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Abstract    

Very high resolution aerial imagery, while providing a very high level of detail of the land surface, introduced 

new challenges for land use / land cover (LULC) classification.  Finer spatial resolution increases the 

spectral heterogeneity of the land cover features being classified, and markedly increases the number of 

shadow pixels.  The result is a very large proportion of confused pixels sprinkled throughout the image which 

adversely affects the accuracy of LULC classification. This paper describes a hierarchical classification 

approach using knowledge-based decision tree for LULC classification (coniferous, deciduous, bare ground, 

water, and roads) with a very-high resolution (30cm) multispectral imagery.  Shadowed or confused pixels 

were identified and underwent separate processes to effectively reassign those pixels to the base LULC 

classes, which was determined by the knowledge-based decision tree in this order: roads, water, coniferous, 

bare ground, and deciduous based on uniqueness of their spectral reflectance and whether they can be clearly 

separated from other classes.  The overall classification accuracy is 89.4% with a Kappa of 0.85.   

 

 

1. Introduction  

High spatial resolution imagery over forested lands 

offers land managers special benefits and challenges 

for land use/land cover (LULC) classification 

mapping compared to coarser (lower) spatial 

resolution multispectral imagery (Bauer et al., 1994, 

Boggs, 2010 and Chubey et al., 2006). Important 

benefits include the ability to see higher detail and 

potentially higher classification accuracy. Yet, 

despite these benefits, challenges include higher 

intra-class spectral variability and confused pixels 

that can adversely affect classification accuracy (Yu 

et al., 2006, Orny et al., 2010, Im and Jensen, 2005 

and Sawaya et al., 2003). 

Finer (higher) resolution offers the benefit of 

seeing much higher detail of the land surface which 

provides sharper, more accurate delineation of 

LULC boundaries where there are distinctive 

boundaries between classes such as road edges, field 

boundaries, buildings, and parking areas.  Plus, 

very-high resolution imagery offers a greater ability 

to distinguish smaller features such as individual 

buildings and trees (Gougeon and Leckie, 2006, 

Hirschmugl et al., 2007, Ke and Quackenbush, 2011 

and Pouliot et al., 2002) and small areas of 

individual vegetation species (Pasher and King, 

2009, Ouyang et al., 2011 and Pu and Landry, 

2012), whereas pixels in lower resolution imagery 

average out the spectral reflectance of individual 

features and vegetation species within each pixel’s 

coverage area. Sawaya et al., (2003) stated that the 

clarity of high resolution imagery provides far more 

visual interpretation and assessment than previously 

possible with lower resolution imagery (such as 

Landsat). It is essential to have sub-meter very high 

spatial resolution images to successfully identify 

and monitor riverside ecosystem influenced by tides 

(Ehlers et al., 2006), to successfully extract road 

centerlines (Gao et al., 2018), to successfully 

identify water features and outline whatershed 

boundaries (Marcus and Fonstad, 2008), and to 

successfully assess damages for crisis response 

(Pesaresi et al., 2010). There are needs of very high 

resolution remote sensing images to accurately map 

and monitor our environments for better natural 

resource management.   

However, higher resolution may not improve 

classification performance and accuracy (Hsieh et 

al., 2001 and Su et al., 2008). This is because the 

higher intra-class spectral variability associated with 

very-high resolution imagery reduces the 

separability between classes resulting in high pixel 

classification confusion (a relatively high number of 

pixels that are not readily assignable to a known 

LULC class). This is manifested with a “salt-and-

pepper” appearance from the confused pixels in the 

classification results because individual pixels are 
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classified differently from their neighbors (Hung 

and Wu, 2005, Yu et al., 2006, Zhou et al., 2009 and 

Blashke and Strobl, 2001). Orny et al., (2010) found 

that class boundaries derived from very- high 

resolution imagery are often poorly defined in 

forested areas because of the greater heterogeneity 

of spectral reflectance within the same class, such as 

the folds, gaps, shadows, and convolutions in a tree 

canopy, and in the gradual transition areas on the 

ground from one class to another, such as coniferous 

to deciduous.  Moreover, Im and Jensen (2005) 

