
P a g e  | 11 

International Journal of Geoinformatics, Volume 17, No. 1, February 2021 
Online ISSN 2673-0014/ © Geoinformatics International 

Crop Water Condition Mapping by Optical Remote 

Sensing  

 

 

Wojtaszek, M. V.1 and Abdurahmanov, I.2 
1Institute of Geoinformatics, Alba Regia Faculty of Engineering, Óbuda University, Székesfehérvár, Hungary 

  E-mail: wojtaszek.malgorzata@amk.uni-obuda.hu 
2Tashkent Institute of Irrigation and Agricultural Mechanization Engineers, Kari Niyazov str., 39, 100000  

 Tashkent, Uzbekistan 

 

Abstract 

Crop water stress monitoring represents a fundamental step in agricultural production. In order to increase 

water savings and enhance agricultural sustainability, implementation of suitable irrigation scheduling 

methods is essential, and requires early detection of water stress in crops, before it causes irreversible 

damage and yield loss. There are different methods to measure water stress, some of them are based on soil 

moisture measurements while others are based on calculations of vegetation indices, evapotranspiration or 
soil water balance. Currently, the use of remote sensing technologies for the analysis of plant water status 

comprises a wide range of available methods such as infrared thermometry for canopy temperature measures, 

microwave radiation for soil water content assessment, and spectral vegetation indices for the study of the 

reflectance responses of canopies to different environmental conditions. The aim of the presented work is to 

investigate the applicability of the optical trapezoid model (OPtical TRApezoid Model) in mapping the 

moisture content within agricultural field. The model ability to provide vegetation characteristics, and crop 

water status at the canopy scale can improve the site-specific decision-making process in a precision 

agriculture. 

 

 

1. Introduction 

Growth and reproduction of crops strongly depends 
on their environment, and any change in 

environmental conditions that determines a shift 

from the crop’s optimal state can be considered as 

stressful. Water is a very important factor in 

agriculture and plays an essential role in crop 

production throughout the growing season. Water is 

required for the germination of seeds and as soon as 

growth starts water serves as a carrier in the 

distribution of mineral nutrients. Biomass production 

is inseparably connected with water demand. Many 

of the biochemical reactions that are part of growth 
occur in water or water itself participates in the 

reactions, e.g: respiration, photosynthesis. Plant 

available water is absorbed from the root zone in 

support to the transpiration process, and it also 

facilitates the absorption of nutrients through their 

roots. Transpiration controls also the plant’s canopy 

temperature as it does not heat or cool too quickly, 

and cools plants by evaporating from the leaf 

surface. Transpiration leads to water loss, and when 

the soil water reserve is not enough to satisfy the 

plant’s transpiration needs, the photosynthesis and 
growth of plants will stop in response to the water 

stress. This results in a reduction in plant yield. The 

transpiration rate is influenced by the relative 

humidity of the surrounding air, air temperature and 

wind speed. During the vegetation-free period the 

soil is also exposed to water loss. The evaporation 
from soil is largely determined by the amount of 

solar radiation reaching the soil surface. A number of 

studies (Wang et al., 2015 and Ghulam et al., 2007) 

indicate that water stressed crops have reduced 

evapotranspiration, and manifest other symptoms 

such as leaf wilting, stunted growth, and leaf area 

reduction. Also, water stress adversely affects the 

physiological and nutritional development of crops, 

leading to reduced biomass, yield, and quality of 

crops. 

Water is a vital component in the functioning of 
plants and soil moisture is the dominant factor 

controlling its supply (Ghulam et al., 2007). So that 

information on water stress conditions and their 

analysis is necessary to achieve optimal outputs. 

Crop water stress monitoring represents a 

fundamental step in agricultural production, 

measures of plant water status are required to better 

understand the mechanisms of plant response and 

adaptation to water stress, and for the optimisation of 

crop production (Osakabe et al., 2014) through 

precision irrigation. In order to increase water 
savings and enhance agricultural sustainability, 

implementation of suitable irrigation scheduling 

methods is essential (Osakabe et al., 2015), and 

requires early detection of water stress in crops, 

before it causes irreversible damage and yield loss. 
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There are different methods to measure water 

stress, some of them are based on soil moisture 

measurements while others are based on calculations 

of vegetation indices, evapotranspiration or soil 

water balance. Conventional methods for monitoring 

crop water stress rely on in situ soil moisture 

measurements and meteorological variables to 

estimate the amount of water lost from the plant-soil 

system during a given period (González-Dugo et al., 
2006). Other methods of detecting plant water status 

