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Abstract 

Land use and land cover maps are essential to aid our knowledge of modelling the environment, managing 

water. Multispectral and SAR Satellite data consider the main and valuable resource for LULC mapping. 

Because of the presence of clouds, creating a precise LULC map using multispectral data is a challenge. 

Herein, the goal of this study is to generate a precise map of LULC of Kirkuk city using different classification 

methods and to evaluate the impact of combining SAR and optical Sentinel (1A and 2B) data on classification 

efficiencies. Gram–Schmidt (GS) method was applied to combine the multispectral Sentinel 2B data and 

Sentinel-1A (VH, VV). The efficiency of using four commonly-used classification algorithms was then 

compared to specify the optimal method for LULC classification. The finding reveals that the greatest accuracy 

of 97.93% with a kappa coefficient of 0.97 was produced using the SVM algorithm applied to multispectral 

Sentinel-2B data. while the DT-KNN algorithm was most efficient when it applied to Sentinel-2B-VH data with 

an accuracy of 97.60 %. The overall accuracy of RF is also improved when it applied to Sentinel-1A-VV than 

Sentinel-1A-VH and multispectral data. Additionally, the method developed will be helpful to researchers who 

continue to use diverse data sources to map various regions. These mapping results represent an essential step 

toward future soil mapping and mineral estimation. 

 

 

1. Introduction 

Human effectiveness produces a significant effect on 

the earth's surface. The land is used to provide needs 

of the physical aspects of Earth’s surface, water 

distribution, urban areas and settlements, vegetation, 

soil, and additional physical characteristics including 

those generated by human effectiveness, and 

economic activities (Rawat and Kumar, 2015 and 

Shareef et al., 2016). Land-use and land-cover 

(LULC) have relied on determinants of natural, 

social, and economic activity and their use by human 

beings over time and in space. LULC maps are 

essential to support our knowledge of environmental 

modeling, water resource management (Riebsame et 

al., 1994), provide proper land management tools, 

and promote decision making (Yuan et al., 2005). 

Remote sensing is crucial standard technology for 

LULC mapping via diverse classification techniques 

over broad scales (Cihlar, 2000 and Kazemi et al., 

2009). Optical satellite sensors confront the difficulty 

of obtaining information with the negligible 

existence of the cloud. The problem of acquiring 

proper cloud-free images from visual observation 

sensors has been studied  previously (Hansen and 

Loveland, 2012 and  Leinenkugel et al., 2014). 

Moreover, Synthetic Aperture Radar (SAR) is 

considering an active system that does not base on 

sunlight and can operate without being influenced by 

weather conditions or data obtaining duration, and 

has the potential to overcome the restraints of optical 

systems (da Costa Freitas et al., 2008).  

Although the integration of multispectral bands 

and  SAR data is promising for land application and 

LULC mapping, it remains rarely used (Joshi et al., 

2016). Furthermore, numerous researches have 

confirmed the requirement for more efficient and 

improved mapping relies on the coupling of 

multispectral and  SAR for classifications land 

(Forghani, 1994, Forghani et al., 2018, Joshi et al., 

2016 and Waske and van der Linden, 2008). 

Moreover, the spatial resolution and revisit times 

have been improved with the lately Sentinel 

missions, leading to enhanced LULC mapping 

(Erinjery et al., 2018). Recent investigations have 

revealed data suitability of Sentinels-1A and 

multispectral Sentinel-2B for efficient mapping of 

various LULC classes. The high revisit of the 

Sentinel satellite is particularly encouraging.  

The comparatively high-resolution data and wide 
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swath allow for suitable coverage on a large-scale 

with resolution of small-scale farmland (Steinhausen 

et al., 2018). The typical procedure for producing 

LULC map requires data classification, and examines 

diverse factors. The initial process of image 

classification usually depend upon determining an 

appropriate classification method (Lu and Weng, 

2007). Choosing a proper algorithm of classification 

is crucial for obtaining precise LULC maps. Thus, 

various algorithms, approaches, and methodologies 

have applied for diverse applications and study areas 

(Elatawneh et al., 2014, Rawat and Kumar, 2015, 

Butt et al., 2015 and Shareef et al., 2016). 

Researchers have continually faced difficulties 

associated with determining which classification 

algorithm to use without any clear guidelines on 

choosing proper algorithms (Sameen et al., 2016). 