stated that high spatial resolution imagery, unlike 

moderate or coarse resolution imagery, exhibits 

high-frequency components with high contrasts 

(such as shadow pixels) where there are horizontal 

overlays of objects that protrude above the terrain 

(e.g. tall trees) caused by off nadir look angles. In 

this environment, an individual tree has 

considerable spectral variability (e.g., pixels 

representing sunlit crown, shaded crown, and the 

influence of branches) that puts limitations on a 

single unique spectral signature for tree 

classification.  Likewise, Sawaya et al., (2003) 

stated that the spatial detail of high resolution 

imagery is impressive but the spectral-radiometric 

similarity between certain classes is compounded 

with the presence of a greater proportion of 

confused pixels and the greater variability within 

classes.   

Further class confusion occurs in heavily 

shadowed areas of forests (Adeline et al., 2013, 

Dare, 2005 and Shahtahmassebi et al., 2013). This is 

caused by a combination of low sun angle and tall 

trees that result in long shadows where pixels have 

very low brightness values. Very low pixel 

brightness values can make it very difficult to 

distinguish the LULC type hidden in the shadows 

because the spectral signatures are so similar 

between them.  When examining spectral 

reflectance from various land use/cover types, 

Sawaya et al., (2003) and Hung and Ridd (2002) 

reported confusion among open water and shadows 

as dark features, among wetlands, shadows, asphalt, 

and forest as moderately dark or medium features, 

and among concrete, bare fields, snow, and salt as 

bright features. Sugumaran et al., (2003) discovered 

that in images with 1 m resolution, tree crowns 

could be identified with a minimum shadow effect. 

However, in very-high resolution 30 cm images, 

individual trees are seen more clearly but the 

resolution is so high that the number and proportion 

of shadow pixels is also much higher.  

The research objective of this study was to 

develop and test a methodology to achieve a high 

accuracy (85% or higher) LULC classification 

accuracy on very-high spatial resolution (30cm) 

multispectral imagery (Green, Red, NIR (near 

infrared)) in a forested area. Major challenges for 

very-high spatial resolution imagery of forested area 

are shadows and confused classes. The proposed 

methodology utilizes hierarchical classification and 

knowledge-based decision tree to overcome 

shadows and confused classes and identify five land 

cover classes: coniferous forest, deciduous forest, 

bare ground, water, and roads with a minimum 

mapping unit (MMU) of 0.25 acres (1011m2). The 

.25 acre MMU was chosen for practical purposes 

because it was the smallest area involved in many 

land management decisions. 

 

2. Study Area and Data 

The 2.32 square kilometer (574 acre) area in the 

Lake Maumelle watershed within Perry County, 

Arkansas was an excellent site for this study (Figure 

1). A LULC map of the study area can be an aid in 

resource management, land use planning, surface 

water runoff management, and timber management.  

The study area consists of flat to rolling topography 

with extensive coniferous and deciduous forest. 

There are a few small lakes, a few cleared areas for 

agricultural fields, and areas where timber was 

harvested. The coniferous trees are primarily mature 

pine, and the deciduous forest is primarily oak and 

hickory hardwoods. There is very little urban 

development, and the road network consists of a 

small number of two-lane asphalt roads, with dirt 

and gravel access roads into the wooded and 

harvested timber areas. The Maumelle River curves 

along the western and southern sides of the study 

area. 

The image for this study is a 30cm (1-foot) 

February 2009 leaf-off multispectral aerial imagery 

(Green, Red, and NIR) that included snow cover. 

