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Abstract 

Nitrogen (N) is one of the main factors to increasing corn yield. Past research showed that N fertilizer 

application rates were strongly related to corn yield. The objective of this study was to estimate N fertilizer 

recommendations with EONR for waxy corn (Zea mays var. ceratina) using NDVI derived from canopy 

reflectance and images taken by a multispectral camera as a passive sensor mounted on unmanned aerial 

vehicle (UAV). Three site-years experiments were conducted during two consecutive dry seasons in 2017/18 

and 2018/19 at Ban Nong Bua, Nong Bua District, Khon Kaen, Thailand. The experiments were laid out 

according to randomized complete block design (RCBD) with two replications. Treatments consisted of nine 

N rates in all site-years; 0, 50, 56.25, 112.50, 125, 168.75, 200, 225 and 281.25 kg N ha -1. The EONR and N 

fertilizer rates were determined by fitting quadratic plateau regression models for each whole plot treatment 

at each site. The relationship between relative NDVI and temporal data of EONR was evaluated to provide N 

fertilizer recommendation. The EONR was strongly related to relative NDVI (R2= 0.7492). The result 

presented here suggests that the reflectance data collected with the camera as a passive sensor mounted on 

UAV has the potential to be a useful tool for N fertilizer recommendation for waxy corn under a variety of 

management systems and conditions found in Northeastern Thailand. 

 

 

1. Introduction 

Waxy corn (Zea mays var. ceratina) is an important 

vegetable with economic significance that is thought 

to have originated from cultivated flint corn, a crop 

mainly consumed as a fresh vegetable in Asian 

countries such as China, Japan, Korea, and the 

Philippines, and used as raw material for food 

industries (Hao et al., 2015). Thailand exports waxy 

corn hybrid seeds and frozen waxy corn and there is 

a promising trend for market expansion both locally 

and internationally (Simla et al., 2010).  

Corn yield significantly depends on nitrogen 

fertilization (Shrestha et al., 2018). In addition, 

nitrogen fertilization is the most important factor 

which humans can control the limit of corn yield 

(Henninger, 2012 and Klimek-Kopyra et al., 2012). 

Nitrogen (N) is one of the main factors in increasing 

corn yield (Molla et al., 2014) and it is an essential 

element for healthy photosynthetic activity in 

leaves. Due to its role in photosynthetic activity, it is 

necessary at every stage of its growth. It is involved 

in many important plant biochemical processes as 

well as the health of plant components such as 

amino acids, proteins and chlorophyll. The soil 

system typically cannot supply the full corn plant N 

requirement. Therefore, supplemental N is needed to 

reach economic yield potential. It is possible to 

estimate the N fertilizer recommendation that results 

in maximum yield (Zebarth et al., 2009), but 

guidelines for N fertilizer recommendation have 

been derived using maximum economic return to 

determine economic optimum nitrogen rate (EONR) 

rather than maximum yield (Sawyer and Randall, 

2008). 

Past research has indicated a strong positive 

correlation between N fertilization and leaf N 

concentration, and NDVI in corn (Karki, 2013, 

Shaver et al., 2014 and Pantoja et al., 2015). Many 

researchers reported that NDVI derived from a 

canopy sensor was able to identify crop response to 

different N rates. The data have been used to 

monitor crop conditions and forecast yield as well as 

in the production of many crops, such as rice (Arai 
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et al., 2014 and Liu et al., 2015) wheat (Sultana et 

al., 2014) sugarcane (Amaral et al., 2014 and Rosa 

et al., 2015) and turf grasses (Caturegli et al., 2016). 

This relationship should make it possible to use 

NDVI to estimate crop N fertilizer recommendation. 