involve soil water balance calculations, direct and 

indirect measurement of plant water status, via 

stomatal conductance and leaf water potential. The 

disadvantage of measurements based on soil 

sampling is that these methods are time consuming 

and produce point information. These approaches are 

time consuming, labour intensive and unsuitable for 

automation, due to heterogeneity of soil and crop 

canopy. Those methods usually provide point 

information that give poor indications of the overall 
status of the field and are difficult to up-scale to the 

plant, field or regional level (Jones, 2012, Ihuoma 

and Madramootoo, 2017). Even though many of the 

available ground-based techniques used for the 

necessary investigation of plant functioning are 

reliable and precise, they often present downsides 

limiting their actual applicability. Crop water stress 

monitoring can be performed not only looking at the 

source of the problem (i.e. soil moisture conditions) 

but also at its effects (i.e. canopy temperature, leaf 

water content, etc.). 
Currently, the use of remote sensing (RS) 

technologies for the analysis of plant water status 

comprises a wide range of available methods such as 

infrared thermometry for canopy temperature 

measures, microwave radiation for soil water content 

assessment, and spectral vegetation indices for the 

study of the reflectance responses of canopies to 

different environmental conditions. Soil optical 

reflection (Whiting et al., 2004 and  Zhang et al., 

2017), thermal emission (Verstraeten et al., 2006 and 

Hassan-Esfahani et al., 2015) and microwave 

backscatter (Das et al., 2008 and Mladenova et al., 
2014) are highly correlated with soil moisture 

content, numerous methods for optical, thermal and 

microwave RS of soil moisture have been developed. 

Numerous studies are based on the calculation and 

analysis of spectral indices and have shown that 

there is relationship between reflectance values and 

canopy changes due to water stress. Measures 

reflectance indices within the visible (VIS) and the 

near-infrared (NIR) spectral range (e.g. NDVI: 

Normalized Difference Vegetation Index, RDVI: 

Renormalized Difference Vegetation Index, OSAVI: 
Optimized Soil Adjusted Vegetation Index) to 

indicate canopy changes due to water stress. Some 

indices (e.g. PRI: Photochemical Reflectance Index) 

are sensitive to the photosynthetic pigment changes 

due to water stress and others are used to measure 

the reflectance trough in the NIR and SWIR 
(shortwave infrared) region (e.g. SRWI: Simple 

Ratio Water Index and NDWI: Normalized 

Difference Water Index) to represent canopy 

moisture content. The so-called “trapezoid” or 

“triangle” model is one of the most widely applied 

approaches to RS of soil moisture utilizing both 

optical and thermal data. The model, hereinafter 

termed Thermal-Optical TRAapezoid Model 

(TOTRAM), is based on the interpretation of the 

pixel distribution within the land surface 

temperature-vegetation index space (Nemani et al., 
1993, Carlson et al., 1994). This method and several 

modified versions have been used successfully for 

estimating surface soil moisture. With the 

development of sensors operating in the optical 

spectrum range, more and better data are being 

generated. Optical bands have also been incorporated 

into the models mentioned above. Several indices 

derived from the Rred − RNIR triangular space as the 

Perpendicular Drought Index, PDI (Ghulam et al., 

2007), the Distance Drought Index, DDI (Qin et al., 

2021) and the Triangle Soil Moisture Index have 

been proposed. Others are parameterized based on 
the shortwave infrared and near infrared trapezoidal 

space like as Perpendicular Drought Index, SPDI 

(Ghulam et al., 2007a) and the Modified Shortwave 

Infrared Perpendicular Drought Index, MSPDI (Feng 

et al., 2013). 

