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Abstract 

The availability of free Synthetic Aperture Radar (SAR) data of Sentinel 1A/B, with the high temporal 

resolution, has provoked the usage of time-series backscatter values from the SAR data for mapping paddy field 

extent and crop phenology. However, paddy field extent mapping over complex terrain areas is rarely 

conducted, and the effect of terrain shadows on the accuracy of paddy field classification has not been 

addressed yet. This study attempted to identify the effect of terrain shadows on the paddy field mapping 

accuracy using monthly median composites Sentinel S1A data in 2018 and to perform the effort to minimize the 

misclassification by incorporating dem-derived terrain ruggedness index (TRI) in the random forest classifier. 

Lastly, this research also aimed to identify the general variation of the time-series backscatter of VV-and-VH 
polarization in the paddy field by employing unsupervised K-means classification. Our study showed that 

terrain shadow contributed to the misclassification of the identified paddy field due to the similar low 

backscatter values to the paddy field. Incorporating TRI can eliminate the misclassified paddy field, which 

subsequently increased the accuracy of paddy field mapping by 8 – 9% (user accuracy) and 4 – 5% (producer 

accuracy). In addition, means of clustered classes from unsupervised classification over paddy field areas 

generated temporal patterns related to the cropping frequencies and agreement with the weather pattern of the 

study area. This indicated that the cropping phase of paddy could be identified using the temporal pattern from 

12-month median composites of the radar backscatter. 

 

 

1. Introduction 
Rice is the main staple food for many countries in 

Asia, particularly Indonesia. Indonesia is the country 

with the 3rd largest rice production in the world and 

is also the country with the largest rice consumption 

(Faostat, 2014). Like many other countries, paddy 

field in Indonesia is currently under pressure from 

land-use changes, which jeopardizes the future stocks 

of rice for fulfilling the growing population rice 

consumption. To be able to measure the current and 

future capacity of rice production from paddy field, 

rapid and accurate monitoring of paddy field extent 

and phenology related to the cropping intensity is 
essential. 

Remote sensing has been employed for rapid 

mapping and monitoring paddy fields over large 

areas. For example, several studies used vegetation 

index data from optical remote sensing data such as 

SPOT Vegetation and MODIS time-series data in 1-

km and 250-spatial resolution (Setiawan et al., 2014 

and Xiao et al., 2002 and 2006). Xiao et al., (2006) 

tried to map paddy fields using a combination of the 

water index and vegetation index in deriving 

information of the rice planting phases. Setiawan et 

al., (2014) used the supervised classification by using 

temporal data from the vegetation index to map the 

frequencies of rice planting.  

Vegetation indices from optical data have been 

widely used for identifying paddy field dynamics 

(Boschetti et al., 2009, Guan et al., 2016, Gumma et 

al., 2011, Peng et al., 2011 and Xiao et al., 2000 and 
2006). However, the study of Xiao et al., (2006) 

reported the possibility of cloud interference that 

affected the accuracy of the classification results, 

while Setiawan et al., (2014) showed that the spatial 

resolution of 250 m from MODIS contains mixed 

pixel information, which contaminated the pixel 
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  values of paddy field. Thus, monitoring paddy field 

extent and the dynamics by using remote sensing data 

is now shifting into using cloud-free and higher 

spatial resolution data.  

Sentinel-1 SAR data provides cloud-free and 

higher spatial resolution data (± 10 m spatial 

resolution) every six days since 2014 by employing 

the constellation system of Sentinel 1A/B orbits. 

Such Sentinel-1 data characteristics are beneficial to 
be used mainly in tropical areas where persistent 

clouds exist. Several studies such as Guan et al., 

(2016) has implemented time-series sentinel data for 

mapping paddy field extent and dynamics in 

Northern of West Java, Indonesia, Lasko et al., 

(2018) used time-series data to map the cropping 

intensity in Vietnam and found that both polarization 

is useful to generate the accurate mapping of paddy 

field, and Onojeghuo et al., (2018) and Torbick et al., 

(2016) which used the combination of Sentinel-1 and 

Landsat 8 plus Sentinel 2 for paddy field's cropping 
patterns in China and Myanmar. Clauss et al., (2018) 

stated that different planting stages in the paddy field 

generated a distinct temporal pattern due to the 

different backscatter – surface interaction during 

different covers at different planting stages, so that 

mapping using time-series Sentinel 1 data is useful 

for identifying paddy field. The previous studies 

have demonstrated the ability of Sentinel-1 time 

series data for paddy field mapping and monitoring. 