The LULC classification accuracy has to be at least 

85% as measured from an error matrix table. There 

are significant heavy tree shadows in the aerial 

imagery that hide many types of land cover classes 

over the land on the north side of trees. These 

shadows are so dark that it is not possible to 

distinguish the correct land cover class in the 

shadowed area using a simple image classification 

approach that is heavily reliant on image-wide 

spectral reflectance alone.  There are also large, 

mixed, transitional land cover areas between many 

of the coniferous and deciduous areas.   
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Figure 1:  False color aerial photo of the 1.5 x 1.5 km study area 

 

3. General Methodology 

The general approach began with ISODATA 

(Iterative Self-Organizing Data Analysis Technique 

Algorithm) clustering (Jensen, 2015) as used by 

Lang (2007), Germaine and Hung (2011) and 

Sawaya et al., (2003) to create a large number of 

spectral classes, 100 in this study. After the initial 

ISODATA unsupervised classification, each of the 

spectral clusters was assigned (labeled) to a specific 

land use/cover class using photointerpretation. This 

aggregated the high number of spectral clusters to 

the few target land cover classes. This approach 

effectively identified and labeled the heterogeneous 

pixels belonging within each specific land use/cover 

class; however, there were some spectral clusters 

that appeared to belong to multiple land use/cover 

classes (confused pixels) during the labeling 

process. These clusters had to be segregated into a 

temporary confused class for subsequent processing.   

Distinguishing LULC classes within shadowed 

areas required more refinement because the image 

brightness values were so low that the spectral 

signatures between LULC classes were very similar. 

So, in a process similar to that used by Ehlers et al., 
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(2003), Sawaya et al., (2003) and Germaine and 

Hung (2011) a separate ISODATA 

classification/LULC class assignment of just the 

shadowed areas was performed using the same 

process described earlier. The result of the re-

classified shadow pixels was then added to the 

initial ISODATA LULC classification. This boosted 

the number and proportion of classified pixels, and 

reduced the number and proportion of unclassified 

pixels (confused). 

Each LULC class was then exported as a mask 

image consisting of two classes - either that 

particular LULC class or non-such - which enabled 

further refinement and elimination of small islands 

of pixels less than the .25 acre MMU within each 

class. The LULC classes were then combined using 

hierarchical image stacking. The classes having the 

highest classification accuracy had priority over 

those with lower classification accuracy (Figure 2). 

The LULC classification hierarchy was established 

empirically by each class’s relative classification 

accuracy as determined by photointerpretation 

during the ISODATA class assignment process.  

The following describes the factors that influenced 

the structure of that hierarchy: roads, water, 

coniferous, bare ground, and deciduous.   

 

 
Figure 2: Image classification flowchart 
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3.1 Establishment of the Classification Hierarchy 

Trees, tree shadows, snow, and slush were hiding 

road pixels so badly that an image processing 

solution alone would have resulted in considerable 

classification errors. So, to achieve exceptionally 

high LULC classification accuracy, road centerlines 

were easily and quickly digitized as a simple line 

shapefile off the original very high resolution aerial 

image based on photointerpretation. Then, a 

polygon buffer was created around the road 

centerlines based on the road width as directly 

measured from the image. The high-accuracy roads 

were superimposed over the top of all other classes 

as the last step.   

Water pixels were very distinct from other pixels 

in the image due to the relatively high homogeneity 

of spectral signatures for water and because its NIR 

reflectance values were distinctly lower than the 

other classes (Govender et al., 2007). Thus, based 

on photo interpretation of the aerial image, water 

pixels extracted using all three bands in the 

ISODATA unsupervised classification left an 

unambiguous distinction of water versus non-water 

areas.  

Coniferous pixels also had very distinct spectral 

signatures, but they were not as homogeneous as 

water, since there were internal shadows and folds 

in the tree canopy to contend with.  Living, leafy 

vegetation reflects NIR light considerably more than 

other types of land cover (Bauer et al., 1994). In 

winter, the only large masses of living, leafy 

vegetation in Arkansas are coniferous. That is why 

the coniferous vegetation in the aerial photo 

(displayed in bright red) is so clearly distinguished 

from other land cover types and why the spectral 

reflectance is also quite distinct. The effect of 

coniferous tree shadows adversely affecting the 

LULC classification was considerable on land cover 

not of the same height (bare earth and deciduous). 

However, the effects of shadows on coniferous trees 

of similar height (other coniferous trees) were 

considerably less than the bare earth or deciduous 

land cover classes based on empirical observations 

from photo-interpretation. 