Canopy reflectance was measured using active 

and passive sensors. Active sensors provide their 

own energy light source and measure light 

reflectance in real time at the canopy level. On the 

other hand, passive sensors measures naturally 

reflected energy or energy emitted by the object 

from the sun. Dellinger et al., (2008) use the Crop 

Circle ACS-210 (Holland Scientific, Lincoln, NE, 

USA) active sensor to measure VIS light at 590 nm 

and NIR light at 880 nm to study canopy reflectance 

as a potential tool for assessing the N status and to 

estimate N requirements in dent corn (Zea mays var. 

indentata). Miller et al., (2017) measured NDVI 

obtained from canopy reflectance using the Green 

Seeker (NTech Industries Inc., Ukiah, CA, USA) 

handheld active sensor which operates by directing 

VIS light at 660 nm and NIR light at 700 nm to 

estimate N fertilizer recommendation in corn. On the 

other hand, Mutanga  (2005) using a GER 3700 

spectrometer (Geophysical and Environmental 

Research Corporation, Millbrook, NY, USA) as a 

passive sensor to discriminate tropical grass grown 

under different N treatments. The objective of this 

research was to estimate N fertilizer recommendation 

with EONR for waxy corn using NDVI derived from 

canopy reflectance and images taken by a 

multispectral camera as a passive sensor mounted on 

unmanned aerial vehicle (UAV). 

 

2. Materials and Methods 

2.1 Study Area 

Three site-years were completed at the Waxy Corn 

Growing Community Enterprise Group of Ban 

Nong Bua, Nong Bua District, Khon Kaen, Thailand 

(Figure 1). Field site experiments were sown with 

waxy corn hybrid Sweet Wax 254 during two 

consecutive dry seasons from December 2017 to 

March 2018 (Y1) and December 2018 to February 

2019 (Y2). The climatic condition in the area is 

semi-arid. Mean temperature during the periods 

were 24.63 and 25.80 degrees Celsius, while total 

rainfall was measured at 27.20 and 5.60 mm in Y1 

and Y2, respectively. The soil texture of the 

experimental site was sandy loam and the chemical 

analysis in laboratory of soil is given in Table 1. 

Soils were classified as Udon soil series (Coarse-

loamy, mixed, active, nonacid, isohyperthermic 

Typic Halaquepts) in site 1 and Khemarat soil series 

(fine-loamy over clayey, kaolinitic, isohyperthermic 

Plinthic Haplustults) in sites 2 and 3. The soils 

during each of the site-years were at a low fertility 

level. 

 
 

Figure 1: Location of study areas 
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Table 1: Soil chemicals for each site in 2017/18 and 2018/19 
 

Study 

areas 
Soil series 

Sand Silt Clay 
Texture 

NO3
- Available P Exchangeable K O.M. pH 

(%) (%) (%) (mg/kg) (mg/kg) (mg/kg) (%) (1:1) 

 2017/18          

Site 1 Udon  (Ud) n/a n/a n/a Sandy loam 4.68 54.51 77.03 0.87 5.43 

 2018/19          

Site 2 Khemarat (Kmr) 74.92 18.17 6.91 Sandy loam 11.78 28 152.11 0.64 5.36 

Site 3 Khemarat (Kmr) 52.54 38.13 9.33 Sandy loam 4.88 3.75 129.36 0.57 5.22 
  NB: n/a = Not available 
 NO3

- = Potassium Chloride Extraction, Distillation with devarda Alloy  

 Available P = Bray No.2 extraction; Spectrophotometry  
 Exchangeable K = Ammonium acetate extraction; Atomic Absorption Spectrophotometry  
 Organic Matter (O.M.) = Walkley and Black method  

          pH = Soil : Water = 1:1; pH meter 
 

 
Figure 2: Flow chart for estimating N fertilizer recommendation 
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2.2 Ground Data and Experimental Design 

The experimental design of each field at each site 

was a randomized complete block design (RCBD) 

with two replications (Table 2). The sites are under 

furrow irrigation, conventional tillage management 

and plant protection, in accordance with standard 

crop management. The mean areas of each treatment 

in site 1, 2 and 3 were 137.65, 86 and 87.23 m2, 

respectively. Plot sizes measured by width and 

length were approximately 6.17 m x 23.33 m, 4.33 

m x 20.31 m and 6.23 m x 14.44 m, respectively. A 

summary of site activities for each cropping year 

including sowing dates, image acquisition dates and 

harvest dates are reported in Table 3. The flow chart 

for estimating N fertilizer recommendation is shown 

in Figure 2. 

