtain images from the same exact date 

or within a couple of days due to cloud cover. The 

season during which these images were acquired 

overlaps the defoliation (between January to 

February) and the beginning of the re-foliation 

phases of rubber trees. The characteristics of these 

images are described in Table 1. Furthermore, 

Google Earth imagery acquired at times 

corresponding to that of Landsat images used for land 

use/land cover classification was used as an 

additional source of information to determine sample 

points in conjunction with the Landsat. The sample 

points were collated in reference data forms used to 

conduct field surveys and interview local people. 

 

2.3 Pre-Processing 

All Landsat data were geometrically corrected and 

calibrated to the Universal Transverse Mercator 

(UTM), Zone 47N, and WGS 84 Datum. We used 

images without cloud cover for the four different 

years analyzed. Our study area being located at the 

boundary of four connected Landsat images scenes, 

images were preprocessed individually and 

subsequently mosaicked using ENVI software 

(Boulder, Colorado USA) to co-register and 

normalize images from different dates and produce a 

seamless single image that covers the whole study 

area (Figure 2). As images from year 2000 were 

acquired on 12th February, 6th March and 7th April, 

similar combinations of data dates were used for the 

other years as indicated in Table 1. Google Earth 

imagery and sample points from fieldwork were used 

for both the land use/land cover classification and 

accuracy assessments. 

 

2.4 Land Use Classification Methodology 

The Luangnamtha district presents several physical 

specificities that led us to conduct a land use 
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 classification based on supervised image 

classification. First, the district is very mountainous 

with steep slopes with over a third of the landscape 

corresponding to terrain with slopes > 10°, which is 

problematic because of variations in the sun 

illumination angle. Second, agricultural areas are 

generally small upland plots located along roads, 

rivers, and valleys which are often smaller than the 

30x30 m size of pixels. Finally, access to many areas 

is difficult and time-consuming in the absence of 

access roads and due to the rugged nature of terrain, 

which led us to recourse to the use of high resolution 

imagery to complement ground-truth field data. 

 

 
 

Figure 1: Location of the study area: Luangnamtha District and Province, Northern Laos (The red color line is 

the boundary of the study area. The black color line and the inner green shading outline the boundary and extent 

of the Nam Ha NBCA in the study area. The color composite background image uses the near-infrared, red, and 

green spectral bands of Landsat 8 OLI in 2017) 
 

 
 

Figure 2: Four connected Landsat images scenes (left) and Landsat image after preprocessing (right) 
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 Table 1: Data characteristics of Landsat images 
 

Years Path/Row Date of acquisition Resolution (m) Sensors 

2000 

129/45 

130/45 

130/45 

12 February 2000 

06 March 2000 

07 April 2000 

30 

30 

30 

TM 

TM 

TM 

 

2005 
130/45 

130/46 

129/45 

129/46 

16 February 2005 

16 February 2005 

25 February 2005 

25 February 2005 

30 

30 

30 

30 

TM 

TM 

TM 

TM 

 

2010 
129/45 

129/46 

130/45 

130/46 

07 February 2010 

07 February 2010 

14 February 2010 

14 February 2010 

30 

30 

30 

30 

TM 

TM 

TM 

TM 

2017 
129/45 

130/45 

14 March 2017 

05 March 2017 

30 

30 

OLI 

OLI 

 

Unsupervised image classification or hybrid 

classification (unsupervised followed by supervised) 

can reportedly yield improved product accuracy than 

either approach used separately (Rozenstein and 

Karnieli, 2011 and Ishtiaque et al., 2017), particularly 

for large and complex areas for which ground-

truthing is not possible and ancillary data are lacking. 

On the other hand, supervised classification can 

prove superior when ground-truthing is possible and 

provided training sites are well chosen and classes are 

spectrally sufficiently distinct. Since we could afford 

ground truthing, we opted for supervised 

classification. 

A field survey was conducted to validate the land 

use classification and accuracy assessment. 

