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Abstract

Various authors have investigated different approaches to modeling of EM (Electro-Magnetic) field maps, for
the purpose of WLAN (Wireless Local Area Network) positioning. However, none of them considers coverage
mapping based on dynamic WLAN measurements, taking surrounding mobile objects’ positions into account.
This research introduces a method for reference point measurements identification, out of dynamic in-sit
measurements, which are enabled by spatio-temporal filter strategies. Furthermore, it proposes a spatial
database model for processing and storage of EM field maps. The paper starts with a revision of theoretical
concepts and methods of wireless network positioning metrics and field modeling approaches. Available data
sources of static and dynamic characteristic will be evaluated and modeled for the use in a GIS
(Geographical Information System) storage and processing framework. Based on this data, deterministic and
probabilistic field modeling approaches have been implemented and qualified against a measurement
reference track. These tests have shown that Ordinary Kriging is best suitable for EM field modeling in non-
obstacle free environments. These findings provide an excellent starting point for spatio-temporal field

modeling.

1. Introduction

Continuous fields are mostly based on physical
phenomena and in nature their constitution is very
often dependent on the variables of time and space.
The modeling of such phenomena faces several

challenges: (i) an appropriate discretization
approach is needed, which allows efficient
numerical processing of the continuous

phenomenon of interest. (ii} Highly organized data
structures are necessary for storage and processing
of modeled field coverage. (iii) Ideally modeled
field phenomena underlie by nature unforeseen
physical influence with inherent statistical
occurrence. The modeling of many physical
phenomena in nature and technology faces the same
problems, as for instance acoustic noise and atomic
or EM (Electro-Magnetic) radiation. The
phenomenon of EM radiation is used in NPS
(Network Positioning Systems) (Groves, 2008). In
urban or indoor environments, where globally
available GNSSs (Global Navigation Satellite
System) fail due to lack of availability or accuracy,
they can be replaced or complemented by local
NPSs (Vossick et al.,, 2003). Local NPSs have their
own signaling infrastructure, and they operate by
different location sensing technologies and location
metrics. These metrics can be classified into
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propagation based, AcA (Angle of Arrival) and RSS
(Received Signal Strength) methods (Pahlavan et
al., 2002). For AoA or propagation based location
metrics highly specified technology is necessary to
enable accurate angle and time measurements in
wireless networking infrastructures. For these
positioning methods existing standardized off-the-
shelf technology is not yet available. Among stall
metrics, RSS is the easiest adaptable to already
existing WLAN communication infrastructures, as it
does not claim additional hardware implementation
effort. Moreover, RSS positioning has the inherent
capability to consider multipath effects induced by
natural and artificial obstacles (Haykin, 2001), as
these pieces of information can be modeled in the
underlying RM (Radio Map). The RM represents
the EM field coverage, better known as signal
power strength, of available WLAN APs (Access
Point) and constitutes the basis for deterministic
(Honkavirta et al, 2009) or probabilistic
(Widyawan, 2007) positioning algorithms. Since
this RM delivers the direct signal strength input to
the positioning algorithm, the accuracy and actuality
in dynamic non-obstacle free environments is vital
for a reliable positioning solution. Much research
has been made on the principles of RM modeling in
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WLAN infrastructures. These principles can be
divided in to two different classes: deterministic and
probabilistic modeling approaches., The radial
propagation model (Parodi et al., 2006) is the most
straightforward  deterministic  field modeling
approach based on parameter of the radial symmetry
in EM field distribution. This concept is extended in
the MWM (Mulit Wall model) (Parodi et al., 2006),
considering the influence of walls to the EM field
propagation in indoor environments. The ray-tracing
model (Wlfle et al.,, 2005) is based on ray-optical
propagation modeling, where all possibilities of
optical ray propagation between radiation sink and
source are taken into account. The DPM (Direct
Path Model) (Wlfle et al., 2005) lies between the
MWM and ray-tracing model, considering 2 to 3
dominant signal paths between AP and MU.
However, all of these three models need an
additional BIM (Building Information Model)
(Schlueter and Thesseling, 2009) for RM
computation. Probabilistic field modeling applies
geo-statistical Kriging interpolation (Konak, 2010)
based on empirically gathered reference point
measurements. Although multiple field modeling
approaches have already been discussed in the
literature, strategies for ad-hoc RM generation in
dynamic non-obstacle free environments have not
been elaborately investigated yet. For this approach
only a minimum of infrastructural information
should be required to allow the maximum flexibility
in adaptability to different infrastructures. This
target asks for a generic, fully integrated spatial data
and processing structure, which will be addressed in
this research paper. The central research question is
though the following: What modeling method is
suitable for EM fields in non-obstacle free dynamic
environments? In order to answer this, first of all a
GIS data and processing framework will be
proposed. Based on this framework then, a
suggestion is made for how to extract reference
point measurements out of a bulk of dynamically
gathered in-situ observations, Using these reference
points an ERP (Extended Radial Propagation) model
and OK (Ordinary Kriging) interpolation approach
will be applied for modeling of the continuous EM
field. Finally both methods will be compared against
empirical reference measurements.