Bare soil was distinct because of the snow cover, 

but there were a few areas of melted snow and slush 

that created confusion, and many mixed class 

transitional areas (smaller bare soil areas 

interspersed within other classes) also increased the 

complexity and reduced the accuracy of the bare 

class compared to water or coniferous classes. The 

deciduous class would be the most complex and 

difficult class to accurately extract from the image 

because the spectral signatures of tree trunks, 

branches and their shadows, and snow cover often 

matched those of the other classes. So, a simpler 

approach was used.  First, all the other classes were 

determined (road, water, coniferous, and bare earth). 

Thus, all remaining pixels would be deciduous class 

based on a process of elimination.  This approach 

thus avoids having to do any separate classification 

of the deciduous class at all.   

 

4. Image Classification 

4.1 Initial ISODATA Classification 

The first step was to use the Iterative Self-

Organizing Data Analysis Technique Algorithm 

(ISODATA) method of unsupervised classification 

to generate 100 spectral classes (Jensen, 2015). The 

geographic location of the pixels associated with 

each of the 100 spectral classes was visually 

identified on the original aerial photo. Each spectral 

class was then recoded to one of six land cover 

classes – water, coniferous, bare land, deciduous, 

shadows, and confused – based on visual photo-

interpretation. The spectral classes associated with 

tree shadows needed to be assigned to a temporary 

tree shadow class since the ground beneath a tree 

shadow could represent any of several classes (such 

as roads, water, or bare earth). The spectral classes 

that were not clearly distinguished as a specific land 

cover class or tree shadow class were separated out 

temporarily to a confused pixels class for further 

processing.  Roads were not included in this step 

since that land cover classification would be 

superimposed later. 

This process effectively and accurately assigned 

pixels to heterogeneous land classes (Table 1). It 

was especially apparent, when doing the 

aggregation, that the pixels at the top of the 

coniferous trees had spectral characteristics that 

were quite different from the pixels within the 

crown folds or the outside edges of the crown. The 

high spectral heterogeneity within the coniferous 

class resulted in a large number of spectral classes 

(28) being coniferous. There was also high spectral 

heterogeneity within the shadow and confused 

classes. 

Only 3% of the pixels were decidedly deciduous 

in the initial classification (Table 1 and Figure 3a) 

even though a casual look at the original aerial 

photo showed that deciduous obviously covered a 

considerably larger area. This is because during the 

photointepretive class aggregation process, a high 

proportion of candidate deciduous classes appeared 

to qualify as both deciduous and other classes as 

well rather than pure deciduous. So, they were 

assigned as confused pixels instead. The very low 

percentage of decidedly deciduous pixels was a 

strong justification for having the deciduous class as 

the residual class in the hierarchy. 
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Table 1. Results of initial ISODATA clustering and coding 
 

Class Total Pixels Percent (%) # Clusters 

Water 1,334,736 5 7 

Coniferous 5,427,912 22 28 

Bare 3,489,464 14 9 

Deciduous 657,295 3 3 

Shadows 6,382,812 26 18 

Confused 7,712,781 31 35 

Total 25,005,000 100 100 

 

 
Figure 3:  Image classification results.  (a) Classified image from initial ISODATA.  (b) Reclassifying 

shadows.  (c) MMU consolidation.  (d) Final classification 
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Table 2: Results of combining Initial and Shadows-Only ISODATA classification 
 

 Initial ISODATA Shadow ISODATA Combined 

Class Pixels % Pixels % Pixels % 

Water 1,334,736  5 159,893  3 1,494,629  6 

Coniferous 5,427,912  22 2,560,744  40 7,988,656  32 

Bare 3,489,464  14   0 3,489,464  14 

Deciduous 657,295  3 1,277,280  20 1,934,575  8 

Shadows 6,382,812  26   0 -    0 

Confused 7,712,781  31 2,384,895  37 10,097,676  40 

Total 25,005,000  100 6,382,812 100 25,005,000  100 

 

4.2 Allocate Shadows to the Principal Land Cover 

Classes 

To extract land cover classes from shadows, the first 

step was to create a mask from the shadow class 

created in step 1. An ISODATA classification was 

then performed only on these shadow pixels, and 

yielded 50 spectral clusters, which were 

subsequently re-classified to water, coniferous, 

deciduous, bare ground, and confused using the 

same photo interpretive techniques used in step 1. 