Fieldwork was undertaken from mid- June to the 

beginning of July, 2017 (i.e. during the cropping 

period in the rainy season). Sampling points were 

purposely selected near roads and rivers to ensure 

convenient access of each land use type, and were 

marked on the Landsat and Google Earth images (for 

the years 2000, 2005, 2010, 2017). For older time 

periods and remote areas, visual interpretation of 

high spatial resolution images of the Google Earth 

imagery was combined with interviews of local 

people. In the field, the coordinates of sample points 

were recorded using the Geographical Positional 

System (GPS), and then input into the GPS forms. 

Google Earth Pro V 7.1.5.1557. (February 21st, 2017. 

Luangnamtha district and province, Lao PDR. 

20°5740.63N, 101°2401.25E, Eye alt 13.01 mi. 

CNES/Airbus 2017, DigitalGlobe 2017. 

http://www.earth.google.com [June 5, 2017]). These 

sampling points were locations where ground truth 

information was collected in order to improve the 

land use/land the supervised classification; they were 

chosen so as to encompass the classes of land use 

classified, namely agriculture, forest, rubber tree, and 

settlement, except water, as shown in Figure 3. Field 

photographs of specific land use patterns (namely 

agriculture (paddy field and upland rice), settlements 

(mixed urban), water (pond), rubber tree plantations, 

and forest) were taken at each ground-truth sampling 

point as shown in Figure 4. 

 

2.5 Land Use/Land Cover Classification 

For this research we selected the closest values of 

wavelength including Band 4 (NIR), Band 3 (RED), 

and Band 2 (GREEN) for Landsat 5 TM, and Band 5 

(NIR), Band 4 (RED), and Band 3 (GREEN) for 

Landsat 8 OLI. The sample points of 153, 164, 167 

and 167 points was used for the four categories of 

land use classified in this work (Table 2), for the 

years 2000, 2005, 2010 and 2017, respectively. 

Training areas were defined by delineating 60x60 m 

polygons around representative sites. All sample 

points were intentionally chosen to be located in the 

middle of these representative training areas. The 

supervised classification method with maximum 

livelihood algorithm was applied in the ENVI 

software for classification of land use/land cover 

types. We used the Normalized Difference Water 

Index (NDWI) to detect surface waters (Xu, 2006, 

Hui et al., 2008, Rozenstein and Karnieli, 2011 and 

Ishtiaque et al., 2017). The NDWI is calculated using 

Equation (McFeeters, 1996). 

 

NDWI = PGREEN – PNIR / PGREEN + PNIR 

 

Equation 1 

 



 

International Journal of Geoinformatics, Volume 16, No. 1, January-March 2020 
Online ISSN 2673-0014/ © Geoinformatics International 

9
0

 

 
Figure 3: Location of GPS sampling points and background image is the Landsat OLI 8 acquired on 5th and 

14th of March 2017 (left), and Google Earth Imagery sampling points and background image is the Google 

Earth Imagery on February 2017 (right) for image classification in 2017 

 

 
 

Figure 4: Pictures from ground-truth sampling points in the Luangnamtha district, (a) Paddy field; (b) Upland 

rice; (c) Mixed urban of Namyang village; (d) Pond ; (e) Rubber planted at Ban HatNgao (1994); (f) Forest; 

these pictures were taken in June, 2017 

 

Table 2: Land use and land cover classification scheme 
 

No. Land use/land cover types Description 

1 

2 

 

3 

4 

5 

Agriculture 

Forest 

 

Rubber 

Settlements 

Water 

Paddy rice, upland rice, annual crops and fruit tree  

Evergreen forest, deciduous forest, gallery forest, bamboo, 

savannah and scrub 

Rubber tree plantation 

Residential, commercial, roads, mixed urban 

Rivers, reservoirs, ponds 

 

Where PGREEN is the TOA green light reflectance and 

PNIR is the TOA near-infrared (NIR) reflectance. 

NDWI was calculated for each of the four years 

(2000, 2005, 2010, and 2017) using the Raster 

Calculator and Reclassify tools of the Spatial Analyst 

Extension in ArcGIS. Finally, we combined the 

resultant water and the result derived from supervised 

classification together by using the Update tool in the 

Analysis Tools in ArcGIS, to produce the maps of 

land use/land cover types from year 2000 to 2017. 