Herein, we evaluate the ability of SAR and 

multispectral Sentinel data for mapping LULC in the 

Kirkuk governorate, Iraq.  

To assess the integrating possibility of data used, 

our principal goals are: (1) to confirm that an improve 

in the classification accuracy can be accomplished 

using different data sets, (2) to distinguish LULC 

feature through combining data used, (3) to test 

diverse classification methods to develop a 

classification procedure for LULC tailored to the 

region of interest. 

 

2. Study Area  

The area examined herein is Kirkuk governorate is 

situated in Northeast Iraq, with geographical 

coordinates of longitude 44° 00′ E and latitude 35° 

13′ N.  The chosen area covers 1,475.93 Km2 as 

illustrated in Figure 1. LULC feature classes include 

urban, bare land, vegetation, various kinds of soils, 

water, and grassland (Mohammed Noori et al., 2018). 

Local steppe climate is the predominant climate in 

Kirkuk city, where there is limited rainfall throughout 

the year. The mean temperature and annual rains are 

about 21.6 °C and 365 mm respectively. The average 

precipitation is 0 mm in June, which is considered the 

driest month in the year while the most maximum 

rainfall is in March, with a mean of 73 mm. Kirkuk 

city situated between the northern mountainous of the 

study area and the flat areas of the south and south-

west, as well as its abundant natural minerals and oil 

fields.  

Various terrain and climate characteristics are 

present, which are representative of other areas of 

Iraq. The study area contains a combination of 

mountains, plateaus, valleys, and plains and all these 

geographical phenomena are characteristic of the 

climatic region, especially the temperature, rainfall, 

and wind. Also, the study region represents an area 

of high elevation in Iraq. 

 

2.1 Satellite Data Description  

Sentinel-1A SAR and Sentinel-2B images used for 

mapping the general LULC in the study area. 

Sentinel-1 instruments from the ESA-provided single 

and dual-polarized C-band SAR data with four 

acquisition modes. The interferometric wide (IW) 

swath was the primary mode for data obtaining 

overland with a 250 km swath at a ground resolution 

of 5 m by 20 m as a unique look. The Data collected 

was treated by the ESA into a geo-referenced image 

using ground range detected (GRD) products to 

provide continuous coverage of the area. Sentinel-2 

was used in service on June 23, 2015, to supply more 

data as shown in Table 1. It contains 13 multispectral 

bands that can achieve a ground resolution of 10 to 

60 m. The satellite bands range from 443 to 2190 nm, 

ensuring the capture of differences in the state of 

vegetation, including differences in vegetation type 

and temporal changes while reducing the variations 

in atmospheric photography (ESA, 2017).  

The satellite data used in our study provided by 

the Copernicus Open Access Hub, which offers free, 

complete, and open access data for all Sentinel 

projects (ESA, 2017).  

 

2.2 Reference Data 

Reference data for a supervised classification were 

collected in December 2018, and divided into 

training and examining data to perform classification 

and classification accuracy. Evaluation data were 

produced using a GPS instrument as part of a field 

survey or by using high-resolution data (Lu et al., 

2007). In this study, Google Earth and high-

resolution satellite images were employed to generate 

reference (training and examining) data using version 

5.3 by delineating the region of interest (ROIs) for 

every recognized feature on a high-resolution image 

of Kirkuk city. Subsequently, LULC was identified 

visually and separated into nine classes using the 

high-resolution images. During the sampling 

procedure, the examining data was chosen randomly 

for each classification type. The sampling positions 

were spread throughout the study area to achieve 

good classification results. 

 

2.3 Data Preprocessing 

Pre-processing was performed independently for 

Sentinel-1A  SAR and multispectral Sentinel-2B 

data, as shown in Figure 2.  
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Table 1:  SAR data used in the study 
 

Satellite mission Product type Acquisition mode Acquisition time Bands Resolution 

Sentinel-1A GRD IW 7/11/2018 VV,VH 10 m 

Sentinel-2B GRD MSI-L1C 29/10/2018 13 band 10–60 m 

 

 
Figure 1: The study area 
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Figure 2: The general methodology of LULC mapping 

 

Atmospheric correction using the Sen2Cor Sentinel-

2 processor was used to transform a top-of-

atmosphere (TOA) Level-1C into a bottom-of-

atmosphere measurement (Müller et al., 2016). This 

accomplished terrain, atmospheric, and cirrus 

correction for the input data (Weiß, 2019). 

