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Abstract 

During 2012-2015, the municipality of Guarulhos, inserted in the São Paulo Metropolitan Region (the 4th 

largest metropolitan region in the world), recorded about 7540 cases of dengue fever. Given this situation, the 

work presented a prediction of the geographical distribution of this disease, using dengue fever occurrence 

records and environmental variables, through the MaxEnt distribution modeling. As the main result, it was 

observed that about 10% of the territory of Guarulhos presented high suitability for the disease occurrence (> 

0.7). Areas with around ~900 inhabitants/ha inserted in regions with a mean surface temperature between 18 

ºC and 25 ºC, inadequate household water storage, irregular disposal, and absence of waste recycling services 

may increase the risk of dengue transmission in prolonged drought periods. Finally, the work contributes to the 

development of public health strategies indicating areas for mitigation and environmental education actions in 

Guarulhos. 

 

 

1. Introduction 

Data on Land Surface Temperatures (LST) are of 

prime importance for the study of urban climatology; 

because they modulate the temperature of the air in 

the lower layers of the atmosphere and control, the 

exchange of energy in the city, and others things 

(Voogt and Oke, 2003). In this sense, the spatial 

variation of the LST presents a significant correlation 

with the land cover patterns, mainly due to their 

different behaviors regarding the emission of heat or 

infrared radiation (Voogt and Oke, 2003, Gartland, 

2008 and Weng, 2009). More than that, the thermal 

images can be indicative of the environmental 

conditions of the ecosystem service of thermal 

regulation for human well-being (Oliveira et al., 

2010). 

Among the most common problems in cities 

whose urban expansion is characterized by the 

radical elimination of vegetation cover are the 

changes in local patterns of energy balance and 

temperature (the phenomenon of the urban heat 

island) (Oliveira et al., 2010 and Prata-Shimomura et 

al., 2015). For human well-being, these 

environmental changes may represent a heavy burden 

on public health services in triggering and 

aggravating epidemiological diseases such as the 

ones transmitted by vectors (Hopp and Foley, 2001 

and Liu et al., 2015). Climate change or extreme 

weather events at regional and local scales like 

periods of drought, floods, or heat waves can also 

impact on the increase in dengue cases. Because it 

can promote inadequate water supply (a consequence 

observed during the 2014 drought in the São Paulo 

Metropolitan Region - SPMR), the accumulation of 

rainwater and increasing of the temperature of places 

previously not favorable to the development of the 

mosquito Aedes aegypti (Reiter, 2001 and Li et al., 

2018). 

Diseases like the dengue fever, transmitted by 

the Aedes aegypti mosquito (similarly as zika, 

chikungunya, yellow fevers, and others arboviruses) 

have a strong correlation with environmental factors 

such as variability of surface temperature and 

humidity (Fatima et al., 2016). Other factors, such as 

the low coverage of regular water supply, sanitary 

sewage, solid waste collection, rainwater drainage, 

and irregular housing, are suitable factors to promote 

the appearance of the disease (Glasser and Gomes, 

2000). In these sites with inadequate infrastructure 

artificial containers that can accumulate water are 

often found, like rubbish, tires, among others; 

providing excellent breeding habitats (Fatima et al., 

2016). In this context, the MaxEnt model can help to 

predict the spatial distribution of species or arboviral 

diseases through occurrences records and 
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 environmental layers (Phillips et al., 2006, Elith et 

al., 2010 and Lorentz et al., 2017). Thus, the main 

focus of the work is recognizing geographic dengue 

fever distribution by exploring the dynamics of 

environmental factors. Our analysis took into account 

the identification and quantification of environmental 

variables associated with this disease in Guarulhos 

city, a suburban area of Sao Paulo, the fourth largest 

metropolitan area in the world, with 20 million 

inhabitants. 