2.6 Accuracy Assessment 
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 The quality of information derived from field survey, 

interview of local people and visual interpretation on 

Google Earth imagery was determinant for the 

validation of land use/land cover classification 

accuracy of years 2000 to 2017 (Figure 5). An 

independent reference data sample of 152, 159, 188 

and 168 points was used for accuracy assessment of 

years 2000, 2005, 2010 and 2017, respectively. The 

accuracy assessment was carried out using the overall 

accuracy, user and producer accuracy and Kappa 

coefficient (Congalton, 1991 and Congalton and 

Green, 2009). 

 

2.7 Land Use/Land Cover Change Detection 

Analysis 

Change detection was analyzed over 3 short-term 

periods, namely between the years 2000-2005; 2005-

2010; and 2010-2017 as well as the full time-span of 

the set of classified images, i.e. 2000-2017 in 

Luangnamtha district (Rawat and Kumar, 2015 and 

Tran et al., 2015). Change detection was performed 

in ArcGIS by overlaying the land use maps of each 

short-term and long-term period. A change matrix 

was produced with the help of PivotTable in Excel in 

order to make a cross-tabulation to produce the land 

use change for each time period across the study area. 

 

2.8 Assessment of Spatial Relationships between 

Land Use Classes and Covariables 

Additionally, we assessed spatial relationships 

between the patterns of Settlements, Agriculture and 

Rubber pixels and variables that putatively represent 

explanatory variables of these patterns, such as 

elevation, slope and distance to forest. This was 

achieved by handling land use classes as point 

patterns and assessing their density distribution 

relative to covariates (Baddeley et al., 2012). In this 

specific application, point data provide the location 

of objects, i.e. here the coordinates of pixels 

belonging to a given land use class and are 

complemented with a categorical mark 

corresponding to the observation year. The 'rgdal' 

(Bivand et al., 2018) raster (Hijmans, 2018) and 

'spatstat' libraries (Baddeley et al., 2015) for the R 

environment (R Core Team, 2018) were used for 

practical handling of GIS files and subsequent 

computations. We first computed, for each land use 

in each year the densities of the corresponding point 

processes on a surface tessellated according to 

distance classes, namely, <30, 30 to 60 and >60 m to 

the Forest class in the corresponding year. The same 

calculation was carried using aggregated datasets of 

the four observations periods for each land use. 

Covariate maps of terrain elevation and slope as well 

as of Euclidean distance to forest pixels (generated 

with the 'distmap' function of library 'spatstat') were 

used as an argument to the 'rhohat' function of 

'spatstat' to estimate the spatial density of pixels 

corresponding to the Rubber, Settlement and 

Agriculture classes in each of the four considered 

years as a function of these covariates. 

 

3. Results 

3.1 Land Use/Land Cover and Accuracy Assessment 

in Luangnamtha District 

The results of our land use/land cover classification 

of Luangnamtha district for years 2000, 2005, 2010, 

and 2017 are shown in Figure 6 and Table 3. The 

results reveal that the overall accuracies of land 

use/land cover classification and the Kappa 

coefficients were 86.8%, 89.3%, 90.4% and 91.7%; 

and 0.76, 0.85, 0.85, and 0.89, respectively for the 

years 2000, 2005, 2010, and 2017 (Table 4). 

 

3.2 Land Use/Land Cover Change in Luangnamtha 

District 

As shown in Figure 7, the five classified land 

use/land covers went through various trajectories of 

change over each of the four time periods considered. 