This result was then added to the initial ISODATA 

classification.   

The very large proportion of shadow and 

confused pixels initially represented 57% of the 

image (Table 1). The shadows alone - exacerbated 

by the low sun angle - accounted for 26% of the 

image. This was consistent with past studies 

regarding the high level of confusion inherent in 

very-high resolution imagery (Hsieh et al., 2001, 

Zhou et al., 2009, Ouyang et al., 2011, Adeline et 

al., 2013 and Boggs, 2010). The proportion of 

shadow was so high, that a test using a majority 

filter to reassign the confused and shadow pixels to 

one of the four land cover classes (water, 

coniferous, bare, or deciduous) resulted in long 

strings of contiguous pixels that obviously had little 

relation to reality. This is because there were not 

enough “good” LULC pixels (those of a decidedly 

known class) to provide a solid foundation for 

successful spatial autocorrelation. Boosting the 

proportion of “good” pixels by performing a 

separate ISODATA classification of the shadowed 

areas (Figure 3b) and adding that result to the initial 

ISODATA classification remedied the problem. 

This action boosted the proportion of “good” LULC 

pixels from only 43% of the image to 60% of the 

image (Table 2) which was enough to allow the 

majority filtering process in step 3 to perform. This 

effectively removed the confusion associated with 

shadows. No bare pixels resulted from this step 

because during the photointepretive class 

aggregation process, the spectral classes over bare 

land also occurred over other types of land class 

areas.  There were no decidedly “pure” bare pixels. 

Therefore, these mixed pixels were included in the 

confused category.   

 

4.3 Allocate Confused Pixels to Land Cover Classes 

The neighborhood functionality was used to 

reassign the confused pixels that were liberally 

sprinkled throughout the image to one of the four 

land cover classes (water, coniferous, bare, or 

deciduous) that they were most likely to belong to 

based on spatial auto-correlation. Thus, a confused 

pixel was re-coded according to the predominant 

land cover class of its immediate neighboring pixels 

using a 3 x 3 neighborhood majority filter 

(Germaine and Hung, 2011).  It only required three 

iterations for reassignment of over 99% of the 

confused pixels to the other classes (Table 3). Since 

most of the confused pixels were in deciduous areas 

to begin with, the largest percentage of confused 

pixels went to deciduous. Roads were not included 

since that land cover classification would be 

superimposed later. 

 

4.4 Create Masks of Each Class and MMU 

Consolidation 

It was necessary at this point to remove noise by 

eliminating the small islands of pixels that were less 

than the .25 acre MMU (10,890 connected pixels) 

within and outside of each class (water, coniferous, 

and bare). This worked best by first creating a mask 

of each class. A deciduous mask was not necessary 

because the deciduous class would be determined 

later by process of elimination. But, it was necessary 

to create a temporary dummy deciduous mask 

containing all pixels in the image. The clump and 

eliminate functions were then consecutively 

performed to eliminate the small islands of each 

class’s pixels. 
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Table 3: Results of reassigning confused pixels based on proximate dominant class from each iteration.  

Numbers are in percent (%) 
 

Class Beginning First Second Third 

Water 6 8 9 9 

Coniferous 32 42 44 44 

Bare 14 18 18 18 

Deciduous 8 24 28 28 

Confused 40 8 1 0 

Total 100 100 100 100 

 

Eight connected neighbors had slightly better results 

than using four based on empirical photo 

interpretive comparisons with the original aerial 

image. In the bottom left of Figure 3(c), one can see 

the distribution of the noise throughout the 

coniferous mask. Performing the clump/eliminate 

functions effectively eliminated the small islands of 

pixels. However, the nature of very high spatial 

resolution imagery introduced an interesting artifact 

in this process. The ERDAS algorithm simply 

eliminated areas of less than 10,890 contiguous 

pixels. Areas larger than that were kept - even if 

there was a skinny path of pixels one pixel wide 

connecting two larger areas. So, the result was a 

highly convoluted class boundary shape. Further 

smoothing could reduce this, but close visual 

comparisons with the aerial photo would support the 

higher LULC accuracy without smoothing, and it 

better conveys to the map users the mixed nature of 

the land cover classes in those areas.     

