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Abstract

This paper examines a recently published method for cartographic classification of spatial data, cailed
Autocorrelation based Regioclassification (ACRC). The main benefit of ACRC is its self-adaptive weighting of
attribute values and spatial proximity within the classification process. The according weight is calculated on
the basis of the degree of spatial autocorrelation factually present in the data. Hence this fimdamental
property of spatial dependency is explicitly considered. Any arbitrary component in the classification process
can be avoided due to the strict statistical approach. As demonstrated in this paper, ACRC results in visually
less complex choropleth maps compared to standard classification algorithms, whereas the amount of
complexity reduction depends on the degree of spatial autocorrelation present within the data set. As a trade-
off, the goodness of variance fit (GVF) of the classification is slightly reduced. To help the user to estimate the
visual and statistical effect of the ACRC method, we suggest a statistical measure expressing the ratio of
visual complexity and GVF. In an introductory section we shortly summarize the framework of the ACRC
method and the major challenges of classifying with spatial data in general Within this context we further
extend the argument for an explicit consideration of spatial dependencies in (cartographic) spatial data
classification. After a brief presentation of the method itself we examine the effect on the classification result.
For this, the ACRC is applied to three sample data sets, exhibiting different degrees of spatial
autocorrelation. On the basis of these results the self-adaptiveness as well as the general applicability of the
method are demonstrated

1. Introduction

Metric data aggregated into polygons (colloquially
called ,,area statistics™) are a common data source
for research, planning and decision making,
Typically they are generated and published by
public authorities or transnational institutions, such
as the World Bank. Since area statistics are often the
only available data source, we regard them as
atomic and do not deal with concerns such as the
modifiable areal unit problem (Wong, 2009) or the
ecological fallacy (Haining, 2009). Statistical data
are best represented by choropleth maps if the focus
of interest were on the data’s inherent spatial
configuration or characteristic spatial patterns
{Jenks and Caspall, 1971 and Cromley and
Cromley, 1996). In order to facilitate perception of
typical spatial patterns and consequently enhancing
the generation of questions and hypotheses
(“reasoning™), it is common practice in cartography
to reduce the map’s visual complexity. For this,
mainly two approaches each with different
implications exist: regionalization and classification.
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The first aims to delineate distinct regions defined
by spatial contiguity and similar attribute values as
an additional constraint. In contrast, classification in
a cartographic context leads to discrete classes
defined on the basis of proximity in the attributive
domain. For choropleth maps only the latter is
relevant. Classification in this context helps to
reduce visual complexity as polygons assigned to
the same class are visualized with the same symbol
{area shading). Adjacent polygons with identical
symbols are thus visually grouped into larger - yet
easier to perceive - figures. The granularity or
resolution of the map therefore depends on the size
of the polygonal units and the designated number of
classes. Frequently applied classification methods
are listed and discussed among others in Slocum et
al, (2009) or Brewer and Pickle (2002). As a
common denominator all these methods are ,,blind”
to the fundamental spatial nature of the data
{Haining 2009) as their definition of class breaks is
exclusively based on the distribution of wvalues
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(histogram based). In many cases this leads to rather
arbitrary visual paftens or islands in the map,
potentially feoiling the intended purpose of
cartographic classification. The rcasons for using
non-spatial classification methods for spatial data in
the context of choropleth mapping are manifold.
Additionally to rather pragmatic assumptions noted
by Armstrong et al., (2003) or Haining et al., (2010)
Traun and Loidl (2012) point to a conceptually
wrong postulation which should be further expanded
here: Tobler's first law of geography defines the
principal relationship between location and a
measured value, “Everything is related to everything
else, but near things are more related than distant
things.” (Tobler, 1970). This law can be observed
for many phenomena and forms the conceptual basis
of geostatistical methods such as kriging (Oliver and
Webster, 1990). By using classification methods
exclusively based on the frequency of values in the
attribute domain, regardless of spatial proximity,
Tobler’s law is incorrectly inverted resulting in
something like “Everything is related to everything
else, but more similar things are (spatially) closer
than less similar things.” Although several authors
such as (Coulson, 1987) explicitly adhere to this
statement, the exchange of the dependent (value)
and independent (spatial distance) wvariable is
definitely illegitimate. Of course, there is a certain
possibility that neighbours in a histogram are close
to each other in geographic space. But the crucial
point here is that this deduction is not imperatively.
Additionally, the inversion of Tobler’s law also
seems to be wrong from an empirical point of view.
Unknown values can be estimated depending on
their location whereas the location is hard to be
deduced only from a given value. The height of a
given point in a digital elevation model can be
estimated from nearby known points. But two given,
nearly identical heights can either be very close or at
a distance, without being spatially related. However,
this kind of relationship is wrongly implied, when
arguing for methods which are exclusively based on
the distribution of attribute values and do not
consider any spatial dependencies. The problem
which arises so far can be summarized as follows:
classification is an adequate method for reducing
visual complexity in choropleth maps, but in almost
every case the spatial character of the data is
completely ignored. Hence not only Tobler’s law is
incorrectly inverted but with the presence of spatial
dependencies fundamental statistical assumptions
might be violated in statistical analysis (Griffith,
2005 and Haining et al., 2010). In the next section
previous attempts to overcome this problem in the