We found that forested land steadily declined from 

2000 to 2017. Likewise, agricultural land underwent 

major decrease in the first short-term period (2000-

2005) and over the long-term period (2000-2017), but 

increased marginally over the second and third short-

term periods (2005-2010; 2010-2017). In contrast, 

settlement modestly but steadily increased from 2000 

to 2017, while water increased gradually in the first 

and second short-term periods (2000-2005; 2005-

2010) but decreased in the third short-term period 

(2010-2017). Rubber tree plantations expended 

massively during each time interval, but this 

expansion tended to gradually slow down towards the 

third time interval (2010-2017). Table 5 shows the 

land use/land cover change matrix of 3 short-term 

and 1 long-term periods in Luangnamtha district. In 

the first short-term period, all land cover classes 

except forest went through a major conversion from 

the original land cover class to another class. For 

example, the conversion of agricultural land to forest, 

rubber, settlement and water was 37.3%, 10.7%, 

5.3% and 0.3% in the first period 2000-2005, 

respectively. Over this period, forested land changed 

the least with 95.8% of this land cover remaining in 

the same class. However, the proportion of settlement 

in the second short-term period (2005-2010) greatly 

increased, and from agricultural land to other classes 

in the third short-term and long-term periods (2010-

2017; 2000-2017). 



 

International Journal of Geoinformatics, Volume 16, No. 1, January-March 2020 
Online ISSN 2673-0014/ © Geoinformatics International 

9
2

 

 

 
                                             A                 B                    C                  D                    E  

 

Figure 5: Google Earth Imagery on February 2017 used for accuracy assessment in 2017; (A) natural forest, (B) 

rubber tree plantation, (C) settlement, (D) water, and (E) Agriculture. 
  

 
Figure 6: Land use/land cover maps in the Luangnamtha district during 2000 to 2017 
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 Table 3: Land use/land cover types in Luangnamtha district during 2000-2017 
 

 

Table 4: Confusion matrix statistics of land use/land cover (in %) during the years of 2000 to 2017 in 

Luangnamtha district 
 

Years 
Land use 

types 
1 2 3 4 5 

Overall 

accuracy 

Overall 

coefficient 

2000 Producer 80 90 75 86 75 86.8 0.76  
User 71 96 60 80 75 

2005 Producer 92 95 67 85 80 89.3 0.85  
User 85 99 67 88 67 

2010 Producer 82 96 81 88 83 90.4 0.85  
User 77 97 85 92 71 

2017 Producer 95 95 86 89 80 91.7 0.89 

  User 91 95 94 86 80 
 

Table 5: Land use/land cover change matrix (in %) during the 3 short-term periods and 1 long-term period in 

the Luangnamtha district 
 

Years       
 

Period 2000-2005 1 2 3 4 5 

 

2005 

 

1  46.4   2.2   54.9   22.2   13.3  

2  37.3   95.8   26.7   23.3   8.9  

3  10.7   1.5   15.6   5.6   0.6  

4 

5 

 5.3  

0.3 

 0.4  

0.0 

 2.6  

0.2 
 47.4  

1.5 

 3.7  

73.5  

Period 2005-2010 1 2 3 4 5 
 

1  44.9   3.9   28.0   20.8   9.6  
 

2  22.4   91.8   38.4   19.7   7.9  

2010 3  24.1   3.5   30.5   12.8   0.4  
 

4 

5 

 7.9 

  0.7 

 0.8  

0.0 

 3.0  

0.1 
 45.2 

  1.4 

 8.2  

73.9  

Period 2010-2017 1 2 3 4 5 
 

1  35.6   4.2   20.3   15.2   9.7  
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4 
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Land use 

types 
2000 2005 2010 2017 

Change (%) 

2000-2017  Area (ha) % Area (ha) % Area (ha) % Area (ha) % 

1 16,332  7.61  12,829  5.98   15,279   7.12   16,088   7.49  -0.11 

2 195,337 91.00  193,972 90.36  183,304  85.39   174,208  81.15  -9.84 

3 795  0.37  4,836  2.25   11,650   5.43   17,109   7.97  7.60 

4 
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342 

 1.25 

0.16   

 3,962  

466 

 1.85 

0.22   
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Figure 7: Dynamics of land use/land cover change in percent of the 3 short-term periods and 1 long-term 

period in the Luangnamtha district 
 

 
Figure 8: Land use/land cover change maps for short-term periods and long-term periods in the Luangnamtha 

district 
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 Table 6: proportions of pixels corresponding to the four Land Use classes (Rubber, Settlements, Agriculture 

and Forest) located at less than 60 m from pixels of Forest class 
 

Land use types 2000 2005 2010 2017 2000-2017 

Rubber 0.36 0.53 0.44 0.43 0.94 

Settlements 0.35 0.42 0.39 0.37 0.65 

Agriculture 0.47 0.37 0.41 0.49 0.73 

Forest 1 1 1 1 1 

 

Furthermore, there was a slight change from land use 

of any given class to another class that can be 

observed in each time interval in the study area. 