 

2. Methodological Approach 

The methodology is divided into four stages (Figure 

1): i) Selection of records of occurrence of dengue 

cases by means of a geo-referenced database; ii) 

Selection of thematic maps of the environmental 

layers; iii) Prediction of geographic distribution of 

dengue fever in Guarulhos, through the MaxEnt 

modeling tool; iv) Indication of priority areas for 

mitigation and/or prevention actions. 

 

2.1 Study Area 

The São Paulo Metropolitan Region (SPMR) is made 

up of 39 municipalities with approximately 20 

million inhabitants containing large industrial, 

commercial and financial complexes, which accounts 

for 18% of the country’s and more than half of the 

State of São Paulo GNP. The study area, selected for 

this analysis, is located at the Guarulhos 

Municipality, the second largest city in São Paulo 

state (SE - Brazil) with 31,870 ha and a population of 

more than 1,349,113 inhabitants (IBGE, 2017) 

(Figure 2). The climate is the subtropical and humid 

(Nimer, 1989), with dry winters and rainy summers, 

influenced by oceanic humidity and cold Antarctic 

fronts (Ribeiro et al., 2018). Rainfall data of the 

Tropical Rainfall Measuring Mission 3B43_v7 

(TRMM, 2011) and relative humidity of the 

AIRS3STM model of the Earth Observation System 

of the AQUA satellite (Airs and Teixeira, 2013) 

pointed out that for the analyzed period (2012-2015), 

the annual rainfall and relative humidity 

climatological averages were 1599 mm and 65%, 

respectively, for the entire municipality of 

Guarulhos. 

Information derived from the reanalysis 

MERRA-2 model (GMAO, 2015), showed that the 

average annual temperature for the same period 

ranged from 16 °C to 23 °C. The coldest month was 

July, with 11.6 °C while the hottest month was 

February, with 29 °C. Global Land Data Assimilation 

System (GLDAS) models pointed out that in the 

study area, the prevailing winds were ESE with an 

average speed of 2.5 m/s (Beaudoing et al., 2016). 

 

2.2 Dengue Occurrence Data and Environmental 

Variables 

Data on the occurrence of positive dengue cases were 

obtained through the Department of Health of the 

Municipality of Guarulhos-SP, in the Public 

Health/Dengue sector. In total, 7540 positive cases of 

the disease were obtained between the years of 2012 

to 2015, which were later transformed into monthly 

climatological averages (12 layers) containing their 

geographic location. The environmental variables 

used in the research were obtained from several 

databases, classified and grouped according to their 

nature, such as (i) urban infrastructure - distance from 

slum (Slumdist) and drainage (Draindist) in meters, 

as well as population density (Denspop) per hectare; 

ii) climatic data - images of the monthly 

climatological averages (12 layers) of the Land 

Surface Temperature (LST) in degrees Celsius (°C) 

between 2012-2015, for the whole year (LST-

annual), the day (LST-day), night (LST-night), 

thermal amplitude (LSTS-range) and Surface Heat 

Island (SHI). 

 

 
  

Figure 1: Flowchart of the methodology used 
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Figure 2: Location of the Municipality of Guarulhos, São Paulo, Brazil (SE, Brazil) 

 

Data on urban infrastructure related to slum distance 

and the population density were obtained from the 

last national census survey "Information Base of the 

Demographic Census 2010: Results of the Universe 

by census sector" of the Brazilian Institute of 

Geography and Statistics (IBGE, 2011). The 

distances of the drainage were obtained from the 

Geoenvironmental Bases for an Environmental 

Information System of the Municipality of Guarulhos 

(Oliveira et al., 2009). 

The Land Surface Temperature images were 

derived from the products MOD11A1 and 

MYD11A1 (version 5), respectively from satellites 

TERRA and AQUA, from the channels 31 (10.780 - 

11.280 µm) and 32 (11.770 - 12.270 µm) by 

generalized split-window algorithm with an accuracy 

of 1-2 °C of the sensor Moderate-resolution Imaging 

Spectroradiometer - MODIS (Gorelick et al., 2017). 