cartographic community (the authors are aware of
taxonomic approaches in neighbouring disciplines!)
arc discussed before the recently published ACRC
method is briefly presented and applied to sample
data sets,

2, Related Work

In the wake of Jenks and Caspall's (1971) systematic
evaluation of classification methods for mapping,
several authors began to question the common
practice of applying non-spatial classification
routines to spatial data. Monmonier (1972) was
probably the first who suggested a classification
method for choropleth maps considering spatial
contiguity as an explicit constraint. Based on the
concept of boundary error introduced by Jenks and
Caspall (1971), Cromley {(1996) developed an
iterative classification algorithm which seeks to
minimize this measure for intra-class-homogeneity.
Despite an implicit consideration of the spatial
configuration, the overall effect on the map’s visual
complexity is rather minor. Another approach based
on Jenks and Caspall (1971) was published by
Armstrong et al., (2003). Their heuristic, multi-
criteria algorithm optimizes the class definition for
one of several spatial constraints but to which extent
spatial criteria should be considered is up to the user
and cannot be statistically deducted from the data
itself. The most explicit consideration of spatial
properties can be found in Murray and Shyy (2000).
Their approach aims to minimize the distance
between polygons in the attribute as well as in the
spatial dimension, which consequently results in
overlapping classes in the attribute dimension. Apart
from overlapping classes, which are a no-go for
most cartographers (this issue is discussed in the
following section), the main shortcoming of Murray
and Shyy’s algorithm is the arbitrarily determined
weight between the attribute and the spatial
dimension. Overall, two issues neced to be
addressed: First, the determination of a statistical
weight between the attribute and spatial dimensions
in a two-dimensional classification approach. And
secondly, a cartographic solution for overlapping
classes.

3. Balancing Value and Space

In order to tackle the aforementioned issues, Traun
and Loidl (2012) developed a classification
approach for choropleth maps which conceptually
lies between geographic regionalization and
cartographic classification and thus is named
“Autocorrelation-based Regioclassification”
(ACRC).
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Step 1: Moran scatterplot indicating
global (regression line) and local spati-
al autocorrelation.

HH, HL, LL, LH compares each
polygon‘s value with averaged values
of adjacent polygons.

Step 2: Projection onto .
regression line.

Step 3: Application of any clas-
sification algorithm on pro-
jected two-dimensional histo-
gram (in this case Jenks opti-
mal classification).

Class 1

Clasa 2

Step 4: Reprojection of classes to
value domain resulting in overlapping
classes.