Radiometric correction of Sentinel-1 SAR models 

applied to polarizations of VH and VV of radar data 

were transformed into radar backscatter (sigma 0) 

using the methods developed by Miranda and 

Meadows (Miranda et al., 2015). The Doppler 

correction was applied to reduce geometric 

distortions occur in terrains based upon the digital 

elevation model (DEM) (Gascon et al., 2017) 

provided by SRTM with resolution of a 30 m. Noise 

effects in the radar images were reduced using a 

multi-temporal Lee filter with a 3 by 3-pixel window. 

The high-resolution worldview satellite image of 

Kirkuk city acquired in 2018 provided by Kirkuk 

governorate was also used in this study.  

 

2.4 Image Fusion 

Due to its popularity, the Gram-Schmidt (GS) fusion 

method was employed in this study, to merge the 
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multispectral Sentinel-2B images and Sentinel-1A, 

which has two polarizations (HV, VV). GS uses a 

non-orthogonal assemblage of independent roles and 

generates an orthogonal groundwork above an 

uncertain interval associated with the random 

weighting function (Amarsaikhan et al., 2012). 

 

3. Methods 

3.1 LULC Classification  

Many classification algorithms were widely 

employed to describe as either supervised and 

unsupervised classification (Ban et al., 2010). To 

obtain the performance of the diverse classification 

techniques, we examined four algorithms (1) 

Random Forest (RF) (Breiman, 2001), (2) support 

vector machine (SVM) (Burges, 1998), (3) k-nearest 

neighbours (KNN) and The KD Tree KNN classifier 

(Altman, 1992). SVM separation data apply the 

highest division margins (Cortes and Vapnik, 1995). 

This algorithm used the Gaussian radial basis 

function (RBF) kernel and included two hyper-

parameters to measure the resilience of the SVM: the 

regulation factor C and kernel bandwidth γ. High 

values of C reflect the higher penalties for integrated 

pixels. The γ value determines the range of training 

data, but no clear guidelines have provided regarding 

proper learning algorithms (Aizerman, 1964). RF is a 

set learning method that creates various trees rely on 

irregular bootstrapped examples in selected training 

samples (Breiman, 2001). This approach is robust 

against over-fitting and can manage many entering 

parameters without any removing of the variable. The 

outcomes specified by a maximum suggest of 

classification tree (Sonobe et al., 2017).   KNN 

defines as a non-parametric computer learning 

process because it quickly identifies all its training 

data. 

Notwithstanding its simplicity, KNN has applied 

for several classification challenges, including the 

analysis of various satellite data. KNN in the 

collection of training data affirms an assembly of K 

examples that are closest to the unknown patterns 

(based on a Euclidean distance function) 
(Weinberger and Saul, 2009). The KD Tree KNN 

classifier uses a KD Tree to improve performance but 

should give the same result as the slow KNN 

classifier (Ng and Lippmann, 1991). A KD tree is 

described as space-partitioning for data structuring 

and creating points in k-dimensional space. The k-d 

trees are a suitable data structure for various 

applications, including searches that involve a 

multidimensional exploration key (e.g., nearest 

neighbor or range searches) (Weinberger and Saul, 

2009). 

3.2 Accuracy Assessment 
The confusion matrix is employed to assess the 

accuracy of the classifier. It is a representative 

number of classified and reference data. It is a square 

configuration of n x n dimensions where n is the class 

number under consideration. Commonly used 

classification accuracies include the overall, user’s, 

and producer’s accuracies, as well as coefficient of 

kappa (Foody, 2002). The importance of the 

specialized knowledge of the kappa coefficient is 

equivalent to the overall accuracy (OA) in the 

confusion matrix. Furthermore, the overall accuracy 

provides the likelihood of (Pontius Jr and Millones, 

2011 and Olofsson et al., 2013) correctness in the 

classified image. The producer’s accuracy is defined 

by the rate of the correctly classified pixel, while the 

user’s accuracy in the error matrix can be determined 

as the rate of pixels that correctly classified of the 

class and whole number of pixels classified by the 

classifier for that class. 