 

4.5 Combine Mask Classes Hierarchically 

At this point, the land class masks have some 

overlaps and gaps with each other that needed to be 

reconciled.  The land cover class layers had 

different hierarchical levels of inherent 

classification accuracy. Roads were at the top of the 

hierarchy, followed by water, coniferous, and bare 

ground. Since all the other pixels were classified, 

the remaining pixels would be deciduous by process 

of elimination. The following piece of pseudo code 

shows the logic and order of assigning land cover 

classes to the Combine_Class layer. The first 

expression that was true determined the final output 

LULC class for each pixel:   

If Water_Final == true  

      Then Combine_Class = water 

Elseif Coniferous_Final == true  

      Then Combine_Class = coniferous 

Elseif Bare_Final == true  

      Then Combine_Class = bare 

Else Combine_Class = Deciduous 

 

A final clump/eliminate on the results of the 

Combine_Classes – No Roads model eliminated 

noise consisting of small islands of pixels less than 

the .25 acre MMU. 

The hierarchical model that combined each of 

the individual binary LULC masked classes, and 

through a process of elimination left the deciduous 

class, was very effective in eliminating the small 

overlaps and gaps in coverage between the masked 

classes in a logical manner, and assured that all of 

the study area was classified. Note that the 

deciduous class was processed prior to this point the 

same as water, coniferous, and bare ground even 

though it was not used in this step. This was to 

prevent confused and shadow pixels from attaching 

themselves to water, coniferous, and bare during 

step 3 in areas known to be deciduous in order to 

avoid distortions.   

 

4.6 Superimpose Roads 

The final step was to superimpose the roads class 

over the existing LULC classes. The result made 

roads a particularly accurate land cover class 

(Figure 3(d)). This simple approach effectively 

eliminated the need to extract the road class using 

image processing techniques. The following piece 

of pseudo code shows the logic and order of 

assigning final land cover classes:  

 If Road_Final == true Then Final = road 

 Else Final = Combine_Class  

 

5. Accuracy Assessment 

A stratified random sampling approach of 216 

sample locations was used to test the accuracy of the 

final LULC classification. Photointerpretation was 

used over each of the sample locations from the 

aerial image to determine the appropriate LULC 

class type. The very high resolution aerial photo 

displayed the land surface very clearly, so photo-

interpretation was justifiable as ground truth 

verification of the LULC classification.  

The final result (Table 4) compares the initial 

versus the final proportion of pixels belonging to 
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each land cover class. The original ISODATA 

classification revealed that 57% of the image had 

shadow or confused pixels. Now there are no 

shadows or confused pixels because they were 

reallocated to the appropriate principal land class 

types. There was a net increase of pixels to roads 

because they were superimposed as the last step. 

The net increase in pixels for water was primarily 

the conversion of shadow pixels along southern 

shorelines to the water class. Coniferous pixels 

increased primarily from the removal of extensive 

shadows within the canopy. The net decrease in bare 

pixels was primarily due to the MMU removal of 

extensive tiny bare areas within the other classes. 

Deciduous had the highest initial pixel confusion 

with only 3% decidedly deciduous pixels to start but 

ended up as 39% of the image. This huge net 

increase was the result of the hierarchical process of 

elimination described earlier whereby deciduous 

was the residual. 