However, the role of terrain effect on paddy field 

classification accuracy has not yet been discussed.  

All SAR data are susceptible to the terrain 

shadows problem, which appears on the terrain areas 

opposite to the microwave beams' incidence angle. 
The lower values in the shadow areas could render 

similar pixel values to the paddy field during the 

flooding and harvesting phase, which appear darker 

at this stage (Figure 1 from Clauss et al., (2018)). 

These similarities may hamper the identification of 

paddy fields from time-series backscatter data due to 

the flooding stage and harvesting stage are identified 

as the essential variables for mapping paddy fields 

using machine learning (Lasko et al., 2018) which 

can cause a misclassification due to similar 

backscatter values with shadow areas. Therefore, it is 
crucial to assess Sentinel time-series data's 

performance to map and monitor paddy fields over a 

complex terrain area where terrain shadows are 

ubiquitous.  

 

 
 

Figure 1: Radar backscatter mechanisms during different growth stages of paddy and example of the resulted 

backscatter intensities in C-band sentinel-1 data (A to D) (adapted from Clauss et al., 2018) 

(C) (D) 
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  Therefore, this research aims to assess Sentinel dual-

polarization data's accuracy (VV and VH) for 

mapping paddy field extent and to understand the 

general temporal pattern of Sentinel-1 over paddy 

area. DEM-derived variable such as Terrain 

Ruggedness Index (TRI) was incorporated to 

understand this variable's role when used as the input 

for classifying paddy field over complex terrain 

areas.  
 

2. Study Area 

The study was conducted in the area of Magelang 

Regency, Central Java Province.  The Magelang 

Regency is generally a highland in the form of a 

'basin' surrounded by mountains (Merapi, Merbabu, 

Andong, Telomoyo, Sumbing) and Menoreh 

mountain. The Magelang Regency topography 

consists of 8.599 Ha of Plain Areas, 44.784 Ha of 

surging areas, 41.037 Ha of steep areas 14.155 Ha of 

very steep areas (http://www.magelangkab.go.id). 
The data used in this study were cropped based on the 

extent of the Magelang districts. The study areas' 

extent is from 110.044o – 110.4o E and 7.35 o – 7.7 o 

S. The total area for our study is 122.469,4 Ha 

(Figure 2). 

3. Methods 

3.1 SAR Sentinel 1A  

The Sentinel 1A data (ascending orbit and relative 

orbit number is 25) was downloaded from Alaska 

Satellite Facility (ASF) https://www.asf.alaska.edu/ 

GRDH format. The data contained dual-polarization 

consisted of Vertical-Vertical (VV) and Vertical-

Horizontal (VH). There were 28 scenes of ascending 

Sentinel 1 data in 2018, which underwent a 
preprocessing routine suggested by Filipponi (2019). 

The preprocessing method covered the following 

steps: applying orbit file, thermal and border noise 

removal, calibration to sigma-nought, speckle 

filtering using modified lee with 5x5 window size 

range-doppler terrain correction, and cropping to the 

extent of the study area. Also, monthly median-

composites were performed to generate monthly VV-

and-VH backscatter values in 2018 to reduce the 

noise and data size. Median values were chosen to 

avoid outliers that affect the values if average/mean 
composites were applied. The preprocessing steps 

resulted in a monthly 10-m pixel size of dual-

polarization Sentinel 1A dataset.  

 

 
Figure 2: Study area map in Magelang district with terrain configuration represented by hillshades image in 

the background 
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  3.2 Terrain Ruggedness Index (TRI) 

Terrain Ruggedness Index is an index developed by 

Riley et al., (1999) that indicates the surface 

roughness by looking at the mean height difference 

of one pixel from the 8 (eight) surrounding pixels. 

TRI data was derived from Digital Elevation Model 

(DEM) provided by the Indonesian Geospatial 

Agency (http://tides.big.go.id/DEMNAS/) in 8.1 m-

pixel resolution. The data were processed by using 
the TRI module in QGIS and resampled (bilinear) to 

follow the pixel size of the Sentinel 1A data so that it 

can be integrated into the Sentinel 1A dataset. 