Figure 1: Concepiual workflow of autocorrelation-based regioclassification (ACRC)
as introduced by Traun and Loidl (2012)

The method is based on the hypothesis that in a
geographic context the degree of spatial
autocorrelation is an appropriate measure for the
spatial dependencies actually present in the data
(Griffith, 2005). Furthermore, these dependencies
reflect underlying geographic real-world processes,
perfectly described by Tobler’s first law of
geography (Tobler 1970). As illustrated in figure 1,
the global Moran’s I coefficient is used as a weight
between the attribute and spatial dimensions in a
two-dimensional classification routine. According to
the attribute value and the averaged values of all
adjacent polygons each polygon is mapped in a
Moran scatter plot (Anselin, 1993). With regard to
Dray’s (2011) note about the crucial importance of
the neighbourhood definition, the method follows
Anselin and Rey’s (1991) recommendation to use a
first-order contiguity definition by default. The
global Moran’s I usually lies between -1 (perfect
negative autocorrelation) and +1 (perfect positive
autocorrelation). It equals the pradient of a linear
regression in the scatter plot (Anselin, 1993).
Projecting the dofs representing every single
pelygon’s value plus the mean value of its direct
neighbours onto this regression line and applying
any classification routine in this two-dimensional
feature space allows for a self-adaptive weighting
between the attribute and spatial domains. In order
to prevent significant statistical outliers to be
visually smocothed, Mayrhofer (2012) draws on
ideas from Traun and Loidl 2012 and implemented a

PDF-based  (probability  density  fumction)
significance-test to compute LISA statistics
(Anselin, 1995) for ACRC. This ensures that
statistically significant outliers remain as visually
distinctive islands in the map. Because static,
univariate choropleth maps do not allow for a
multidimensional (considering spatial configuration
or temporal dimension) representation of data, the
classes resulting from the ACRC algorithm have to
be reprojected to the number line (attribute domain).
This inevitably results in overlapping classes. To
overcome this limitation Traun and Loidl (2012)
proposed a prototypical, bipartite cartographic
approach in addition to digital, explorative
approaches such as brushing (Monmonier, 1989 and
Dang, 2001). The color shading of the polygons
visualizes the {overlapping) classes whereas little
plus and minus signs indicate the degree of spatial
influence (calculated from the direct neighbours of
each polygon) compared to a non-spatial
clagsification method. With this cartographic
approach additional information is added to the
map, while the overall picture is less fragmented
and easier to perceive. Hence the ,big picture” in
terms of spatial patterns becomes much more
obvious. This method is especially valuable in an
exploratory context but also suitable for the
communication of spatial patterns in static,
univariate choropleth maps. To apply ACRC to
one’s own data sets an Add-in for ESRI ArcGIS is
available at ESRI's script gallery

International Journal of Geoinformatics, Vol. 9, No. 2, Tune, 2013

31

3 octal Media Location Intelligerce; The Next Povacy Batle - AndneGl3 add-inand Amlyss of Gecspatial Data Collected from Twitercom  21-27




(htip://tinyurl com/regioclassification). The
application allows for multiple views on the data: a
histogram, the scatterplot and a2 map view with
brushing function (Mayrhofer 2012). The
classification method as well as the number of
classes can be interactively determined as needed.

3. Evaluation of Results

In order to demonstrate the applicability of the
ACRC method and to evaluate the effect on
classification results, the classification method was
applied to three sample data sets. Each of them is
based on the same geographic reference the 3,109
counties of continental USA, excluding Alaska. The
data sets exhibit different degrees of spatial
autocorrelation, ranging from 0.2855 (very weak) to
0.8097 (strong). Figure 2 shows the visual effect of

Moran's | = 0.8097
Ratc o :

Moran's | = 0.6554
Ehneat = an) 1

Dastis

Moran's | = 0.2855
Vielusce incidents per 100 persons 2008
Pt soewee 1S Coroms Boweir