Corn growth stages and development were 

divided into two groups: vegetative (V) and 

reproductive (R) periods. The VE (Emergence) 

occurs when the seminal roots push through the soil 

surface. After emergence, the vegetative stages are 

divided into numerical subdivisions V1, V2, and V3 

through Vn where n is the number of leaves with a 

fully visible collar or fully expanded leaves until the 

VT (Tasseling). There were six reproductive stages 

from R1 to R6 that can be identified during the 

development to maturity for cobs of the corn plant. 

The R1 or silking stage is the first reproductive 

stage, and it begins when silks are visible outside 

the husks of the cob. During the R2 or blister stage, 

kernels appear white and are blister shaped. During 

the R3 or milking stage, the kernels inner fluid is 

milky and thick due to starch accumulation. During 

the R4 or dough stage, starch accumulation turns the 

inner contents of the kernel pasty. In the R5 or dent 

stage, kernels are dented. Lastly, during the R6 or 

physiological maturity, all kernels in the cob attain 

full dry weight (Krishna, 2012). 

To achieve optimum corn yield, it is 

recommended to split N fertilizer application into 

three times (Sitthaphanit, 2010, Hammad et al., 

2011 and Sharifi and Namvar, 2016). Thus, this 

study applied granulated N fertilizer in three splits. 

The first N application of N-P-K (15-15-15) as basal 

dressing after final land preparation or in early plant 

growth improves yield and improves vegetative 

growth and development (Shrestha et al., 2018). The 

second N application of urea (46-0-0) as side 

dressing occurs during the V6 growth stage. The 

corn plant starts to uptake nutrients significantly 

from about the V6 stage onward (Schmidt et al., 

2009). The third N application as side dressing is 

applied during the R1 growth stage. The fertilization 

of ovules occurs during this period. The number of 

ovules that get pollinated and those that develop into 

mature kernels are determined at this point (Krishna, 

2012). The treatments (T) included four N fertilizer 

rates; T1 (zero N, control), T2 (50 kg N ha-1), T3 

(125 kg N ha-1) and T4 (200 kg N ha-1) in 2017/18 

and six N fertilizer rates were T1 (zero N, control), 

T2 (56.25 kg N ha-1), T3 (112.50 kg N ha-1), T4 

(168.75 kg N ha-1), T5 (225 kg N ha-1) and T6 

(281.25 kg N ha-1) in 2018/19 (Table 2 and Figure 

4). Because the total N fertilizer accumulation was 

completely applied in the third N application at R1 

growth stage, all images of each site were acquired 

using UAV imaging passive sensor in the same 

period at R1 growth stage in site 1, 2 and 3 on 26 

February 2018, 10 January 2019 and 17 January 

2019, respectively (Table 3). 

 

2.3 UAV-Based Description and Image Processing 

The UAV used in this study was a quadcopter of 

Phantom 3 Professional model (Figure 5a). It is 

equipped with a red (660 nm) - NIR (850 nm) 

sensor, a 16 Megapixel of Survey 2 camera (Figure 

5b) (MAPIR Inc., San Diego, CA, USA). Figure 2 

presents the concept workflow for estimating N 

fertilizer recommendation based on canopy 

reflectance derived from image processing. The four 

phases using image processing technique are as 

follows: (1) flight planning with necessary data using 

PIX4D Capture (Pix4D, Lausanne, Switzerland) 

autopilot application to set the UAV flights to region 

of interest (ROI), flight direction, flight speed and 

the time of the flight to avoid the effect of shadows  

during the one to two hours before and after noon. 