Bilinear resampling was chosen due to the 

continuous values presented in TRI and SAR 

Sentinel 1 data. It also gave better accuracy compared 

to the cubic convolution resampling method (Logan, 

1979). 

 

3.3 Classification of Paddy Field Extent 

The classification process was performed by using 
the Random Forest algorithm, using the combination 

of variables from Sentinel 1A VV-and-VH data and 

TRI data. Random forest was chosen due to higher 

accuracy when used for paddy field mapping than the 

Support Vector Machine (Onojeghuo et al., 2018). 

Random forest is a bagging ensemble method, 

developed by Breiman (2001), which generated a 

random tree-based classification from the subset of 

the input data, and determined the classification 

result based on the majority vote (for classification) 

or average values (for regression). This classification 
works by using the number of trees and features used 

on the tree-classifier as the parameters, which were 

less than the support vector machine (Pal, 2005). The 

combination of different input variables in the 

classification process was conducted to assess the 

accuracy of VV-and-VH time-series data and the role 

of TRI data when being integrated as the input for 

classifying the paddy field.  

Therefore, there are five combinations of variables in 

the classification process, such as: 

1. VV-monthly data (12 layers) 

2. VV- monthly + TRI data (13 layers) 
3. VH-monthly data (12 layers) 

4. VH-monthly + TRI data (13 layers) 

5. VV-and-VH time-series + TRI data (25 

layers) 

 

Training samples were collected by using visual 

observation from the time-series sentinel data and 

google earth. The training samples over shadowed 

areas were also taken to ensure that the shadowed 

areas were represented in the training datasets. There 

are around 80 polygons of paddy-field and non-

paddy field training samples collected and used as 

the input data for training the algorithm with 5-fold 

iterations cross-validation. The classification was 

conducted in QGIS 3.8 by using Dzetsaka: 

classification tools developed by Karasiak (2017), 

and a majority filter with a 5x5 window size was used 

to simplify the classification result. 

The paddy and non-paddy field maps resulted from 
this step were validated by using the point data 

collected by using the high-spatial-resolution data 

available from Google Earth (Pro). The sample 

points were randomly distributed by looking at the 

terrain configuration from TRI data to ensure proper 

distribution of point samples across the rough terrain. 

In addition, validation points that were overlapped or 

closely placed near the training area were removed. 

In total, 881 points were used to construct the 

confusion matrix to conduct the accuracy assessment 

and conclude the best classification inputs for paddy 
extent mapping by using Sentinel 1 time-series data. 

User accuracy (Ua), Producer accuracy (Pa), overall 

accuracy (Oa), and kappa coefficient were calculated 

from the confusion matrix. 1 (one) training (and 

validation) dataset was collected, assuming that only 

a few land-use changes from paddy field to non-

paddy field occurred within one year. 

 

3.4 Identifying Temporal Pattern of Paddy Field 

The paddy field map with the highest accuracy from 

the classification process was used as the mask for 
separating paddy-field and non-paddy field from the 

input data. The masked data that corresponded to the 

paddy-field was classified using the unsupervised K-

Means algorithm classification to group the 

backscatter temporal variation of the paddy-field 

pixels. In this unsupervised classification, the cluster 

was set to generate eight classes, and the iteration 

was set to 500 times. The monthly mean values from 

each group of clustered pixels were then used to 

generate the 12-months backscatter graph. The 

workflow of the study can be seen in Figure 3. 

 
4. Results 

4.1 Paddy Field Classification Results 

There are five maps of paddy field extent resulted 

from the random forest classification (Figure 4). 

Table 1 summarized area distribution of the 

classified paddy fields in total, over rough and plain 

terrain areas, which was detected from the TRI data. 