Table 5 is an error matrix showing the results of 

the final LULC classification using the approach 

described by Congalton and Green (2009). A total 

accuracy of 89.4% was achieved with a Kappa 

coefficient of .85. Certain individual classes in the 

error matrix such as water, coniferous, and bare had 

user’s accuracies above 90% - justifying their high 

rank in the hierarchal model. However, isolated 

weaknesses in the classification process occurred 

where some areas of bare land as seen in the aerial 

photo were excluded from the bare category (error 

of omission) and assigned to deciduous instead. 
Upon visual investigation, some slushy/muddy areas 

on bare land in the aerial photo were incorrectly 

classified as deciduous because they had distinctly 

different spectral characteristics from the rest of the 

bare class. These slushy/muddy areas were easily 

found, and could be manually re-classified to bare 

ground as a touch up to improve the classification 

accuracy, if necessary. There is high ambiguity 

where pixels must be clearly assigned to either 

deciduous or coniferous classes within evenly mixed 

deciduous/coniferous areas. However, the 

coniferous/deciduous accuracy results were high 

because the very high spatial resolution imagery 

enabled clear distinction of individual coniferous 

trees from the surrounding area. 

 

Table 4:  Initial versus final proportion of pixels belonging to each land cover class 
 

 Initial ISODATA Final LULC Difference 

Class Pixels % Pixels % Pixels 

Roads - 0 387,142  2  387,142  

Water 1,334,736  5 1,470,428 6  135,692  

Coniferous 5,427,912  22  10,223,861 41  4,795,949  

Bare 3,489,464  14 3,123,124 12  (366,340)  

Deciduous 657,295  3  9,800,445 39  9,143,150 

Shadows 6,382,812  26   0  (6,382,812)    

Confused 7,712,781  31  0  (7,712,781)  

Total 25,005,000  100 25,005,000 100  
 

Table 5: Error Matrix of LULC Classification Results 
 

Class Type Water Conif Bare Decid Road Total User's 

Water 21 0 1 1 0 23 91% 

Coniferous 0 76 0 6 0 82 93% 

Bare 1 0 28 1 0 30 93% 

Deciduous 2 4 7 64 0 77 83% 

Road 0 0 0 0 4 4 100% 

Total 24 80 36 72 4 216   

Producers 88% 95% 78% 89% 100%   89% 

Total Accuracy 89.4%       

Kappa Coefficient .85       
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As a result of the auto-correlation and 

clump/eliminate processing, coniferous tree pixels 

in close proximity to each other and within an area 

greater than the 0.25 acre MMU were melted 

together often creating highly convoluted class 

boundaries within mixed deciduous/coniferous 

areas. While one could smooth these convolutions, it 

may be more beneficial to leave them as they are 

because they convey to the map reader the mixed 

nature of the land cover in those areas without 

having a separate mixed deciduous/coniferous land 

cover class. 

The 0.25 acre MMU requirement, whereby any 

group of pixels less than 10,890 pixels was removed 

and assigned to its neighboring class, had some 

effect on accuracy assessment. For instance, 

suppose a sampling point happened to fall on a lone 

coniferous tree in a bare area. The sample could be 

labeled as coniferous, while the whole area was 

classified as bare, thus causing a misclassification of 

the sample point. The benefit of an MMU is that it 

removes classification noise. 

 

6. Discussion 

The timing of the aerial image used for this project 

was fortunate because there was a uniform blanket 

of fresh snow on the ground that helped to reduce 

spectral confusion between classes, except for a few 

isolated areas of slush/mud where there was melted 

snow. This is because the spectral characteristics of 

a uniform blanket of fresh snow are much less 

variable than the underlying soil, rock, and 

vegetation cover hidden beneath. This made it easier 

to distinguish the bare areas from other types of land 

cover during the ISODATA labeling process, and 

likely contributed to greater accuracy than may 

otherwise be expected without the snow. The other 

advantage of having the aerial image acquired 

during the winter (leaf-off) was that the spectral 

characteristics of coniferous trees were 

conspicuously different from those of other land 

cover types (Brandtberg, 2007 and Ørka et al., 

2010). Further research can determine the 

limitations of the approach described in this paper 

under more adverse circumstances such as no snow 

conditions. 