The flight altitude was 40 m above ground. Images 

were acquired with an 80% side overlap and 75% 

forward overlap. 

   
(a) (b) (c) 

 

Figure 3: (a) Basal dressing (b) Second N application at V6 stage and (c) Third N application at R1 stage 
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Table 2: Fertilizer application rates of each treatment 
 

Study areas Treatments 

1st Basal dressing 

N-P-K (15-15-15)  

(kg N ha-1) 

2nd Side dressing 

N-P-K (46-0-0) 

(kg N ha-1) 

3rd Side dressing 

N-P-K (46-0-0)  

(kg N ha-1) 

Total N application 

(kg N ha-1) 

Site 1 

T1 0 0 0 0 

T2 31.25 9.38 9.37 50 

T3 93.75 15.63 15.62 125 

T4 125 37.50 37.50 200 

Site 2 and Site 3 

T1 0 0 0 0 

T2 50 3.13 3.12 56.25 

T3 62.5 25 25 112.50 

T4 75 46.88 46.87 168.75 

T5 87.50 68.75 68.75 225 

T6 100 90.63 90.62 281.25 

 

  
(a) 

  
(b) 

  
(c) 

 

Figure 4: RCBD with two replications and the RGB images of (a) site 1 (b) site 2 and (c) site 3  

NB: T = Treatment and R = Replication 
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Table 3: Activities for each site in 2017/18 and 2018/19 
 

Study areas 
Dates 

Sowing Image acquisition Harvest 

Site 1 22 December 2017 26 February 2018 13 March 2018 
Site 2 19 November 2018 10 January 2019 24 January 2019 

Site 3 27 November 2018 17 January 2019 7 February 2019 

 

  
(a) (b) 

  

  
(c) (d) 

 

Figure 5: (a) Phantom 3 professional (b) MAPIR Survey 2 camera  

(c) Calibration target and (d) Ground control point (GCP) 

 

(2) After the image acquisition, the collected images 

were transferred for pre-processing. This processing 

involves alignment and mosaicking, georeferencing 

and radiometric calibration. Image analysis was 

performed on both mosaic and single images. 

Images were mosaicked into a single image with 3 

cm pixel resolution using Agisoft PhotoScan 

(Agisoft LLC, St. Petersburg, Russia). In the next 

step, georeferencing processes with 9 ground 

control points (GCPs) focused on the known 

coordinates of interest in the region using Quantum 

GIS (QGIS). Next, raw digital number (8 bit) were 

converted to reflectance values (16 bit) in order to 

reduce sampling noise and error due to the effect of 

environmental changes or changes in light 

conditions due to sunshine or clouds using a 

standard laboratory calibration panel (Figure 5c) and 

MAPIR Camera Control Software (MAPIR Inc., 

San Diego, CA, USA). (3) image processing 

calculating NDVI and (4) data processing 

calculating relative NDVI using data between each 

treatment, and EONR using data between cost and 

return of yield and N fertilizer prices. Finally, a N 

fertilizer recommendation model was estimated with 

temporal data from all site-years using linear 

regression analysis. 

 

2.4 Canopy Reflectance Measurement 

A study by Liu and Wiatrak (2011) reported that 

NDVI during the R1 growth stage may act as a good 

predictor to estimate corn grain yield. Similar results 

were obtained by Sanodiya et al., (2017) who 

emphasized that the yield prediction equation had a 

maximum coefficient of determination (R2) value 

for NDVI at R1 growth stage.  

Moreover, Raun et al., (2005) reported that corn 

growth between the V6 and R1 growth stage was an 

important period due to a strong relationship 

between plant characteristics and corn grain yield. 