Sadeghi et al., (2015) proposed a novel 

physically-based trapezoid model, so called OPtical 

TRApezoid Model (OPTRAM), which is based on a 

relationship between soil moisture and shortwave 

infrared transformed reflectance. The theoretical 

basis of OPTRAM, evaluate the predictive 
capabilities of the universally parameterized 

OPTRAM with Sentinel-2 and Landsat OLI 

observations was presented in 2017. The research 

presented in the article focus on the exploitation of 

Visible, Near Infrared and Short Wave Infrared 

reflectance properties for the construction of 

vegetation and water indices and use of the optical 

trapezoid model targeted to the estimation of soil 

water content within field. The aim of the work is to 

investigate the applicability of the model in the 

examination and mapping of the moisture content of 

smaller areas (agricultural field). The model ability 
to provide plant physiology, vegetation 

characteristics, and crop water status at the canopy 

scale can improve the site-specific decision-making 

process in a precision agriculture. 
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2. Materials and Methods  

The model ability to provide crop water status at the 

field level was tested on a relatively small 

agricultural area (Figure 1), that is located in 

Hungary. The total area of the field is 30 hectares 

and it is characterized by chernozem soil type. From 

a pedological point of view, the study area has 

average properties. Its organic matter content does 

not exceed 1-2%. The annual precipitation amount is 
550-650 mm. According to the topographic map, the 

altitude is 302 meters above sea level at the highest 

point of the field and 288 meters at the lowest point 

that means there is a difference in height of 14 

meters between the bottom and upper edge of the 

land. The area has varied topographic features, the 

west part is heavily eroded. During the study period 

(2017-2018) the area was covered by winter wheat.  

 

2.1 Satellite Images and Data Analysis 

Multispectral ESA Sentinel-2 satellite images 
acquired from the ESA Sentinel Scientific Data Hub 

were used in this study. A total of 17 cloud-free 

images were available, but after preliminary 

interpretation, 7 of them were selected for further 

processing. Sentinel-2 is a high spatial (10 to 60-m) 

resolution multispectral satellite having 13 spectral 

bands covering the visible, NIR and SWIR 

electromagnetic frequency domains and temporal 

resolution of ~5-day. The characteristics of the data 

used in the research include the Table 1. Workflow 

illustrating the main steps of data analyses for 

mapping surface soil moisture with OPTRAM is 

depicted in Figure 2. The data extraction includes the 

following steps: data pre-processing, multi-level 

image segmentation, delimitation of indices and the 
application of the optical trapezoid model OPTRAM. 

It is important to note that the Sentinel-2 Level-1C 

processing includes radiometric and geometric 

corrections including ortho-rectification and spatial 

registration on a global reference system with sub-

pixel accuracy. Calculation of the TOA (the top-of-

atmosphere) reflectances also occurs in this process. 

Hierarchical framework was used to identify the 

boundary of study area at super-object level and 

determine the unit of investigation (20 m) at the 

second level for mapping surface moisture. After 
pre-processing vegetation index (NDVI) and (STR) 

were determined. Reflectance at the red band (B4: 

665 nm) and the near infrared (B8: 842 nm) were 

used to calculate the NDVI. Reflectance at the SWIR 

band (B12: 2190 nm) was used for calculation of the 

STR following the Sadeghi et al., (2015). 

 
 

Figure 1: Location map of study area. Study area is situated in Hungry as shown to the right side. The left side 

is an airborne image and NDVI image. The ret colour indicates eroded area 
 

Table 1: The specification of remote sensing data
 

Datasets Spectral resolution Acquisition date 

Sentinal-2 VIS, NIR, SWIR (bands: 3, 4, 8, 12) 2017 (Nov.19, Dec. 19.) 

2018 (Jan. 18, Mar. 24, Apr. 13, May 13, 

 Jun. 12) 
 

 
Figure 2: Satellite data analyses steps for mapping surface soil moisture with OPTRAM 
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By measuring the reflectance of the plants or soil at 

various wavelengths, it is possible to collect a lot of 

information about the status of the plants and soil 

properties. The reflectance of light spectra depends 

on the land cover type (plant, soil types), water 

content within tissues, and other intrinsic factors. 

The reflectance of vegetation is low in the blue and 

red regions of the visible spectrum, due to absorption 

by chlorophyll for photosynthesis. It has a peak at 
the green region which gives rise to the green colour 

of vegetation. In the near infrared (NIR) region, the 

reflectance is much higher than that in the visible 

band due to the cellular structure in the leaves. In the 

mid infrared (SWIR) there are more water absorption 

regions. Those regions are used to examine 

correlation between root zone soil moisture and the 

vegetation status. Based on RED, NIR and SWIR 

bands different indices are calculated to quantify 

plant vigour and relate it to root zone soil moisture. 

The soil moisture status influences the vegetation 
water status and thereby changes the spectral 

characteristics of the vegetation (Figure 3). 