As described earlier, the high spectral 

heterogeneity of land cover features inherent in very 

high resolution imagery results in much higher 

proportions of confused pixels within the image 

(Gergel et al., 2007, Myint et al., 2011, Orny et al., 

2010 and Sawaya et al., 2003). It was learned that 

successful clump/eliminate process depends on 

having a high enough proportion of “pure” pixels 

within the image. Extracting the shadows, 

classifying the land cover within the shadows 

separately, and then adding them back in to the core 

LULC classification process was an effective means 

to boost the proportion of “pure” pixels above the 

threshold needed for successful autocorrelation.  

However, that threshold was not specifically 

determined for this paper. Future research on 

thresholds can define whether autocorrelation for 

LULC classification is viable for any particular 

image. 

Based on the literature, incorporating additional 

data into this classification process - such as 

LiDAR, elevation, and additional images taken on 

different dates - would likely further improve 

classification accuracy (Alonzo et al., 2014, Carrão 

et al., 2008 and Yu et al., 2013). Incorporating 

images taken on different dates also has the 

potential to more clearly differentiate the correct 

land class of confused pixels during the ISODATA 

labeling process. For instance, leaf-on images could 

more clearly differentiate between bare soil areas 

and deciduous areas, while leaf-off images can 

improve differentiation between coniferous and 

deciduous areas. Blending these results has the 

potential to more easily identify, and thus increase 

the proportion of the “pure” pixels which can 

improve classification accuracy.  Further research 

can explore the use of multi-temporal, especially 

leaf-on and leaf-off seasons, imagery on LULC 

classification and accuracy.   

Limitations to this research include the labeling 

step within the ISODATA unsupervised 

classification approach, as noted earlier, as it 

introduces a degree of subjectivity by the analyst 

who decides which information class to assign a 

cluster class to. Further research that merges the 

data-assisted labeling approach (DALA) described 

by Lang (2007) with the methods described in this 

paper may offer an automated means, with less 

subjectivity, to address the increased pixel 

confusion from heavy tree shadows and the use of 

very-high spatial resolution imagery. The merging 

of these approaches may enhance classification 

accuracy, consistency, and repeatability. 

The methodology described in this paper 

addressed LULC classification of forested areas. 

However, this methodology can be adapted to other 

types of land cover as well. For instance, the 

separate LULC processing of shadows as described 

in this paper could be modified to include LiDAR 

surface and elevation information to better 

differentiate land cover classes within the shadowed 

areas of buildings in an urban setting, or modified to 

address different land cover classification types 

hidden in shadows along the wildland/urban 

interface used to classify fire hazard risk. The 

hierarchical classification and decision tree worked 
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well for this study using five LULC classes in this 

order: roads, water, coniferous, bare ground, and 

deciduous. Roads are unique because of narrow and 

long shape with consistent width. Water is unique 

because of its distinct spectral reflectance pattern. 

Deciduous is difficult because of mixture of tree 

trunks, branches, shadows, and/or ground.  Knowing 

this, this hierarchy and decision tree can be 

modified to fit other landscapes with close 

observations and examinations of local materials.   

 

7. Conclusions 

This study examined the effect of shadow on very 

high spatial resolution (30cm) multispectral imagery 

(Green, Red, NIR) in a forested area, and developed 

a methodology to overcome the shadow problem to 

achieve an overall classification accuracy of 89.4% 

with a Kappa of 0.85 with five classes: coniferous, 

deciduous, bare ground, water, and roads. The 

methodology is a combination of hierarchical 

classification and knowledge-based decision tree. It 

started with an ISODATA unsupervised 

classification, which identified land use/cover 

classes, along with shadow and confused pixels. 

Shadow pixels went through a secondary ISODATA 

classification, while confused pixels went through 

rounds of neighborhood functions. Layers for each 

land use/cover class were created, and noises or 

island pixels were removed by the clump/eliminate 

process in each layer. Layers were then patched 

back to the final classification image according to a 

decision-tree in this order: water, coniferous, bare 

ground, and deciduous. Roads were superimposed to 

the classification image at the final stage. This 

methodology successfully classified pixels under 

shadow to their appropriate land use/cover types, 

and achieve high classification accuracy. This 

methodology can easily be adapted to other studies 

areas as well as other sub-meter very high spatial 

resolution images.   
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