Consequently, this study collected canopy 

reflectance data during the R1 growth stage. The 

amount of red reflectance and near-infrared 
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reflectance were obtained from images taken by a 

Survey 2 MAPIR camera as a passive sensor 

mounted on a UAV and was used to calculate the 

Normalized Difference Vegetation Index (NDVI). 

Measurements were taken with a mean of seven 

sample representative plants from every row of each 

plot. The equation for NDVI (Tucker, 1979) is 

expressed as 

 

NDVI = (𝜌NIR – 𝜌Red) / (𝜌NIR + 𝜌Red) 

 

Equation 1 

 

where 𝜌NIR is the near-infrared reflectance and 

𝜌Red is the red reflectance. 

 

relative Normalized Difference Vegetation Index 

(relative NDVI) was used for data normalization to 

allow for the comparison of the variance of the N 

response among field. Many researchers reported 

that relative NDVI is better than absolute NDVI 

values because relative values reduce error from the 

influence of confounding factors, such as a plant 

variety factors, cultivation, climate, year of growth, 

location, irrigation, insect damage, crop rotation and 

N fertilizer history (Islam and Garcia, 2014). The 

relative NDVI for each whole plot treatment was 

determined from the zero N rate treatment (control 

plot) and the maximum N treatment (reference plot). 

The equation of relative NDVI (Dellinger et al., 

2008) is expressed as: 

 

relative NDVI = NDVIcontrol / NDVIreference 

 

Equation 2 

 

where NDVIcontrol is NDVI of zero N rate treatment 

and NDVIreference is NDVI of maximum N rate 

treatment. 

 

2.5 Economic Optimum Nitrogen Rate (EONR) 

Farmers should apply N fertilizer rates that return 

the most profitable economic yield, where the yield 

from N fertilizer application will more than pay for 

the invested N. Maximum yield N response 

experimentations are conducted through the 

application of different N rates, followed by the 

measurement of yield at each rate. Analysis of that 

response data allows calculation of site EONR, the 

rate in which the maximum economic return from 

the N fertilizer investment is shown. Economic net 

return is the difference between the price of yield 

and the cost of N fertilizer (Sawyer and Randall, 

2008). 

Cob weight with husk yield for each treatment 

was measured during the harvesting of the crop. 

Estimates of cob weight with husk yield (11 baht kg-1), 

N-P-K of 15-15-15 fertilizer (106.92 baht kg-1 N) 

and urea fertilizer (27.32 baht kg-1 N) were used 

with the quadratic plateau yield response model to 

calculate EONR, based on these prices. 

 

2.6 Statistical Analysis 
Analysis of variance (ANOVA) was used to 

evaluate treatment effects on measured variables as 

N rates and yield to a randomized complete block 

design. Scheffe’s method with pair-wise 

comparisons was used to compare means at P ≤ 0.01 

using a program of statistical analysis of sample 

data (PSPP) (Free Software Foundation Inc., 

Boston, MA, USA). 

Quadratic plateau regression model is the 

statistical estimation of the optimal plateau, the 

point at which increases in the input under 

investigation would have no significant effect on the 

magnitude of the response. EONR was obtained 

using quadratic plateau regression model to describe 

waxy corn yield response to N fertilizer rates. 

Linear regression model was used to describe the 

relationship between EONR and relative NDVI in 

order to evaluate N fertilizer recommendation model 

using R programming (R Development Core Team, 

Vienna, Austria). Coefficients of determination 

were expressed as R2. The quadratic plateau 

regression model (Pantoja et al., 2015) (Equations 3, 

4) is expressed as: 

 

y = a + bx + cx2, x < x0 

Equation 3 

 

y = a + bx0 + cx0
2, x ≥ x0 

Equation 4 

 

where y is yield response to N fertilizer rate (kg ha-1), 

x is N fertilizer rate (kg N ha-1), a is intercept, b is 

linear coefficient, c = quadratic coefficient and x0 = 

critical N fertilizer rate at the join point. The linear 

regression model (Zou et al., 2003) (Equation 5) is 

expressed as: 

 

y = a + bx 

Equation 5 

 

where y is N fertilizer recommendation (kg N ha-1), 

x is relative NDVI, a is intercept and b is linear 

coefficient. 