 

4. Results 

4.1 Classification of Multispectral Sentinel 

Data 
In the first analysis, a confusion matrix was 

employed to assess the classification outcomes of 

methods implemented for the multispectral Sentinel-

2B data. The mechanism of the different classifiers 

was examined to define the performance of each 

classifier relative to the data used. Figure 3 illustrates 

the finding of the LULC classification analysis 

performed using ENVI version 5.3. Post-

classification executed using three methods: sieve, 

minority, and clump analysis. Sieve class analysis 

was used to resolve the issues of single pixels in 

classified images as it removes isolated labeled pixels 

using blob grouping. The majority analysis was used 

to regulate false pixels inside a particularly important 

group to the proper pixel group. Clump analysis was 

used to compile adjacent similarly classified regions 

together by applying morphological operators. 

Visually, the classifiers exhibited intimate behavior 

for organizing the multispectral Sentinel-2B data via 

simple differences.  

SVM provided an excellent outcome in both 

visual and statistical interpretation, with an OA of 

97.93%. No essential distinctions were recognized 

between the KNN and RF algorithms, showing a 

negligible difference of 0.43%. However, the 

sequences showed that the classification accuracy 

was improved using DT-KNN with an OA value of 

94.83% compared to using the KNN and RF 

algorithms as illustrated in Table 2. 
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KNN SVM 

 
 

RF DT-KNN 

Figure 3: Different classifiers applied to the Sentinel-2B data with post-classification methods  
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KNN (VH) Original SVM (VH) 

 
 

RF (VH) DT-KNN (VH) 

Figure 4: Post-classification of the fused VH and VV images (continune next page) 
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Figure 4: Post-classification of the fused VH and VV images 
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Table 2:  Overall Accuracy and Kappa coefficient of the various classifiers 
 

Kappa coefficient (K) Overall Accuracy (%) Classifier Data set 

9398.0  8276.94  DT-KNN 

Sentinel-2B 
9251.0  5345.93  KNN 

9295.0  9655.93  RF 

9760.0  9339.97  SVM 

9722.0  6096.97  DT-KNN 

Sentinel-1A-VH 
8481.0  8526.86  KNN 

9122.0  5743.92  RF 

9214.0  2271.93  SVM 

9676.0  2112.97  DT-KNN 

Sentinel-1A-VV 
9676.0  2112.97  KNN 

9399.0  8207.94  RF 

8252.0  8606.84  SVM 
 

4.2 Classification of Combined Sentinel (1A 

and 2B) Data 

The essential goal of this analysis was performed to 

assess the use of Sentinel-1A data in developing 

LULC assignment accuracy. The consequent 

experiment evaluated the integration of Sentinel-1A 

data featuring different polarization (HV, VV) with 

multispectral sentinel-2B data to refine the 

performance for increasing the accuracy of LULC 

classification. The GS fusion method was applied 

twice; once to fuse the multispectral Sentinel-2B (R, 

G, B, IR) data with Sentinel-1A (VH) data to produce 

the Sentinel-2B-VH image, and additionally to merge 

Sentinel-2B (R, G, B, IR) data with Sentinel-1A 

(VV) data to create the Sentinel-2B-VV image 

(Figure 4). However, the same classifier employed in 

the first analysis was implemented for the combined 

Sentinel-2B-VH and Sentinel-2B-VV image data. 

Three post-classification methods (sieve, minority, 

and clump) were also applied. Visually, high wet soil 

was demonstrated using the SVM algorithm on the 

Sentinel -2B-VH image with the apparent absence of 

vegetation and wet soil. Mixed soil was shown with 

good separation between the vegetation, and bare soil 

was best separated using the KNN algorithm. RF 

reflects a majority of the bare soil distribution relative 

to the water body classes, including lake and river 

water (Figure 4). Classification of the Sentinel-2B-

VV image revealed a different classifier behavior. 

The mixed and wet soils were demonstrated in almost 

all classified images. Most residential and urban 

areas were classified as wetlands, and some 

agricultural fields were classified as wetlands or 

mixed soil areas. The KNN classifier showed a clear 

superiority of open soil areas with no water areas 

(rivers or small lakes). This analysis was compared 

to the finding of applying only multispectral 

Sentinel-2B data to assess the efficiency of the 

Sentinel-1A SAR data in LULC mapping. The data 

presented in Table 2 confirms that when Sentinel-1A 

data were fused with multispectral Sentinel-2B 

images, OA improved with most of the applied 

classifiers. The OA was augmented with DT-KNN 

for Sentinel-2B-VH and increased for the DT-KNN, 

KNN and RF algorithms used on the Sentinel-2B-VV 

images, as illustrated in Table 2. otherwise, this 

combination reduced the classification accuracy 

when the KNN, RF, and SVM algorithms were used, 

achieving OA values of 86.85%, 92.57%, and 

93.2271%, respectively. This demonstrates that 

Sentinel-1A enhanced the performance of LULC 

classification depends on the polarization used as a 

method of classification.  