The most common vegetation index used in the 

water stress models (e.g.TOTRAM) is the 

Normalized Difference Vegetation Index (NDVI). 

The water-absorption bands in the 1300–2500 nm 

region show the highest sensitivity to leaf water 

concentration in most crops. Short infrared is very 

sensitive to the water contained in the object whether 

it is soil or vegetation. NDWI (Normalized 

Difference Water Index) is one of the popular 
indicators of this kind of investigations. The 

traditional trapezoid model, TOTRAM, is based on 

the pixel distribution within the Land Surface 

Temperature-Vegetation Index space (LST-VI). An 

inverse linear relationship between surface soil 

moisture and LST is then assumed (Figure 4). 

 

2.2 The Optical Trapezoid Model (OPTRAM) 

The OPtical TRApezoid Model (OPTRAM) was 

developed for Soil Water Content (SWC) estimation 

making use of optical satellite data, and is based on 

the linear physical relationship between soil moisture 
and Shortwave Infrared Transformed Reflectance 

(STR) (Sadeghi, 2015). OPTRAM requires a 

parametrization at a given location based on the pixel 

distribution within STR-NDVI space (Figure 4), 

where STR is defined as follow: 
 

STR = (1 - RSWIR)2 / (2 RSWIR )  

Equation 1 

 

The model parameters can be obtained for a specific 
location from the dry and wet edges of the optical 

trapezoid depicted in (Figure 3). 
 

STRd = id +sdNDVI 

Equation 2 

 

STRw = iw +swNDVI 

Equation 3 

 

where STRd and STRw are the STR at θd (the local 

minimum dry soil moisture content) and θw (the local 

maximum wet soil moisture content).  
 

The soil moisture for each pixel can be estimated as 

a function of STR and NDVI: 
 

  
Equation 4 

 

where id , sd, and iw, sw are dry and wet edges 

parameters. 

 

3. Results and Discussion 

The OPTRAM model Equation (4) was 
parameterized based on the pixel distribution within 

the STR-NDVI space. The model was run separately 

for each available images, also one integrated 

trapezoid incorporating pixel distributions from all 

selected images was used to try universally 

parameterized. During the work dry (id and sd) and 

wet (iw and sw) edges were determined by visual 

inspection of the STR-NDVI spaces so that the 

trapezoids surrounded the majority of the pixels 

(Table 2). 

 
Figure 3: Spectral reflectance of vegetation and soil with different levels of water content (yellow line: dry 

vegetation). The spectral bands used to calculate the indices are highlighted 
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Figure 4: Sketch illustrating parameters of the traditional thermal-optical trapezoid model (TOTRAM) and the 

new optical trapezoid model (OPTRAM) (Sadeghi, 2015) 

 

Table 2: OPTRAM parameters obtained for the study area (agricultural field) based on Sentinel-2 (2018) 
 

Data Dry edge id Dry edge sd Wet edge iw Wet edge sw 

2018.01.18 3.8 1.2 4.6 0.9 

2018.04.08 0 0.5 1.8 2.9 

2018.06.12 3.5 1 4.6 2.4 
 

 
 

 
Figure 5: Pixel distributions within the STR-NDVI space for images (2018 Jan., Apr. and Jul) A: false colour 

composition, B: NDVI, C: B12 values, D: W values (OPTRAM)  (Continune Next Page) 
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Figure 5: Pixel distributions within the STR-NDVI space for images (2018 Jan., Apr. and Jul) A: false colour 

composition, B: NDVI, C: B12 values, D: W values (OPTRAM) 

 

From id and sd (dry edge parameters) and iw and siw 

(wet edge parameters), the normalized moisture 

content, W, was estimated for each pixel with 

Equations (1,2,3,4). The results are illustrated in the 

Figure 5. Pixel distributions within the STR-NDVI 

space for 3 images (as example) are depicted in the 
Figure 5. Corresponding model parameters are listed 

in Table 2. According to the study results a 

trapezoidal shapes were formed by the pixels in the 

STR-NDVI space in all cases. The normalized 

moisture content (W), was estimated for each 

images. Soil moisture variability within the field are 

clearly detected by using this model. However, far-

reaching conclusions cannot be drawn. Further 

research is needed. Currently, additional agricultural 

areas have been included in the research, and devices 

suitable for meteorological measurements have been 

placed in the area. Field measurements are absolutely 
necessary to continue the study and validate the 

results. 
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