Table 1 also showed the effect of terrain on the paddy 

field classification. 
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Figure 3: Workflow of this study 

 

Table 1: Area of classified paddy fields from different data combination and their distribution across plain 

and rough terrain 
 

No Data 
Paddy Field (terrain) Paddy Field (plain) Paddy Field (all) 

Area (ha) % Area (ha) % Area  (ha) % 

1 VH 7,290.01 13.30 20,531.42 29.90 27,821.44 14.94 

2 VV 12,379.30 22.58 25,484.37 37.11 37,863.67 20.33 

3 VH + TRI 808.14 1.03 34,739.18 35.26 35,547.32 13.31 

4 VV + TRI 828.37 1.05 42,589.94 43.23 43,418.30 16.25 

5 VH-VV + TRI 977.43 1.24 39,796.02 40.40 40,773.44 15.26 

 

VV and VH classification without TRI as additional 

input data predicted the significant number of paddy 

field areas (12,379.3 ha and 7,290.01 ha) over terrain 
areas. These terrain-classified paddy field areas were 

then reduced when TRI data was introduced to the 

classification process, where only less than 1,000 ha 

of paddy fields were detected over the rough terrain 

areas. However, accuracy assessment should be 

conducted to understand if the reduction of paddy 

field areas over rough terrain configuration increases 

the final maps' accuracy.  

 

4.2 Accuracy of the Paddy Field Maps 

The classification of paddy field maps by employing 

time-series values from Sentinel 1 data resulted in 

overall accuracy above > 85 % with an overall high 

user and producer accuracy for paddy field class 

(Table 2). Kappa coefficients for five maps are in 
minimum 0.77 and maximum 0.94, suggesting that 

there are in minimum 77 to 94 % possibility that the 

map agreements are happened not by chance. The 

highest accuracy was produced using the 

combination of VV, VH, and TRI data as the input 

variables with 96.94 % overall accuracy (kappa: 

0.94) with 93.2 and 100 % of Ua and Pa, 

correspondingly. In general, TRI data inclusion into 

the classification increased the classification 

performance, which can be seen in the higher values 

of the accuracy components (Ua, Pa, Oa, and kappa) 

when TRI data was used. 
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Figure 4: The identified paddy fields from random forest classification by using a different combination of 

Sentinel 1 polarization and TRI data 

 

Table 2: Summary of accuracy assessment for paddy field classification 
 

No Data 
Accuracy Components 

Ua Pa Oa Kappa 

1 VH 83.37 90.81 88.54 0.77 

2 VV 81.35 94.32 88.54 0.77 

3 VH + TRI 91.67 95.14 94.32 0.88 

4 VV + TRI 90.32 98.38 94.89 0.90 

5 VH-VV + TRI 93.20 100.00 96.94 0.94 

 

When TRI data was not incorporated into the 

classification process, VH and VV gave an almost 

similar accuracy level. VH polarization gave slightly 

better user accuracy, whereas VV gave better 

producer accuracy. The paddy field map results with 

the best accuracy were used to mask the non-paddy 

field out of the image. The unsupervised 

classification can calculate VH and VV values' 

variation within a year by looking at the 

multitemporal values. Based on the summary 

provided in Table 2, the class of paddy field 

identified by using VH, VV, and TRI was used for 

the subsequent analysis. 
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  4.3 Temporal Variation in the Paddy Field Areas 

A Paddy field map with the highest accuracy was 

used to mask the VV-and-VH Sentinel 1 data to 

separate the paddy field from the non-paddy field. K-

mean unsupervised classification was then used to 

identify VV and VH backscatter values' main 

patterns in 12 months. In the K-means algorithm, 8 

clusters were set to be identified; however, the overly 

small clusters with only a few pixels were removed. 
In the end, there were 5 and 8 clusters of paddy fields 

were retained, and temporal patterns from each 

cluster were extracted by averaging the value from 

each month (Figure 5). VH and VV backscatter's 

general pattern showed relatively high values in the 

early months at the beginning of the year (January) 

until May and low values at July to September. In 

November, the backscatter values began to increase 

again. The pattern showed the relative coherence 

with the rainy and dry season when in 2018, the rainy 

season started in October (BMKG, 2017 and 2018). 

This suggested that paddy field planting patterns in 

the study areas followed the weather pattern and the 

rainfall intensity.  

 

5. Discussion 

5.1 Shadow and Accuracy Assessment Results  

The accuracy of paddy field extent mapping over 

complex terrain areas in this study has benefited from 

the inclusion of TRI variables which generated the 
best accurate map of paddy field extents. The 

increase of accuracy by incorporating DEM variables 

into the input for classification is similar to another 

study by Saha et al., (2005) which tried to classify 

land cover over rugged areas of Himalaya. The 

increase of accuracy also highlighted the role of 

shadow in affecting the paddy field classification. In 

the classification without using TRI, darker areas due 

to shadow were detected as paddy fields due to the 

similar tone with the flooded and post-harvested 

stage in paddy field areas. 
 