ACRC compared to a non-spatial, optimal
clagsification routine, In table 1 the results are
statistically described and compared to an optimal
(Jenks and Caspall 1971) and a quantile
classification respectively. Figure 2 as well as table
1 allow for interesting ingights into the relation
between the degree of spatial autocorrelation, visual
complexity and quality of classification. A purely
visual evaluation of figure 2 leads to a simple,
unspectacular conclusion: the higher the degree of
spatial autocorrelation, the more obvious the effect
of an explicit consideration of spatial contiguity and
the self-adaptive character of the ACRC method.
The sensitivity for spatial dependencies of the
ACRC results in visually less fragmented maps and
a clearer visualization of patterns, consisting
offewer, relatively homogenous “regions”.

fow Optimal Jenks Classification

Regioclassification

Figure 2: Comparison of visual effect of different classification algorithms, In the left column the resulis of an
optimal Jenks Classification can be seen. The right column shows the results of the ACRC applied on the
same data sets. The effect of ACRC increases proportional to the degree of spatial autocorrelation,
demonstrating the self-adaptive character of the algorithm
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Apart from the obviously less fragmented visual
output, the quality of the classification results in
terms of in-class homogeneity is a major matter of
interest. We therefore applied several statistical
measures to determine the quality of classification.
In table 1 we summarize some of the calculated
measures. A well established measure for
classification quality is the GVF (goodness of
variance fit; ref. equation 1), which is minimized for
an optimal classification.
S e s
GrE=a= Ziz (x-2)*
Equation 1

Where X; is the class mean and X the array mean
(Slocum et al., 2009). Since quality measures such
as the GVF exclusively focus on the attribute
domain, we related them to the classification quality
in terms of spatial complexity. The latter is
expressed by the absolute number of resulting
regions (groups of adjacent polygons in the same
class) and the (visual) complexity index
(MacEachren, 1982). As summarized in the left part
of Table 1 the visual complexity of the classification
results varies significantly depending on the method
applied. For all three data sete ACRC leads to the
least fragmented results, whereas the quantile
classification performs worst.

Table 1: Descriptive statistics indicating the quality of classification and the visual complexity for three data
sets. The results of ACRC are compared with optimal and quantile classifications. The number of regions
refers to adjacent polygons assigned to the same class, visually forming regions. The complexity index
follows MacEachren's suggestion for the quantification of visual complexity (Mac Eachren 1982): the ratio of
all boundary lengthsvs boundary lengths separating classes. The GVF {goodness of variance fit) is a measure
for the variance within each class. In order to calculate the coefficient of visual complexity and the quality of
classification, the number of regions is related to the GVF, Each statistical result is compared to the optimal
classification, expressed as a percentage. For the complexity index and for the GVF higher values are
considered better (maxitmum value 1). For the number of regions and the coefficient of the number of regions

and the GVF lower values are preferable.

% % Y% %
vy | Number Complexity Coefficlent N
Moran's I of optimal of optimal | GVF of optimal of optimal
of regioms clase. Joddex elags. elags. Togion/ GYE clags.

Rate °fm': 262 100,00% [ 0,9366 | 100,00% | 0,9531 | 100,00% | 274,9021 100,00%
Rate ‘ﬁggm ——l - 50,76% (09720 |[103.79%|0,9168 |9620% |145,0626 |52,77%
Rate of hispanic
origin, quant. 718 274,43% 0,7809 | 83,38% |0,62376544% |1152,7538 |41933%
class
g’t‘cbz‘fl:::‘ 499 | 100,00% |0,8590 |100,00% | 0,9103 [ 100,00% | 548,1547 | 100,00%
gf::“fcb’mm“t 0,6554 |311 62,32% [0,9183 |106,90% | 0,8634 | 94,85% | 360,1905 65,71%
g::“:lpb’lm"'mcms 745 149,30% [0,7691 | 89,53% |0,8578 | 94,23% | 868,5286 158,45%
Violence
incidents per 764 100,00% [0,7772 | 100,00% | 0,9173 | 100,00% | 832,8781 100,00%
100, opt. class.
Violence
incidents per 02855 | 681 89,14% [0,8015 |103,12% | 0,9008 [ 98,20% | 756,0071 90,77%
100, ACRC
Violence
incidents per 1126 |14738% |0,6595 |84,86% |0,7457|81,30% |1509,9010 |181,29%
100, quant. class
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Optimal Jenks Classification
262 regions, complexity index 0.0634