Figure 8 shows the spatial distribution of change of 

land use/land cover classes to the other class, from 

2000 to 2017 across Luangnamtha district. This 

figure reveals the locations where both change and no 

change occurred. Most of Luangnamtha district is 

mountainous; therefore, we can observe that most of 

the agricultural/forestry production areas are 

concentrated along the main roads, rivers or streams, 

and flat valley bottoms in the northeast, especially 

around urban centers, which is also where most land 

use change is observed, for all the time intervals 

considered in the study. 

 

3.3. Spatial Relationships between Land Uses and 

Covariables 

As Forest covered nearly 91% of the studies area in 

2000 and 81% in 2017, we assessed the spatial 

relationships between the three other classes of land 

uses considered in this work and forest. Point 

densities at distances less than 60 m from Forest 

pixels indicated that, in all years, Agriculture and 

Rubber were closest to the forest than settlements and 

that in 2005, more than 50% of rubber pixels were 

located within a maximum distance of two pixels (60 

m) from forest pixels (Table 6). When considering 

the distances of pixels of the three non-forest land 

uses of the four considered periods to the forest pixels 

of the same four periods, it appeared that 94, 73 and 

65% of Rubber, Agriculture and Settlement pixels, 

respectively were located within less than 60 m of 

Forest pixels (Table 6), suggesting that these three 

land uses were established over the 17-year time span 

considered here, at the expense of forest and that the 

highest proportion of rubber plantations were gained 

from forest, followed by agriculture and settlements. 

The nonparametric estimator of the dependence 

of a spatial point process on spatial covariate 

(Baddeley et al., 2012) allowed assessing the spatial 

density of pixels corresponding to Rubber as a 

function of the distance to pixels classified as 

pertaining to other land uses. Overall, as shown in 

Figure 9a, when comparing the spatial density of 

pixels classified as rubber in 2017 to pixels 

corresponding to other land uses, aggregated over the 

whole 2000-2017 period, it appears that the strongest 

dependence (besides that of rubber pixels with 

themselves, data not shown) was observed between 

Rubber and Agriculture pixels. Spatial dependence of 

Rubber upon both distance to Settlement and Forest 

appeared qualitatively similar, with a density peak at 

less than 200 m from both Settlement/Forest pixels. 

When considering these spatial relationships 

between rubber and other land uses year by year, it 

appears that they were qualitatively equivalent in all 

years (data not shown). However, the intensity and 

spatial range at which rubber was associated with 

forest changed substantially over the study period 

(Figure 9b): the density of rubber tree plantations at 

distances <200 m from Forest pixels of the 

corresponding year increased regularly throughout 

the study period, as indicated by increasing ρ values. 

These strong short range interactions, particularly in 

2005 and 2010 are consistent with the results of the 

analysis based on densities of point processes on 

distance-tessellated surfaces. Further, it appears that 

densities of rubber tree plantations at distances > 600 

m, which was almost virtually null until 2010 

increased dramatically in 2017 as indicated by the 

major increase in ρ values at distances from Forest 

pixels > 600 m from 2010 to 2017. Estimates of ρ for 

the Rubber pixels of each successive year as a 

function of distance to Forest pixels in 2017 (Figure 

10) also indicate that, throughout the study period, 

the highest densities of rubber tree plantations 

progressively shifted closer to the edges of forest as 

they appeared in 2017. 