 

3. Results and Discussion 

3.1 Yield Response to N Fertilizer Application Rates 

Waxy corn is consumed as a fresh or boiled cob. 

Therefore, yield was determined based on cob 

weight with husk of each treatment hand-harvested. 
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Cob weight with husk yield across experimental 

sites ranged from 1,904.06 to 9,356.38 kg ha-1. 

Yield consistently increased with N application. The 

application of N fertilizer at 281.25 kg N ha-1 

contributed to a mean of maximum yield of 

9,202.35 kg ha-1, while the yield in the zero N rate 

treatment (control plot) was the lowest (Table 4 and 

Figure 6). There was statistically significant yield 

response to N rates (P ≤ 0.01). The ANOVA 

summary graph (Figure 6) shows that there were not 

statistical differences between 125 and 281.25 kg N 

ha-1. Therefore, if there are no canopy reflectance 

data, this results in an N fertilizer recommendation 

of 125 kg N ha-1. 

 

Table 4: Mean cob weight with husk yield of each treatment in all site-years 
 

Study areas Treatments 
Total N application 

(kg N ha-1) 

Cob weight with husk yield (kg ha-1) 

Rep.1 Rep.2 Mean 

Site 1 

T1 0 2,908.56 2,112.06 2,510.31 

T2 50 6,410.50 5,709.90 6,060.20 

T3 125 8,167.81 8,159.88 8,163.85 

T4 200 8,371.56 8,081.40 8,226.48 

Site 2 

T1 0 1,904.06 2,030.25 1,967.16 

T2 56.25 6,265.38 5,409.03 5,837.21 

T3 112.50 6,686.25 7,121.38 6,903.82 

T4 168.75 9,203.31 7,561.25 8,382.28 

T5 225 7,696.44 7,870.13 7,783.29 

T6 281.25 8,202.13 9,081.94 8,642.04 

Site 3 

T1 0 2,162.03 2,502.94 2,332.49 

T2 56.25 6,802.88 7,659.03 7,230.96 

T3 112.50 7,384.06 8,198.75 7,791.41 

T4 168.75 8,139.31 8,304.25 8,221.78 

T5 225 7,836.75 7,733.88 7,785.32 

T6 281.25 9,356.38 9,048.31 9,202.35 
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k
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) 

 

 N fertilizer application rates (kg N ha-1) 
 

Figure 6: Yield response to different N fertilizer application rates for the treatment sites combined given in 

Table 4: Different letters on the bars indicate means are statistically different (P ≤ 0.01) 

 

3.2 EONR 

The relationship between yield and N fertilizer 

application rates was evaluated. The quadratic 

plateau regression model parameters were used to 

calculate EONR for each replication in all sites. For 

example, Figure 7c shows that the fitting curve of 

quadratic plateau regression model has the equation 

of  yield = 2155.119 + (70.83892 x N rate) - 

(0.205384 x (N rate)2) up to the N rate of 172.45 kg 

N ha-1, the yield remain flat at 8,263.38 kg ha-1. 



81 

 

International Journal of Geoinformatics, Volume 16, No. 3, July – September 2020 
Online ISSN 2673-0014/ © Geoinformatics International 

Further, it shows that overapplying N fertilizer 

occurs when applying more N fertilizer than 172.45 

kg N ha-1 with an EONR of 162.50 kg N ha-1 and 

yield of 8,243 kg ha-1 at EONR. Table 5 and Figure 

7 show the quadratic plateau regression models and 

equation parameters for the relationship between 

yield and N fertilizer application rates at each site. 