It has a heliosynchronous orbit, together with the 

quality band (Wan, 2015a; 2015b). The images 

acquired, daily at approximately 10:30 a.m. and 

10:30 p.m. (TERRA) and at 1:30 a.m. and 10:30 p.m. 

(AQUA), for every day between 2012 and 2015. 

Then, the original pixel values (Digital Numbers) 

were converted to land surface temperature values 

(TS°C), according to Equation (1) and depending on 

the Quality Control band (QC) of the image (Wan, 

2013). 

 

LST°C = (DN * 0,02) – 273,15 

Equation 1 

Where DN is the "Digital Number" referring to the 

pixel of the image. To identify the Surface Heat 

Island (SHI), as well as the comparison of thermal 

patterns over the analyzed period, Alcoforado et al., 

(2009), suggested the normalization of the Land 

Surface Temperature value of a given site (LSTpixel) 

in relation to the mean of the entire area (LSTmean) 

and its respective standard deviation (SLTsd), for a 

given period analyzed according to Equation (2). 

This methodology allows identifying positive or 

negative LST anomalies on a region over time. 

 

SHI = (LSTpixel – LSTmean) / LSTsd 

 

Equation 2 

 

The use of LST images is justified because they 

represent in a "faithful" way the climatology of the 

dengue cases occurrence period (2012 to 2015). 

 

2.3 The MaxEnt Features and Environmental 

Variable Selection 

The modeling method used in this work was the 

Maximum Entropy algorithm (MaxEnt) version 

3.4.1. MaxEnt generates habitat suitability models 

based on known distributions and the series of 

environmental layers. This model has a great capacity 

for prediction occurrence areas for certain 

phenomena (Phillips et al., 2006 and Elith et al., 

2010). In MaxEnt settings, 70% of the present 

records were allocated to the training data and 30% 
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 to the test data, with a selection of ”random seed” so 

that on every replicate the model uses a different set 

of presence records for training and testing. In order 

to improve the performance of the models, 10,000 

background points were generated, distributed 

randomly to each of the models. In that way, MaxEnt 

was able to construct very complex nonlinear 

response curves using a variety of resources classes 

(Merow et al., 2013). 

The importance of each variable was determined 

using the Jackknife test and by the percentage of the 

contribution in the final model (Phillips et al., 2009). 

The resulting map of the model presents the values of 

the prediction as values between 0 and 1, which 

represents the suitability of the habitat in the pixel; 

values closer to 1 indicate greater suitability, that is, 

the higher probability of the presence of the disease 

in the pixel (Phillips and Dudik, 2008). The model 

evaluation was performed according to the Receiver 

Operational Characteristic (ROC) curve that ranged 

from 0 to 1. The closer to 1 means, the better the 

model. ROC of 0.5 indicates that the discrimination 

of the model is no better than a random model 

(Fielding and Bell, 1997). These results were 

compared using the respective Area Under the Curve 

(AUC) of the ROC. Models with ROC values > 0.9 

are considered highly accurate, values between 0.7 

and 0.9 are useful, and those smaller than 0.7 are less 

accurate (Elith et al., 2006). 

Distribution models obtained from a large set of 

environmental variables may present high correlation 

or multicollinearity, making estimates of these 

variables statistically biased (Cruz-Cardenas et al., 

2013 and Fatima et al., 2016). In order to remove data 

colinearity, Principal Component Analysis (PCA) 

was applied. This technique has as main 

characteristic the reduction of the number of 

correlated variables for a data set, preserving their 

total variance (Cruz-Cardenas et al., 2013). Thus, the 

variables used in the model were uncorrelated, 

derived from the PCA whose sum of the percentage 

of eigenvalues accumulated 100% and whose loads 

or eigenvectors were higher than |0.32|. The limit 

value of |0,32| was chosen because it represents 10% 

of the variance within the PCA (Dormann et al., 

2012). Based on the parameters described above, 

three urban infrastructure variables and five surface 

temperature variables were selected (Table 1). 