2. Methods and Materials

2.1 Experimental Set-up and Data Sources

All experiments and data used for this research have
been provided by the project context of SESAAM
{(Geo-Spatially Enhanced Situational Awareness for
Airport Management) (Bretz et al., 2011).

Various static and dynamic data sets, in terms of
their spatial behavior, have been provided from
different sources and file standards. For data
harmonization and integration a GIS framework
with near-real-time processing capability was sct-
up: A spatial database for data storage and raster
processing, a data processing framework for data
handling and insertion into the database and a
desktop GIS for data presentation. Within the GIS
framework, data is organized into different static
and dynamic layers. The static layer holds
information of infrastructural information, WLAN
AP position and the spatial boundary of the test bed
area, covering approx.108.000 m?. The RM is made
available as additional static layer for the purpose of
WLAN positioning. Positions of moving objects are
further on regarded as dynamic datasets. These
dynamic datasets are compound of MUs’ data,
including their GNSS position and EM
measurements to APs. Furthermore these datasets
hold aircraft’s positions, which are gathered by a
MLAT (Multi-Lateration) ground radar system. In
this experimental set-up the MUs with WLAN and
GNSS sensors on board allow the collection of
reference measurements by acting as basis for the
RM modeling. The aircraft positions provide
valuable information about WLAN interfering
obstacles in multipath environments.

2.2 Data Modeling

The RM model is the basis of RSS positioning and
of the entire RM generation process. Though, first
of all it has to be defined in its mathematical
dimension. The RM describes the discrete
representation of the continuous distribution of EM
field strength. Each of the test-bed surrounding AP
generates its own EM field, so multiple radio maps
exist for a single positioning infrastructure. The
positioning infrastructure can be stored in a matrix
of spatially regularly distributed values. This way
cach cell of the matrix refers to a geographical
location. The contimious ficld model can be cither
represented by a set of mathematical functions or by
a discrete representation, which can is sampled from
the continuous field phenomenon. In order to
minimize the functional processing effort of (i) the
expected field complexity in  multipath
environments and (ii} during map manipulation and
in order to (iii) allow fast value accessibility a
discrete mathematical map model is defined. Each

sampling point Xjj and thus matrix element is
defined as a tuple:
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X;j = (rss;;, 8;)
Equation 1

where T88;; is the radio signal strength and B;j
represents a universal parameter for additional use
during the location estimation phase. This could be
for instances used for the vehicles orientation in
north, east, south or west direction, influencing the
EM strength in RSS positioning. The sample point
Xjj is now regarded as vector:

X =(rssf05) kel.g
Equation 2

Where each element K of the vector ij corresponds
to the radio field of a dedicated access point APk at
a maximum count of JAPs. All that vectors are part
of the radic map, defined by the matrix X:

x=(F;) 1€l.m lel.n

q
X11

N

Equation 3
Thercby, each element of matrix X represents a
sample of the (J-dimensional radio map and refers to
a geographical position by row iand column count j
respectively. Note that each sample point iij is
generated at the center of a matrix cell inX. Figure 1
points out the multi-dimensional character of the

RM matrix X, Bach layer in that matrix represents a
RM dedicated to an AP. Finally, after this pure
mathematical definition of the radio map, from a
spatial data type perspective it might be also
regarded as raster coverage of the EM field strength.
Each coverage cell has got its geographical center
coordinate, in its defined geographic reference
system, with certain spatial extent. That spatial
extent together with the raster resclution implicitly
defines the sampling width of the discretization
process. This makes the mathematical raster
definition perfectly suitable for the raster data type
in spatial databases and allows the seamless
integration of the data model to available DBMSs
(Data Base Management System) with spatial
extension, e.g. Oracle spatial or PostGIS.