 

 
 

Figure 5: Annual backscatter values of paddy fields from VH (top) and VV (below) with the month as  

the X-axis and mean backscatter values as the Y-axis 
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  It is also worth noting that the increase of accuracy 

with the inclusion of DEM-derived variables is not 

limited to TRI usage. The slope variable, for instance, 

possesses similar information with TRI data and can 

be employed when the calculation of TRI data is not 

possible or only slope data is available. Besides 

employing DEM-derived variables, another option 

for tackling the problem of shadow when classifying 

over complex terrain areas can be performed by 

combining the ascending and descending data.  

 
Figure 6: The multi-temporal SAR appearance of paddy field during different planting stage 

 

 
Figure 7: Example of K-means unsupervised results from VH polarization which clustered the similar type of 

phenology from paddy fields based on their temporal patterns, which indicated the diversities of the SAR 

temporal backscatter values on 2018 
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8
  Different incidence angles that those data possessed 

could give a multi-look angle direction that uncovers 

the data in the area covered by shadow in another 

orbit. Using ascending and descending data would 

increase the temporal resolution due to the increased 

revisit time. With the increased revisit time, a more 

detailed temporal pattern of paddy growth can be 

seen from the data. However, using ascending and 

descending data at the same time will increase the 
data volume, hence longer processing time.  

The best map with the highest classification 

resulted from the classification by using the 

combination of VV, VH, and TRI data with more 

layers of data (25 layers of data) than other 

classification schemes. Higher classification using 

this dataset may result from the usage of random 

forest classifiers in this study, which worked best for 

high dimensionality data (Belgiu and Drăguţ, 2016). 

Different classification algorithms may give different 

accuracy results from this study. Therefore, it drives 
a comparison study of classifying paddy fields from 

time-series Sentinel 1 data using different machine 

learning algorithms.  

   

5.2 Temporal Pattern of Paddy Fields 

The temporal pattern of VH-and-VV backscatter in a 

year showed a relatively similar pattern, although the 

values' magnitude is different (Figure 6). VV-

backscatter over paddy field is higher when 

compared to the VH values. Furthermore, some 

temporal patterns of the backscatter values describe 
the cropping phenology. For instance, paddy field #1 

in VH-backscatter showed a possible double planting 

frequency/year with peaks in February, March, and 

April (rainy season). The backscatter's temporal 

pattern in paddy field areas followed the pattern of 

rainfall as low values in VV-and-VH appeared during 

dry-season. In the future, an exploratory study 

employing the temporal signatures of the paddy field 

from Sentinel-1 can be conducted to be able to detect 

the paddy field areas and their cropping frequencies 

automatically.  

The spatial distribution of the clusters from K-
means classification also showed that paddy fields 

located close to each other tend to be grouped at the 

same class (example of clusters of paddy field in 

Figure 7). This indicates that the planting pattern in 

the paddy field could be driven by the terrain 

configuration, which determines the water 

availability that supplies the paddy fields which 

consequently, defines planting for a group of paddy 

fields. 

 

 

 

 

6. Conclusion 

Our study demonstrated the capability of time-series 

dual-polarization Sentinel 1 SAR data for paddy field 

extent mapping with a high accuracy level. However, 

this study also revealed the effect of terrain shadow 

in the SAR data, which reduced the classification 

accuracy. Incorporating terrain variables as an 

additional input for classification could eliminate the 

false-positive paddy field over shadowed areas. Our 
analysis of the temporal patterns of paddy fields 

generated from the VH and VV backscatter can be 

used to derive the general phenology of rice planting 

phases corresponded to the general weather patterns 

in the study area. The identified temporal pattern in 

the paddy field can be utilized for mapping the paddy 

field's planting stages and cropping intensities. 

Therefore, the future study can be addressed for 

exploring the possibility to map the paddy field 

extents and/or cropping frequency by generating 

empiric paddy field temporal signatures from radar 
data. Our study has not employed the full potential of 

Sentinel 1 data, such as the usage of the complete 

time-series data and combination of descending and 

ascending orbit, which could be beneficial to give a 

more detailed description of the paddy phenology. In 

addition, different incidence angles in descending 

orbit data may help solve the problem of shadow 

when performing classification.  
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