On Table 1 the Urban infrastructure elements are: 

LCZ – Local Climate Zone; SlumDist – Slum 

Distance; DrainDist – Drainage Distance; MinWage 

– Minimum Wage; HouseDens – House Density; 

PopDens – Population Density; GarbCol – Garbage 

Collected; WaterNet – Water Net and SeageNet – 

Seage Net. Finally, the model was fed with the 

dengue occurrence data (monthly) and the layers of 

the selected environmental variables. These were 

processed to Guarulhos municipality limit in the 

formats "*.csv" and "*.asc," respectively for the 

dengue occurrence data and the pixel values of the 

environmental layers interpolated to 100 m x 100 m, 

using a Geographic Information System (GIS) 

environment, in ArcGIS 10.2 software. The 

projection system used was the Geographic, datum 

WGS1984. 

 

Table 1: Variables selected (in bold) as a function of the percentage of eigenvalues (100%) and eigenvector 

load above |0.32| (10% of the variance) 
 

Variables 

Urban infrastructure   Land Surface Temperature 

                  

Eigenvectors   Eigenvectors 

Input PC1 PC2 PC3   Input PC1 PC2 PC3 

LCZ 0.00 -0.02 -0.03   LST 0.51 0.36 -0.64 

SlumDist 1.00 0.01 0.03   SHI 0.25 0.17 -0.32 

DrainDist -0.01 0.99 -0.15   LST-Day 0.66 -0.08 0.48 

MinWage 0.00 0.00 0.00   LST-Night 0.21 0.61 0.50 

HouseDens -0,01 0.04 0.24   LST-Range 0.45 -0.68 -0.02 

PopDens -0.03 0.14 0.96           

GarbCol 0.00 0.01 0.04   PC Eigenvalues % Acc 

WaterNet 0.00 0.01 0.04   1 7.88 98.8 98.8 

SeageNet 0.00 0.01 0.03   2 0.08 1.0 99.8 

          3 0.02 0.2 100 

PC Eigenvalues % Acc           

1 24373100.0 99.2 99.2           

2 108650.3 0.4 99.6           

3 86308.0 0.4 100           
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 3. Results and Discussion 

In general, over the years analyzed, about 55% of 

dengue cases occurred between 2013 and 2014. That 

coincided with a prolonged warm and dry period in 

the RMSP (Ribeiro et al., 2015). In these years, the 

annual cumulative rainfall was approximate 288 mm 

minor than the climatological average of the region 

(Figure 3). In Figure 4 (a), approximately 80% of 

dengue cases were observed between March (3) and 

May (5), totalizing 5820 of the 7540 cases occurring 

between the analyzed period (2012-2015). For those 

same months, the average precipitation represented 

about 24% of the entire accumulated annual (Figure 

3). 

Thus, the highest occurrence of dengue cases 

occurred in periods of low precipitation. Lorenz et 

al., (2017) pointed out in their studies about emerging 

arboviral diseases that the rains do not contribute to 

the spread of these diseases in Brazil, differently 

from the seasonality of temperature. On Figure 3 the 

black line represents the monthly cumulative 

climatological average of rainfall (mm) between 

1931 and 1991 (INMET, 2018). The table shows the 

annual cumulative (mm). Modeling results showed 

that the distribution of dengue cases occurs in almost 

all the urban part of the municipality of Guarulhos. 

The areas with the highest probability of occurrence 

(> 0.7) were those marked in orange and red, which 

represented about 3,308.3 hectares or approximately 

10% of the territory of Guarulhos (Figure 4 - a and 

b). The model's performances were compared using 

the AUC measurement. In all of them, the 

performance varied from 0.7 to 0.9, demonstrating 

that the models are considered useful and have 

sufficient accuracy and sensitivity to predict the sites 

most likely to present the dengue cases.  