 

5. Discussion 

A comparison table was generated relied upon n the 

two analyses f the Sentinel data. Table 2 shows the 

OA and kappa coefficient calculated for each of the 

classifiers applied. The greatest OA (97.93%) was 

achieved using the SVM algorithm applied to 

multispectral Sentinel-2B data with a kappa 

coefficient of 0.97. The DT-KNN algorithm was 

determined to operate most efficiently when applied 

to the Sentinel-2B-VH fused via the GS algorithm 

with an OA equal to 97.60% and a kappa of 0.97. The 

results showed that DT-KNN yielded the highest 

accuracy through the use of the original Sentinel-1A 

SAR or by using the enhanced Lee-filtered SAR data 

were combined with the Sentinel-2B images. 

Generally, DT-KNN accomplished exceptionally 

well with most data utilized in process of the 

classification and exhibited improved accuracy. The 

KNN accuracy improved when Sentinel-A1(VV) 

was used, but DT-KNN and KNN algorithms showed 

similar or better results using Sentinel-1A-VV with 

an OA of 97.2112% and a kappa coefficient of 0.96. 

The finding reveals that the SAR data increases the 

accuracy of LULC classification, where the 

preponderance of the most exceptional accuracies 

was noted when the SAR data were combined with 

multispectral sentinel data.  

 

6. Conclusion 

The integration of Sentinel-1A and Sentinel-2B data 
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for producing the LULC map through the 

classification of the Kirkuk governorate was 

examined herein. The classification efficiency was 

considerably improved by combing the SAR and 

multispectral data of the various satellites. It is 

essential to emphasize that only using the SAR image 

improved the LULC map in terms of precision, while 

the accuracy was further enhanced by adding 

supplementary scenes. In spite of the fact the multi-

imagery method improved the efficiencies of 

classification, some LULC types were enhanced by 

fusing radar and optical data, mainly when DT-KNN 

was applied for almost all classifications used herein. 

Depending on outcomes, many approaches for more 

stable LULC mapping in diverse area was presented. 

The proposed methodology herein could be 

duplicated for similar areas of interest. Hence, 

associated companies and government 

establishments could benefit from using the 

outcomes. Further studies will include analysis of the 

spectral distinction potential of the Sentinel-1 and 

Sentinel -2 data for mapping of various kinds of 

vegetation and soils. Therefore, this study strongly 

recommends SAR and optical images integration for 

LULC mapping in diverse areas. 

 

References 

 

Aizerman, M. A., 1964, Theoretical Foundations of 

the Potential Function Method in Pattern 

Recognition Learning. Automation And Remote 

Control, Vol. 25, 821-837. 

Altman, N. S., 1992, An Introduction to Kernel and 

Nearest-Neighbor Nonparametric Regression. 

The American Statistician, Vol. 46, 175-185. 

Amarsaikhan, D., Saandar, M., Ganzorig, M., 

Blotevogel, H., Egshiglen, E., Gantuyal, R., 

Nergui, B. and Enkhjargal, D., 2012, Comparison 

of Multisource Image Fusion Methods and Land 

Cover Classification. International Journal of 

Remote Sensing, Vol. 33, 2532-2550. 

Ban, Y., Hu, H. and Rangel, I. M., 2010, Fusion of 

Quickbird MS and Radarsat SAR Data for Urban 

Land-Cover Mapping: Object-Based and 

Knowledge-Based Approach. International 

Journal of Remote Sensing, Vol. 31, 1391-1410. 

Breiman, L., 2001, Random Forests. Machine 

Learning, Vol. 45, 5-32. 

Burges, C. J., 1998, A Tutorial on Support Vector 

Machines for Pattern Recognition. Data Mining 

And Knowledge Discovery, Vol. 2, 121-167. 

Butt, A., Shabbir, R., Ahmad, S. S. and Aziz, N., 

2015, Land Use Change Mapping and Analysis 

Using Remote Sensing and GIS: A Case Study of 

Simly Watershed, Islamabad, Pakistan. The 

Egyptian Journal of Remote Sensing and Space 

Science, Vol. 18, 251-259. 