Regioclassification
133 regions, complexity index 0.0280

Quantile Classification
719 regions, complexity index 0.2191

Figure 3: Regions are defined by adjacent polygons which are assigned to the same class. Here the results of
three different classification methods are mapped for one of the three example data sets (rate of Hispanic
origin 2009). The effect of classification methods on the visnal complexity of the cutput becomes obvious and

is underpinned by statistics

Considering the number of resulting regions, the
difference between ACRC and the applied optimal
classification increases not surprisingly proportional
to the degree of autocorrelation. The differences
between ACRC and the applied optimal
classification are less significant when using the
complexity index as an alternative measure for
fragmentation. Due to the conceptual design of the
optimal classification it must outperform ACRC in
terms of GVF. However, compared to the results of
the quantile classification the slightly reduced GVF
performance of ACRC seems to be within an
acceptable range. The ratic of the visual quality
(complexity) and the attributive quality of
classification helps to judge whether a less
fragmented visual cutput should be favoured, in turn
accepting comparably worse classification quality
(not to mention the arguments for a statistically
sound treatment of spatial data as discussed above).
In this respect the ACRC offers significantly better
results. For the data set with the highest degree of
spatial autocorrelation the valug is about 50% of the
optimal classification. The difference gets even
more cbvious comparing the result to the results of
the quantile classification. Even for the data set with
a more or less random spatial data distribution the
performance of the ACRC methods is best.

4, Conclusion and Outlook

Based on a brief discussion of the nature of spatial
data and the consequences for cartographic data
classification, the conceptual design of the recently
published approach “Autocorrelstion based
Regioclassification”™ (ACRC) is presented. This
method does not invert Tobler’s first law of
geopraphy (as it is the case with non-spatial

classification algorithms), but explicitly considers
the spatial characteristics of data on a sound
statistical basis. ACRC successfully addresses two
needs in the context of cartographic classification of
spatial data, First, the method significantly reduces
the visual complexity of choropleth maps. This is
visually and statistically demonstrated for data sets
with  different degrees of global spatial
autocorrelation. In contrast to purely visual
smoothing approaches the reduction of wvisual
complexity iz based on a sound statistical concept.
Furthermore, a PDF-based significance test ensures
the preservation of LISA-outliers in resulting
choropleth maps. Secondly, the presented
classification approach explicitly considers the
fundamental properties of spatial data. Apart from
any discussion concerning visual outputs from
ACRC, this method is seen as a further contribution
to a more adequately treating of spatial data.
Bspecially domains such as cartography and
geography, being “spatial” by their very nature
cannet afford to ignore the special characteristics of
spatial datal In contrast to previous attempts the
ACRC method aveids any arbitrary presumption or
decision by the user conceming the relative
weighting of spatial and attribute data properties in a
two dimensional classification routine. The design
of the application built on the ACRC method
(Mayrhofer 2012) is perfectly applicable in an
cxploratory  context  comparing  different
classification  algorithms or neighbourhood
definitions. For the utilization in a communication-
oriented context, the cartographic solution presented
in Traun and Loidl (2012) is suitable; especially
considering previous attempts to cartographically
deal with overlapping classes. Nevertheless some
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aspects still have to be addressed. The most urgent
issue is to implement additional options for the
calculation of the spatial weights matrix. Following
Dray (2011) a weighting proportional to the length
of the common boundary seems to be most urgent;
both from a statistical as well as from a visualization
point of view. Although the applicability of the
method has been demonstrated for several data sets
and the effects of ACRC on the results are described
in detail in this paper, the effect on map readers’
perception still has to be cvaluated under
standardized conditions.
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