Different environmental variables that affected 

the distribution of dengue cases were compared 

statistically by the importance of contributors (Figure 

4c). The highest annual contributions were observed 

for the variables in the following sequence: 1) 

population density (popdens); 2) mean Land Surface 

Temperature (LST-mean); 3) slum distance 

(slumdist); 4) mean Land Surface Temperature - 

night (LST-night); 5) Land Surface Temperature 

range (LST-range); 6) mean Land Surface 

Temperature - day (LST-day). In contrast, the 

contribution from Surface Heat Island (SHI) and 

drainage distance (draindist) did not high influence 

the model. 

For the months with the highest occurrence of 

cases, March to May on Figure 4c’s histogram, the 

population densities, slum distance, as well as the 

mean Land Surface Temperature were the variables 

that presented the highest contributions (Figure 4c). 

These variables perform an important role in the 

dynamics of the distribution of dengue cases in 

Guarulhos and the performance of the models. In the 

other months (from June on), climate and urban 

variables such as Surface Heat Island (SHI), drainage 

distance (draindist), slum distance (slumdist) and 

Land Surface Temperature range (LST-range) gain 

influence in detriment of others variables (Figure 4 - 

c). The response curves for the most significant 

environmental variables are shown in Figure 4d. 

Among the variables, the probability of occurrence of 

dengue cases is strongly associated with areas with a 

population density of ~900 inhabitants/ha. In these 

regions of the city, most of the population resides 

mainly in low and compact houses with up to three 

floors that are sometimes associated with slums near 

creek and rivers (Figure 5 - a and b). These same 

areas (Figure 5 - c and d), in general, are arranged in 

a disorderly and dense way, lacking infrastructure 

and urban public services essential as regular garbage 

collection, connection to the sewage system, water, 

and energy (Reiter, 2001 and Schmidt et al., 2011). 

Areas with higher population density (> 1000 

people/ha), presented lower probabilities to occur 

dengue cases because they were composed of high (> 

25 meters) and compact buildings, served by good 

urban infrastructure (Araújo et al., 2015). 
 

 
Figure 3: Vertical bars represent cumulative monthly precipitation (mm) for the years 2012 to 2015 (TRMM, 

2011) 
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Figure 4(a): Habitat adequacy map of dengue cases in Guarulhos. (b) Number of dengue cases occurrences per 

month between years 2012-2015. (c) Relative variable contributions to the respective MaxEnt models (monthly 

and annual) between years 2012-2015, is given as a percentage. (d) Response curves of the most relevant 

environmental variables in predicting the distribution of the probability of occurrence of dengue 

 

In this context, the response probability curves to the 

disease appeared throughout the year in a mean 

temperature range from 18 ºC to 27 ºC, in regions 

whose mean SHI anomaly was +1.5 ºC. Peaks of 

maximum and minimum LST were recorded 

respectively during the days of December (~36 ºC) 

and the nights of July (13 ºC). These temperatures are 

considered critical, because they decrease the 

longevity and fecundity of the mosquito Aedes 

aegypti, restricting the propagation of the disease 

(Costa et al., 2010 and Tsai et al., 2018). On Figure 4 

each curve is a unique model created using only the 

corresponding variable and represented the mean 

response. The values of LST and SHI variables are 

given in °C, and the distances of the drainages 

(Draindist) and the distances of the slums (Slumdist) 

are in meters (m). The circles indicate the occurrence 

records of the disease. The numbers from 1 to 47 

represent the districts of Guarulhos. 

For the months with the highest occurrence of 

dengue cases (March to May), the ideal LST for the 

onset of the disease was on average between 18º C 

and 25 ºC, with diurnal variations from 19 ºC to 27 

ºC and nocturnal temperatures of 15 ºC to 19 ºC. 