When considering the spatial dependency of land 

use classes with terrain elevation and slope, it 

appeared that both Agriculture and Rubber were 

associated with low elevations (500 to 900 m) while 

forest was mostly present at intermediate elevations 

ranging from 900 to 1,600 m. The case of Settlements 

was different, with strong dependency at both ends of 

the elevation range (Figure 11).  
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a b  
Figure 9: a. From top left to bottom left panel, clockwise: estimates of �̂�  (kernel density estimation of 

dependence of a spatial point pattern on spatial covariates; Baddeley et al., 2012) for the Rubber pixels from 

the 2017 classification as a function of distance to nearest Settlement, Agriculture Rubber and Forest pixels 

(distances computed based on unmarked point processes with all years (2000-2017) aggregated). b. Estimates 

of �̂� for the Rubber pixels of each year of the observation period as a function of distance to nearest Forest 

pixels in the corresponding year. Lines are estimates of ρ. Grey shading indicates ±2 standard deviation 

(nominally 95% pointwise confidence) intervals 

 
 

a     b  
 

Figure 11: Estimates of �̂�  (kernel density estimation of dependence of a spatial point pattern on spatial 

covariates; Baddeley et al., 2012) for the four Land Use classes (unmarked point processes, all years aggregated) 

as a function of a. terrain elevation and b. slope. Dashed lines are estimates of �̂�. Grey shading indicates ±2 

standard deviation (nominally 95% pointwise confidence) intervals 
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Figure 10: a. estimates of �̂� (kernel density estimation of 

dependence of a spatial point pattern on spatial covariates; 

Baddeley et al., 2012) for the Rubber pixels of each year of 

the observation period as a function of distance to nearest 

Forest pixels in 2017. Lines are estimates of  �̂� . Grey 

shading indicates ±2 standard deviation (nominally 95% 

pointwise confidence) intervals 
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Figure 12: a. estimates of �̂�  (kernel density 

estimation of dependence of a spatial point pattern on 

spatial covariates; Baddeley et al., 2012) for the 

Rubber pixels of each year of the observation period 

as a function of terrain elevation. Lines are estimates 

of �̂�. Grey shading indicates ±2 standard deviation 

(nominally 95% pointwise confidence) intervals 

 

Agriculture appeared more strongly associated with 

flat terrain (<10 degrees) than Rubber, which 

displayed a weaker dependency to low slopes. Forest 

was associated to both gentle and steep terrain while 

settlements were found in both the flattest and 

steepest areas of the studied region (Figure 11). Over 

years, it appears that, while the peak of rubber tree 

point density remained centered around elevations of 

about 600 m, rubber tree plantations also became 

increasingly frequent at higher elevations as 

indicated by higher ρ values for successive years at 

elevations > 600 m (Figure 12).  

 

4. Discussion 

Agriculture remains a main source of income for the 

populations that reside in the rural areas of many 

Southeast Asia countries (Putzel, 2000). The 

majority of farmers have used their lands for 

subsistence and commercial production. On the other 

hand, although they focus on cash production, but 

they still produce subsistence output because this 

helps reduce the risks associated with market demand 

(Manivong, 2007). This research aimed to 

characterize and analyze land use/land cover change 

in the Luangnamtha district, northern Laos, from 

2000 to 2017, based on remote sensing and 

Geographic Information System techniques. The 

overall accuracy of the land use classification 

presented in this paper ranged from 86.8% and 

91.7%, indicating that the classification computed 

can be accepted in the study area. However, there are 

limitations related to the collection of some training 

points, particularly for older time periods and remote 

areas. To attempt solving such problems, we relied 

upon information provided by farmers who have 

knowledge of the areas for which we could not obtain 

data directly and/or from imagery. In particular, we 

resorted to this an approach to collect some training 

points of agricultural land and rubber for year 2000 

and 2005. In the study area, the main land use/land 

cover was forest land which has found to have 

decreased of about 9.84% from 2000 to 2017. This 

result is consistent with other studies conducted in 

Luangnamtha province and northern Laos 

(Thongmanivong et al., n.d., Phanvilay et al., 2006, 

Luangmany and Kanako, 2013 and Liu et al., 2016). 