X11

< Xnm

1

&—— Xpm

Figure 1: Graphical representation of the g-dimensional RM

International Journal of Geoinformatics, Vol. 9, No. 2, Tune, 2013

63

61-69

IModeling of Continuous Fields: Coverage Mapping Based on Dynarme In-sitn WLAN Measurements




A
\J

lp e e e T e s

X At

\ 4

MUpqs Xy

Figure 2:; Cross section of the spatie-temporal buffer concept

2.3 Dynamic data Pre-processing

For the purpose of continuous field modeling,
reference point measurements are often needed for
model calibration (Parodi et al., 2006) or as direct
input to spatial interpolation. This research shows
though that certain spatio-temporal filter strategy
allows extracting reference points and their
corresponding measurement values out of
dynamically collected measurements in non-
obstacle free environments. As a first step of pre-
processing, GNSS positions and WLAN
measurement data have to be correlated over time.
This is due to the fact that WLAN and GNSS
sensors are neither synchrenized in recording time
nor in data rate. Since in this case the GNSS
recordings have the lowest inherent data rate of the
gystem, the GNSS track was interpolated via 2-
dimengional cubic parametric spline interpolation
(Spith, 1995) in order to gain an exact interpolation
with segment wise computation capability. This
allows generating a reasomable high density of
GNSS track positions to correlate WLAN
measurements and interpolated GNSS positions via
nearest neighbor matching in the time domain, This
results in a geo-referenced track of WLAN
measurements, by acting as input variable to the
reference point measurement exiraction process.
That process identifies spatially aggregated
positions of reasonable quality as measurement
cluster and determines their cluster parameters. The
process starts with filtering the available
measurement values by speed over ground and
HDOP (Horizontal Dilution of Precision) of the
GNSS position. Next, the filter algorithm divides
the selected measurement values in clusters, based
on a time gap criterion. The start and stop time of
each cluster describes the boundaries in time; on
that basis the cluster values can be selected
accordingly. In the following step selected cluster
values will be tested for whether a close spatio-
temporal relationship to aircraft positions exists.

This ig done to exclude multipath influences caused
by moving obstacles. In order to achieve this, a 3-
dimensional buffer criterion in the space-time plane
wag defined as shown in figure 2. Thereby, around
the actual MUp,; a radius r was defined in the

space domain and a buffer height of At was selected
on the time axis. This results in a flat cylinder buffer
shape, allocated in time and space. For the final
computation of cluster parameters, only those values
will be taken into consideration that fulfills the
buffer criterion in reference to aircraft positions.
These parameters are well known statistical
parameters as value count, average power and

standard deviation Onof the EM field strength, as
well as the positional standard deviation Oy . On

the basis of these parameters, each reference point
measurement gained out of this process can be
evaluated in terms of its statistical constitution.

2.4 Field Modeling — Extended Radial
Propagation Model

In the introduction of this paper a secries of
deterministic EM modeling approaches have been
considered: The radial propagation model, MWM,
ray-fracing model and DPM. For the latter three
models accurate BIM information is required,
arresting the flexibility of adaptation to different
infrastructures. This research elaborates an ERP
(Extended Radial Propagation) modeling approach,
and takes mnto account the directivity characteristic
of applied antennas beyond fairly simple isotropic
radiation. The radial propagation model is based on
the radial symmetry in electro-magnetic field
distribution. Thereby, the assumption is made that
the field strength of an isotropic radiator is
exclusively dependent on the distance d between
receiver and transmitter antenna, at a given wave
length A, (Haykin 2001). Atmospheric influences
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have not been further considered in that approach,
as they have minor influence at close receiver
transmitter distances. The given concept of the
radial propagation model {Parodi et al.,, 2006) is
thereby extended by the antenna’s gain directivity
G, (8) of the tranemitter, as a function of the angle
& in reference to the antenna’s bore side direction:

PL(d,8) = —10log,,(G,(5)G,) + 10log,, (—'—'-;‘;)2 [db]
Equation 4

Consequently, the path loss PL between the MU
and the AP is dependent on the distance d between
both. The receiver antenna gain G is regarded as a
constant due to it somnidirectional antenna
characteristic. The geometric relationships in
correspondence to the RM are shown in figure 3.
Therein, each raster cell of the k-dimengional RM
matrix X corresponds to a discrete sampling vector
Xj; = (rssf) of the field model. The distance d

can be determined by the Eugclidian norm oflla.llz,

where E is given by:

t_:l.=z::-f;—APk

45"

The anple cpbetweenvectora'andgeogmphicnorth
can be determined by well-known Trigonometric
functions and finally gives the angle § by
subtraction of © and ¢. These equations deliver the
input for the map generation algorithm of the ERP
model for implementation into a spatial DBMS,
Additionally, this model is calibrated on the basis of
empirically gathered reference point measurement
values, In order to meet the best suitable calibration
of the field model in the power domain, least square
approximation for over determined systems is
applied. The calibration parameter ais best fitted if
the error function E(Ap,,a)reaches its minimum.
Therein, Ap; describes the delta between a
reference point measurement and the corresponding
value of the field model. This approach is
supplemented by a weight criterion w;, which acts

as quality parameter of reference point
measurements;
E(Ap,,a,w;) = ZX,(Ap; —a)*w;
Equation 6