Thermal amplitudes of 4 °C to 8 °C, as well as 

positive anomalies of SHI (2.5 °C), were also 

observed as predictive for dengue fever between 

March and May. LST patterns analogous to those in 

this work were also observed by Araújo et al., (2015) 

and Azevedo et al., (2018) respectively in the city of 

São Paulo and St. Bárbara d’Oeste, São Paulo 

State/Brazil. 
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Figure 5(a): Area of habitat suitability for dengue cases occurrence for Guarulhos per hectare (ha). The numbers 

1 to 47 represent the districts of Guarulhos. Habitat adequacy map of dengue cases in Guarulhos. (b) Number 

of occurrences of dengue cases per month between years 2012-2015. (c) Numbers of slums per district 

 
 

Figure 6 (a) and (b):  WordView-3 satellite orbital images, respectively from November 27, 2015, and May 29, 

2016, respectively, highlighting examples of slums (red-marked areas) and their chaotic occupancy patterns 

(DGF, 2017). (c, d, e, and f). Examples of the type of constructions and illegal waste disposal sites commonly 

found close to slums (Google Maps, 2018) 
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 The author's op. cit. related the incidence of dengue 

cases with diurnal surface temperatures of 

approximately 26 ºC and urban surface heat islands. 

Moreover, temperature fluctuations up to 7.6 °C 

around the diurnal mean temperature of 26°C are 

considered most favorable for the proliferation of 

Aedes aegypti and consequently for the dengue 

disease. However, fluctuations above this value (> 

7.6 ºC) become unfavorable to the disease 

transmission (Lambrechts et al., 2011 and Carrington 

et al., 2013a, 2013b). 

Figure 5 (a) indicates the districts with the 

highest habitat suitability area for dengue cases 

occurrence for Guarulhos per hectare. In these 

districts, it was found that the higher the number of 

slums, the greater the suitability of occurrence of 

dengue cases (Figure 5(b)). Thus, actions to prevent 

the disease require the immediate attention of the 

government and should be primarily targeted for 

those districts with higher dengue habitat suitability 

(Figure 5 (c)). A similar situation was found in 

Barbados by Lowe et al., (2018), where drought 

conditions were associated with extended dengue 

outbreaks periods. This situation increased 

potentially larval habitat due to increasing the 

number of water storage containers around the 

houses (Pontes et al., 2000). 

The high-resolution multispectral images (up to 

30 cm) from the WordView-3 satellite for November 

2015 and May 2016 (Figure 6 (a) and (b)) show 

examples of slums, usually inserted in areas favoring 

the occurrence of dengue (> 0.7, in the map of Figure 

6 (a)). In these areas, the chaotic occupation pattern 

(Figure 6 - c and d) and high social vulnerability 

represent ideal environments for the development of 

the Aedes aegypti mosquito. Due to the lack of 

adequate infrastructure with open sewage, 

inadequate storage of water for supply (rustic water 

tanks and badly closed), absent waste recycling 

services, among other traps that favor the mosquito 

breeding (Figure 6 (e) and (f)) (Misslin et al., 2016 

and Azevedo et al., 2018). These features added to 

prolonged drought periods with reduced water supply 

suggest a possible connection between drought and 

high dengue fever occurrence in metropolitan regions 

such as São Paulo (Du et al., 2013 and Lee and Yu, 

2015). 

 

4. Conclusions and Suggestions 
The results indicate that for the analyzed period 

(2012-2015), the months with the highest incidence 

of dengue cases were from March to May. Variables 

such as population density (around ~900 

inhabitants/ha), slum distance, and mean Land 

Surface Temperature obtained more contribution and 

consequently more significant influence on the 

incidence of dengue in Guarulhos. Districts of the 

city with high numbers of slums, were highly 

favorable to the emergence of dengue, mainly due to 

the disordered occupation and as well as lack of 

infrastructure and essential urban public services. 

Likewise, inadequate household water storage, 

irregular disposal, and absence of waste recycling 

services may increase the risk of dengue transmission 

in prolonged drought periods. 

Finally, the work can contribute to the 

development of public health strategies for the 

surveillance and prevention of dengue, indicating 

areas for mitigation and environmental education 

actions, mainly those districts with many houses with 

inadequate water storage in periods of drought, such 

as slums. It can also contribute to driving more 

advanced research on the relationship between 

arboviruses like dengue, environmental variables, 

extreme weather events, and global environmental 

changes. 
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