Cihlar, J., 2000., Land Cover Mapping of Large 

Areas from Satellites: Status and Research 

Priorities. International Journal of Remote 

Sensing, Vol. 21, 1093-1114. 

Cortes, C. and Vapnik, V., 1995, Support-Vector 

Networks. Machine Learning, Vol. 20, 273-297. 

Da Costa Freitas, C., De Souza Soler, L., Sant'anna, 

S. J. S., Dutra, L. V., Dos Santos, J. R., Mura, J. 

C. and Correia, A. H., 2008, Land Use and Land 

Cover Mapping in the Brazilian Amazon Using 

Polarimetric Airborne P-Band SAR Data. Ieee 

Transactions on Geoscience and Remote Sensing, 

Vol. 46, 2956-2970. 

Elatawneh, A., Kalaitzidis, C., Petropoulos, G. P. and 

Schneider, T., 2014, Evaluation of Diverse 

Classification Approaches for Land Use/Cover 

Mapping in a Mediterranean Region Utilizing 

Hyperion Data. International Journal of Digital 

Earth, Vol. 7, 194-216. 

Erinjery, J. J., Singh, M. and Kent, R., 2018, 

Mapping and Assessment of Vegetation Types in 

the Tropical Rainforests of the Western Ghats 

Using Multispectral Sentinel-2 and SAR 

Sentinel-1 Satellite Imagery. Remote Sensing of 

Environment, Vol. 216, 345-354. 

ESA, 2017, 2sentinels Scientific Data Hub. Retrieved 

From. https://scihub.copernicus.eu/-

dhus/#/home. 

Foody, G. M., 2002, Status of Land Cover 

Classification Accuracy Assessment. Remote 

Sensing of Environment, Vol. 80, 185-201. 

Forghani, A., 1994, A New Technique for Map 

Revision and Change Detection Using Merged 

Landsat TM and Spot Sets in a Urban 

Environment. Asian-Pasific Remote Sensing J., 

Vol. 7, 119-129. 

Forghani, A., Nadimpalli, K. and Cechet, R. P., 2018, 

Extracting Terrain Categories from Multi-Source 

Satellite Imagery. International Journal of 

Geoinformatics, Vol. 14, 25-34. 

Gascon, F., Bouzinac, C., Thépaut, O., Jung, M., 

Francesconi, B., Louis, J., Lonjou, V., Lafrance, 

B., Massera, S. and Gaudel-Vacaresse, A., 2017, 

Copernicus Sentinel-2a Calibration and Products 

Validation Status. Remote Sensing, Vol. 9, 584. 

Hansen, M. C. and Loveland, T. R., 2012, A Review 

of Large Area Monitoring of Land Cover Change 

Using Landsat Data. Remote Sensing of 

Environment, Vol. 122, 66-74. 

Joshi, N., Baumann, M., Ehammer, A., Fensholt, R., 

Grogan, K., Hostert, P., Jepsen, M., Kuemmerle, 

T., Meyfroidt, P. and Mitchard, E., 2016, A 

Review of the Application of Optical and Radar 

Remote Sensing Data Fusion to Land Use 

Mapping and Monitoring. Remote Sensing, Vol. 



96 

 

International Journal of Geoinformatics, Volume 16, No. 3, July – September 2020 
Online ISSN 2673-0014/ © Geoinformatics International 

8, 70. 

Kazemi, S., Lim, S. and Rizos, C., 2009, Interactive 

and Automated Segmentation and Generalisation 

of Raster Data. International Journal of 

Geoinformatics, Vol. 5(3), 1-11. 

Leinenkugel, P., Wolters, M. L., Kuenzer, C., Oppelt, 

N. and Dech, S., 2014, Sensitivity Analysis for 

Predicting Continuous Fields of Tree-Cover and 

Fractional Land-Cover Distributions in Cloud-

Prone Areas. International Journal of Remote 

Sensing, Vol. 35, 2799-2821. 

Lu, D. and Weng, Q., 2007, A Survey of Image 

Classification Methods and Techniques for 

Improving Classification Performance. 

International Journal of Remote Sensing, Vol. 28, 

823-870. 

Miranda, N., Meadows, P., Type, D. and Note, T., 

2015, Radiometric Calibration of S-1 Level-1 

Products Generated by the S-1 IPF. viewed at 

Https://Sentinel. Esa. 

Int/Documents/247904/685163/S1-Radiometric-

Calibration-V1. 0. Pdf. 