The numerical solution of |[E(Ap;,a)| s gives
the exact value of the calibration parameter a in the
power domain.

i North

L

|
Figure 3: Geometrical relationships of the ERP model
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2.5 Probabilistic Interpolation

Az an ablvenative spproach to & paremettic feld
mdeling, this research congiders & 2-D
inbewpolation  techidque in order to  overvonw
expected local field variefions due o static
chstacles, inflnencing the EM field by nmliipath
effects. Vamons authors have thown that
probabilistic Kriging leads to reascnable resulls in
WLAN infrastrnctores (Eomale, 2010), Eriging is a
geostatistical interpolation method for producing an
statistical properties of the measured data. Beeides
the resulting prediction eorface, the Eriging
techniques produce an erme surface, by indicating
the statigtical residuals of the predictions. The
Eriping procees is divided into two main taglke, the
quantification of spatial shucture of dutn and the
production of 3 pradiction surface, In the stachual
quantification, known a8 varography, a spwiinlly
dependent model i fitted to the datn. For the
prediction of ymimowm valyes =t epecific location,
Erigingutilizes thet spatial model, the spatial data
configuration snd the valnes of meamred datn
around the prediction location. The confignmtion
describes gpatial mptocorrelation amonget meamred
pointe aronnd the prediction location, Dependent on
the fitted model, Kriging iz cither en exsct or
inexsct interpoletor. If the regression model
variography starts et the origin of the coordinate
aystem the Kriging prediction is exsct That mesng
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3. Resulhs
3.1D}WRMPMW

Fm: testing the reference point measorament
extraction peocess, a MU data set consisting of
234.806 WLAN measurements, captorsd over a
recording times of 18 hoore, hag been taken, The Loey

parameters At and T of fhe gpatio-temporal filtering
procees to moving obetacles were adjusted to
At= 28 gnd r = 100m. These allow in the time
domein & pusrsniced intersection to  mincradl
same is valid m the space domam sccordingly; there
ﬂlﬂﬂmnsuﬁmmtmmlnmhmuf%dﬂm
given in lossfree aignal reflection. The
compritetional result of the dynemic extraction
process, spatially delimited on the test-bed ares,
comts 24 reference point mesmmements. Table 1
mensurvinent parameter Fp, uq,mdihnm::f
meadureinents por chister to a single AP. This result
Bt a4 8 reasonable basis in sizo and precigion for
firther muxdel calibration purposes.
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Figure 4: Verification of the ERF model (left) end OK interpolation {fight) agsinat
a mearurement reference track
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Table 1: Exemplary reference point measurement statistics

parameter min max miean median

Op 0 1.496 1.034 0.999

Oxy 0.023 0.266 0.123 0.112
count 5 144 M 18

Table 2: Statistical analysis of test-bed area A, B and C

Area parameter | Ext. rad. model Ord. Kriging

A | APmin -9.00 -8.60
APmer 9.65 9.46

u 4.3021 4.5361

G 4.5482 3.4536
B Apin 9.10 9.85
Apmex 9.95 8.68

[ 3.6961 -3.3377

o 3.3334 4.4714
C Apmin 923 -8.48
BDPrmax 8.20 7.96

u -1.7243 -1.3466

c 3.9102 4.2824
A&B&C | Apnin 9.23 -9.85
Apmex 9.95 9.90

u 1.4059 -1.8218

o 4.6029 4.8153

3.2 Comparison between Extended Radial
Propagation Model and Ordinary Kriging
Interpolation

For the final results of the RM field modeling,al6-
bit, six channel raster file was allocated in the
spatial DBMS. This allows storing of a six layer
counting RM with & numerical quantization of 2'¢
steps per cell value, The exemplary RM modeling
results of AP MastBA, for the ERP model and OK
interpolation, are shown in figure 4. The
measurement reference track gives the basis for an
empirical qualification and comparison of both RM
modeling approaches. The sub-division of the test-
bed is done in reference to (i} the geographical
location of the AP and (ji) the antenna’s field
directivity characteristic. These result in a main-lobe
arca (Area B), in reference to antenna AP mastba,
and two side-lobe areas (Area A, Area C). While the
measurement reference track is influenced mainly
by the induced multipath effect of surrounding
buildings inside of side-lobe Area A, Area C is least
affected. As the pure visual interpretation of the
power deviation in figure 4 is hard to quantify, it is
additionally underpinned by statistical parameters in
table 2, for each of the exploration Arca A, B and C.