A diverse set of field site management 

conditions, such as silt content, climate, cultivation, 

farming experience, previous crop and N fertilizer 

history provide a wide range of EONR from 81.25 

to 190.63 kg N ha-1. Sripada et al., (2005) obtained 

similar results for a wide range of EONR in corn 

from 0 to 224 kg N ha-1 with a mean of 104 kg N 

ha-1. 

 

3.3 NDVI and relative NDVI 

Figure 8 illustrates the NDVI distribution map from 

a flight altitude of 40 m. NDVI can be used to 

quantize crop growth status. The results of NDVI in 

site 1, 2 and 3 were 0.16-0.96, 0.21-0.99 and 0.28-

0.98, respectively. High NDVI values were 

exhibited by the high nitrogen fertilizer application 

at more than 125 kg N ha-1, wherein the dark green 

color in Figure 4 also differed from the color of 

control treatment and the other areas. It was 

indicated that NDVI varied with nitrogen 

application rate. The results were supported by a 

similar study conducted by Liu and Wiatrak (2011) 

and Karki (2013) obtained NDVI using an active 

hand-held sensor GreenSeeker for corn (Table 6). 

 

3.4 N Fertilizer Recommendation 

N fertilizer recommendation is based on the 

relationship between relative NDVI and EONR. The 

temporal data of EONR from all sites were 

evaluated by fitting a simple linear regression 

analysis for N fertilizer recommendation model 

(Figure 9).  

This relationship could then be used to develop 

N fertilizer recommendation based on relative 

NDVI. In the more responsive part of the model 

(Equation 6), the equation for the line is: 

 

y = -961.7x + 959.28 

Equation 6 

 

where y is N fertilizer recommendation and x is 

relative NDVI. This represents the model for the N 

fertilizer recommendation when relative NDVI is 

less than 1.0. For example, this model (Equation 6) 

indicates that a relative NDVI measurement of 0.83, 

0.87 and 0.90 corresponds to an N fertilizer 

recommendation of 161.07, 122.60 and 93.75 kg N 

ha-1, respectively. The highest limit of relative 

NDVI was set at 1.0 which causes the N fertilizer 

recommendation to be zero, or very near zero (no N 

fertilization is needed). This combined EONR 

indicates that a gradual increase in relative NDVI 

was associated with decreasing EONR. It is useful 

for the site-specific management of agriculture or 

precision farming. Similar results were reported by 

Sripada et al., (2005), who conducted similar work 

during the VT (Tasseling) growth stage with EONR 

ranged from 0 to 224 kg N ha-1 and Dellinger et al., 

(2008) conducted an experiment during a much 

earlier corn V6-V7 growth stage while EONR ranged 

from 0 to 202 kg N ha-1.  

The use of a relative NDVI to estimate N 

fertilizer recommendation requires the availability 

of the maximum N treatment (reference plot) in the 

field, which is a potential limitation to the 

application of this technique. Rather than having 

one reference plot located at random, a better 

method may be to have a series of reference plots 

across the field based on the farmers’ knowledge of 

field variability (Sripada et al., 2005). 

 
Table 5: Quadratic plateau regression models and parameters describing the yield response to N fertilizer rates 

 

Study areas Quadratic regression models 
Join point Plateau (x0) EONR YEONR 

R2 
 kg N ha-1 kg ha-1 

Site 1 
Rep.1 2098.562 + 88.16064x – 0.3624378x2 8,269.69 121.62 115.63 8,256.63 0.99 

Rep.2 2104.534 + 88.88735x – 0.327651x2 8,133.02 135.64 128.13 8,114.50 0.99 

Site 2 
Rep.1 2155.119 + 70.83892x – 0.205384x2  8,263.38 172.45 162.50 8,243.00 0.92 

Rep.2 2199.046 + 59.35459x - 0.1440487x2 8,313.24 206.02 190.63 8,279.06 0.96 

Site 3 
Rep.1 2162 + 111.6247x – 0.5176935x2 8,179.11 107.81 103.13 8,167.75 0.93 