During the same time interval, agricultural land was 

reduced, particularly during the 2000-2005, period, 

but also over the whole 2000-2017 interval. Since 

2003, rubber tree plantations have boomed in 

Luangnamtha province (Shi, 2008), farmers having 

converted their swidden and fallow forests into 

permanent agricultural land (Thongmanivong et al., 

n.d.). From that time on, agricultural land (swidden) 

has not expanded and many paddy fields have been 

converted to woodland and construction land in 

Luangnamtha district (Liu et al., 2016). This 

narrative is in line with the results of our study which 

clearly indicate that rubber tree plantations sharply 

increased over the time span of the study period, 

while agriculture remained virtually unchanged and 

settlements expended much more gradually and to a 

much lesser extent. Overall, the spatial relationships 

between Land Use classes and terrain covariables 

that we have assessed in this work suggest that, over 

the 2000-2017 period, both rubber tree plantations, 

agriculture and settlements expended at the cost of 

loss of corresponding forested areas. Rubber tree 

plantations and agricultural land appeared to be the 

two land use classes the most strongly spatially 

associated, which is consistent with the conversion of 

agricultural land to rubber tree plantations, while 

rubber was also, while more weakly, spatially 

correlated to the location of settlements. The results 

of our analysis of the dependence of the spatial 

distribution of Rubber pixels on covariates such as 

terrain attributes and distance to forest boundaries 

also indicate that, over the course of the study period, 

rubber tree plantations tended to occur ever closer 

from the most recent forest boundaries and at 

regularly increasing elevations, thus suggesting a 

centrifugal expansion from the lowest, most 

populated and settled parts of the landscape to 

increasingly remote areas, at the expense of forest 

cover. Although our classification procedure resulted 
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 in classifying some pixels located in high 

elevation/slope areas as pertaining to the Settlement 

class, this most likely correspond to a 

misclassification, at least for the areas above 1,700 

m, which represent only a small fraction (0.2%) of 

the study area.  

The study area is located along the Northern 

Economic Corridor which connects to Chiang Rai 

province in Thailand to the South and Yunnan 

province in China, to the North; along this economic 

corridor, development has focused on agriculture and 

rural development, urban development including 

building industrials, infrastructures, construction of 

roads to promote the trade and tourism, and social 

development. All these actions aimed to reduce 

poverty and economic differences between provinces 

and regions (Anderson et al., 1976 and MPI, 2011). 

Likewise, the statistics data of the National Statistics 

Centre of Laos, indicate that between 2005 and 2015 

the population density has increased from 16 to 19 

persons per Sq.Km. which represents 17.32% 

increase (Lao Statistics Bureau, 2015 and National 

Statistics Centre, 2005). From our classification, 

although rubber prices have plummeted after 2011 

and remain low now with prices of 0.6 to 0.8 US 

dollars (Vongvisouk and Dwyer, 2017), we can 

conclude that farmers continued to expand rubber 

tree plantations until as late as 2017, even though at 

a lower expansion rate than during the 2005-2010 

period, and that they keep maintaining the vast 

majority of the area planted in rubber trees across the 

district. Such a choice is probably related to the 

important investment that conversion to rubber tree 

plantations represents and to most farmers’ 

expectation that the rubber trading prices will 

increase in the near future. 

 

5. Conclusions 

This research focused on land use/land cover change 

in Luangnamtha district, northern Laos over the 2000 

to 2017 period, based on classification and analysis 

of Landsat Images, using GIS technologies. Our 

results revealed major land use change , with a 9.84% 

(21,129 ha) decrease in forested land largely due to 

conversion to rubber tree plantations, the area of 

which underwent a near twenty-fold increase in less 

than two decades and now distribute along most of 

the main roads, rivers, and urban areas of the study 

area. This conversion of forest to rubber tree 

plantation was accompanied by a 2.35% (5,038 ha) 

increase in the area covered by settlements, a modest 

decrease 0.11% (224 ha) in agricultural land and a 

marginal increase 0.01% (20 ha) of the area covered 

by water bodies. These changes correspond to 

population growth and socio-economic development, 

which resulted in the expansion of built-up areas and 

commercial infrastructure (roads, factories, tourism 

places). Moreover, the research methodology 

presented in this paper can be transferred to 

governmental research and education agencies as 

practical tools to monitor and assess land use and 

land use change. 
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