The maximal positive and negative deviation Ap,
the arithmetical mean value P and the standard
deviation o of the power deviation is considered.
The spatial distribution of Ap compared amongst
both models shows that the ERP model counts the
biggest deviation on the very north end of the track,
where the multipath effect by surrounding buildings
comes into account. In comtrast, the OK
interpolation shows significantly better performance
in that region. Near the border to Area B, the OK
approach seems to meet that physical phenomenon
slightly better as well. The statistical figures out of
table 2 underpin these observations. Although the
ERP model has the lowest mean value, the high
variation of Ap relativize this advantage. In the
main lobe area of the reference track, Area B, we
can distinguish in figure 4 between the near field
and the far field of the antenna, In the near ficld arca
the ERP model shows a rather positive result with
small variation and low deviation from the
measurement reference track. The OK model meets
the measurement track partially even better,
however with slightly higher variance on the near
field boundary areas.
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In the far field center area the ERP model
significantly over-estimates the EM field, whereas
the OK interpolation shows the opposite,
Nevertheless, the ERP model meets the EM field
well at the boundary arcas of the far ficld. In Area
C, the ERP model shows high variation in model
deviation close to the northern boundary of Area C.
In the southeastern part of the measurement
reference track, that model clearly underestimates
the EM field. In this area the OK approach succeeds
with lowest deviation from the EM field. By the
means of statistical parameters OK shows the lowest
deviation, however combined with high variation. In
the statistical overall consideration the ERP model
shows the best performance in terms of absolute
deviation from the measurement data set in
combination with lowest wvariance. The OK
approach clearly underestimates the EM field with
higher variation in field deviation. Despite of the
statistical overall results, the areal analysis above
has shown that each model has strengths and
weaknesses in certain areas against different
influences. This shows that the evaluation of field
models cannot simply strap down statistical overall
analysis. In order to take the visual analysis into
account a result matrix summarizes the areal
assessments in table 3. The final result of that
analysis shows that OK applied on reference point
measurements seems to be the better EM field
modeling approach. This is mostly due to the overall
robustness of OK regarding the multipath effect and
the fact that it allows compensating field
discontinuities best.

Table 3: Result matrix of the visual

statistical areal analysis
Ext. rad. model | Ord, Kriging |
Area A -- -+
Arca B ++ -+
Area C -+ ++
Result -+ ++

4, Discussion and Outlook

The findings of data modeling, together with the
actual implementation of the object relational data
model inside a spatial DBMS, have shown that this
approach is perfectly suitable for the application of
multi-layer field mapping. The utilization of spatial
indexing in a spatial DBMS allows fast data access
within the RM in near real-time applications.
Moreover, the export of RMs in compressed file
formats e.g. GeoTIFF supports the seamless
integration of RMs in position algorithms, GIS and

many other services. The elaboration of the
reference point measurement extraction process has
introduced a filtering strategy in the spatio-temporal
domain, This approach makes it possible to take the
reference point measurements into consideration
without the interfering multipath influence of
mobile obstacles in the vicinity of the measurement
unit. Therein, the quality of extracted reference
point measurements is highly dependent on the
availability of positioned objects inside the area of
interest. The Ordinary Kriging interpolation applied
on reference point measurements has the potential to
model EM fields in non-obstacle free environments
on a global scale, without considering field effects
caused by mobile obstacles. This is mostly due to
the fact that multipath effects of static obstacles can
be considered. However, this approach depends (i)
on the quality of measurement reference values and
(ii) the interpolation point density of this data set.
Unfortunately, both criterions were only partially
given in scope of this research project. The
extension of the recording time-frame would
increase the density of measurement reference
values and thus the quality of the RM as a whole.
This research paper provides a sustainable basis for
modeling of continuous fields. It does not provide a
solution for dynamic field mapping, considering
spatio-temporal field influences of mobile objects.
Though, the proposed GIS framework constitutes
the basis for that. This should be considered from a
data structure and management point of view, as
well as for implementation of advanced field
modeling approaches. Once the static field model is
in place and immune against interfering multipath
effects, the spatio-temporal influences could be
modeled on top of it. This point out the author’s
recommended direction of future research: The
proposed GIS framework would allow the extraction
of field influences cansed by mobile objects of
different shape, Once those influences are known,
they could be modeled and incorporated in a spatio-
ternporal field model. This could be realized by
means of geo-statistical simulation (Isaaks and
Srivastava, 1989), depending on mobile objects’
positions. On that basis a dynamic field map could
be provided, e.g. to a positioning algorithm, in near
real time by OGC defined web coverage services.
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