Mohammed Noori, A., Falih Hasan, S., Mahmood 

Ajaj, Q., Ridha Mezaal, M., Z. M. Shafri, H. and 

Aidi Shareef, M., 2018, Fusion of Airborne 

Hyperspectral and Worldview2 Multispectral 

Images for Detailed Urban Land Cover 

Classification a Case Study of Kuala Lumpur, 

Malaysia. 2018, 7, 5. 

Müller, H., Griffiths, P. and Hostert, P., 2016, Long-

Term Deforestation Dynamics in the Brazilian 

Amazon-Uncovering Historic Frontier 

Development along the Cuiabá–Santarém 

Highway. International Journal of Applied Earth 

Observation and Geoinformation, Vol. 44, 61-69. 

Ng, K. and Lippmann, R. P. A., 1991, Comparative 

Study of the Practical Characteristics of Neural 

Network and Conventional Pattern Classifiers. 

Advances in Neural Information Processing 

Systems, 970-976. 

Olofsson, P., Foody, G. M., Stehman, S. V. and 

Woodcock, C. E., 2013, Making Better Use of 

Accuracy Data in Land Change Studies: 

Estimating Accuracy and Area and Quantifying 

Uncertainty Using Stratified Estimation. Remote 

Sensing of Environment, Vol. 129, 122-131. 

Pontius Jr, R. G. and Millones, M., 2011, Death to 

Kappa: Birth of Quantity Disagreement and 

Allocation Disagreement for Accuracy 

Assessment. International Journal of Remote 

Sensing, Vol. 32, 4407-4429. 

Rawat, J. and Kumar, M., 2015, Monitoring Land 

Use/Cover Change Using Remote Sensing and 

GIS Techniques: A Case Study of Hawalbagh 

Block, District Almora, Uttarakhand, India. The 

Egyptian Journal of Remote Sensing and Space 

Science, Vol. 18, 77-84. 

Riebsame, W. E., Meyer, W. B. and Turner, B., 1994, 

Modeling Land Use and Cover as Part of Global 

Environmental Change. Climatic Change, Vol. 

28, 45-64. 

Sameen, M. I., Nahhas, F. H., Buraihi, F. H., 

Pradhan, B. and Shariff, A. R. B. M., 2016, A 

Refined Classification Approach by Integrating 

Landsat Operational Land Imager (OLI) and 

Radarsat-2 Imagery for Land-Use and Land-

Cover Mapping in a Tropical Area. International 

Journal of Remote Sensing, Vol. 37, 2358-2375. 

Shareef, M. A., Khenchaf, A. and Toumi, A., 2016, 

Integration of Passive and Active Microwave 

Remote Sensing to Estimate Water Quality 

Parameters.  Ieee Radar Conference (Radarconf), 

IEEE, 1-4. 

Sonobe, R., Tani, H. and Wang, X., 2017, An 

Experimental Comparison Between Kelm and 

Cart for Crop Classification Using Landsat-8 OLI 

Data. Geocarto International, Vol. 32, 128-138. 

Steinhausen, M. J., Wagner, P. D., Narasimhan, B. 

and Waske, B., 2018, Combining Sentinel-1 and 

Sentinel-2 Data for Improved Land Use and Land 

Cover Mapping of Monsoon Regions. 

International Journal of Applied Earth 

Observation and Geoinformation, Vol. 73, 595-

604. 

Waske, B. and Van Der Linden, S., 2008, Classifying 

Multilevel Imagery from SAR and Optical 

Sensors by Decision Fusion. IEEE Transactions 

on Geoscience and Remote Sensing, Vol. 46, 

1457-1466. 

Weinberger, K. Q. and Saul, L. K., 2009, Distance 

Metric Learning for Large Margin Nearest 

Neighbor Classification. Journal of Machine 

Learning Research, Vol. 10, 207-244. 

Weiß, T., 2019, Multiply Sar Pre-Processing 

Documentation. 

https://buildmedia.readthedocs.org/media/pdf/m

ultiply-sar-pre-processing/latest/multiply-sar-

pre-processing.pdf 

Yuan, F., Sawaya, K. E., Loeffelholz, B. C. and 

Bauer, M. E., 2005, Land Cover Classification 

and Change Analysis of the Twin Cities 

(Minnesota) Metropolitan Area by Multitemporal 

Landsat Remote Sensing. Remote Sensing of 

Environment, Vol. 98, 317-328. 