Rep.2 2502.938 + 137.0784x – 0.08073789x2 8,321.30 84.89 81.25 8,310.63 0.97 

NB: x = N fertilizer application rate (kg N ha-1) 

 Join point = Plateau of cob with husk weight waxy corn yield (kg ha-1) 

 Plateau (x0) = Critical N fertilizer rate (kg N ha-1) which occurs at the intersection of quadratic 

 EONR = Economic optimum N rate (kg N ha-1) 

 YEONR = Yield at economic optimum N rate (kg ha-1) 



82 

 

International Journal of Geoinformatics, Volume 16, No. 3, July – September 2020 
Online ISSN 2673-0014/ © Geoinformatics International 

 

 

 

 

Y
ie

ld
 (

k
g

 h
a

-1
) 

  
(a) (b) 

  
(c) (d) 

  
 (e) (f) 

 N fertilizer application rates (kg N ha-1) 

 

Figure 7: Quadratic plateau regression models and yield response to different nitrogen fertilizer application 

rates of (a) site 1 in 2017/18 replication 1 (b) site 1 in 2017/18 replication 2 (c) site 2 in 2018/19 replication 1 

(d) site 2 in 2018/19 replication 2 (e) site 3 in 2018/19 replication 1 and (f) site 3 in 2018/19 replication 2 
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Table 6: Mean NDVI and relative NDVI of each treatment in all site-years 
 

Study areas Treatments 
Total N application 

(kg N ha-1) 

NDVI relative NDVI 

Rep.1 Rep.2 Rep.1 Rep.2 

Site 1 

T1 0 0.70 0.69 

0.85 0.84 
T2 50 0.73 0.73 

T3 125 0.77 0.78 

T4 200 0.82 0.82 

Site 2 

T1 0 0.71 0.71 

0.85 

 

0.86 

 

T2 56.25 0.79 0.79 

T3 112.50 0.78 0.77 

T4 168.75 0.82 0.81 

T5 225 0.80 0.81 

T6 281.25 0.84 0.83 

Site 3 

T1 0 0.74 0.75 

0.88 0.89 

T2 56.25 0.79 0.76 

T3 112.50 0.81 0.81 

T4 168.75 0.82 0.81 

T5 225 0.82 0.81 

T6 281.25 0.84 0.84 

 

 

 

  
(a) (b) 

 

   
(c) 

 

Figure 8: NDVI at R1 growth stage of (a) site 1 (b) site 2 and (c) site 3 
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Figure 9: Relationship between EONR and relative NDVI data  

from 3 site-years were used in developing the model 

 

4. Conclusions 

This study demonstrated that relative NDVI at R1 

growth stage can be used to estimate N fertilizer 

recommendation with EONR for the maximum 

economic return. In addition, waxy corn yields 

response to N fertilizer application rates and relative 

NDVI. Spectral reflectance of waxy corn expressed 

using relative NDVI successfully predicted EONR. 

These results indicate that if there are no canopy 

reflectance data, it is possible to estimate yield at the 

R1 growth stage from the amount of side dress 

fertilizer in corn. Furthermore, canopy reflectance 

data have also proven to estimate optimum N 

fertilizer recommendation and have shown to be 

more useful for precision farming practices. 

Therefore, relative NDVI derived from UAV 

imaging passive sensor can estimate N fertilizer 

recommendation for waxy corn under other similar 

waxy corn growing environments in the country as 

well as other area. Further work must be conducted 

with various soils, irrigation systems, tillage 

practices, types of fertilizer, timing of fertilization, 

waxy corn varieties and growth stages with any field 

conditions to verify this relationship or develop the 

model further. The result presented here suggests 

that the reflectance data collected with the 

multispectral camera as a passive sensor mounted 

on UAV has the potential to be a useful tool for N 

fertilizer recommendation for waxy corn under a 

variety of management systems and conditions 

found in the Northeastern region of Thailand. 
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