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Abstract

In this study, an approach is proposed for determining the depths of shallow waters from multispectral
satellite images. This approach is a hybrid system that uses a Random Forest Ensemble (RFE) technique for
Neural Network (NN) and Support Vector Regression (SVR) algorithms to improve accuracy of bathymeiry
estimations by reducing both errors and prediction variance. The study was performed over two different
coastal areas: the first is the port of Alexandria, Egypt, which has a low turbidity silt-sand bottom area with
a depth range of 10.5 m; the second area is Shiraho, Japan, which is a heterogeneous botfom composition
coral reef area with a varied depths range up to 12.5 m. Landsat-8 and Quickbird satellite images were used
Jor these two study areas, respectively, as examples of low- and high-resolution images. These images were
corrected for both atmospheric and sun-glint errors. The results were validated using echosounder field
points. Four reflectance values of green, red, blue divided by red, and green divided by red bands were
assigned to reference point locations. These values were used for algorithm training and testing processes.
The SVR and NN oulput values were combined using RFE. In order lo evaluate the accuracy of the BE
approach, we compared ifs outputs to that of the NN and SVR approaches. All of the results were evaluated
using RMSE and R’ values. The RFE approach was found to yield a RMSE of 0.64 and 0.90 m for the two
areas, resulting in an almost 20 and 10 cm improvement. These resuits suggest that the proposed RFE

approach oulperforms both the NN and SVR algorithms, when they are used individually.

1. Introduction

Coastal area bathymetry plays an important role in a
wide variety of fields and applications, such as
coastal engineering, coastal oceanography, spatial
monitoring, and sustainable management of coastal
and lake areas (Leu and Chang, 2005 and Gao,
2009). Sediment movement in shallow coastal areas
occurs duc to tidal currents, waves, ncarshore
currents, and intensive human activities (Ceyhun
and Yalgin, 2010). Therefore, accurate and regularly
updated methods, mainly focusing on measuring the
water depths, for such areas should be developed
{Pacheco et al., 2015).

Currently, single and multibeam echosounders
and Light Detection and Ranging (LiDAR) are the
most widely used methods for bathymetric
applications. Although these methods are highly
accurate at detecting depths, they are costly and
difficult to use, especially, in shallow areas where
coral reefs, rocks, and shallowness act as obstacles
to the navigation of survey vessels (Chust et al.,
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2010). Recently, airborne LiDAR technology has
been developed and has been used in bathymetric
applications (Su et al., 2008). Nevertheless, the
LiDAR technology is not only expensive and time
consuming but also requires exhaustive labor than
the traditional single and multibeam echosounders.
Optical satellite images are a low-cost, wide-
coverage, and time-effective alternative to the
traditional methods wused for bathymetric
applications (Sdnchez-Carnero et al, 2014). A
variety of optical satellites with more developed
spatial and radiometric resolutions were recently
launched and used to estimate water depths; some of
these satellites include Landsat (Fuxing, and Qian,
2003), (Hoepffner and Zibordi, 2009), SPOT (Kao
et al., 2009 and Sinchez-Carnero et al., 2014),
IKONOS (Stumpf et al., 2003 and Paringit and
Nadaoka, 2012), WorldView-2 (Doxani et al., 2012
and Kibele and Shears, 2016), and RapidEye
(Monteys et al., 2015).

47-58

Assessment of a Hybric Based Approach with a Random Forest Ensem ble for D etermination of Shallow Whter Depths from Miltispectral 3 atellite Images




A literature review revealed that a number of
different approaches have used satellite images to
perform bathymetry. One type of approach involves
analytical methods that use look-up tables or
spectral libraries (Louchard et al., 2003, Lesser and
Mobley, 2007, Brando et al,, 2009 and Jay and
Guillaume, 2014). These analytical approaches
requires a hyperspectral images for processing. As
these images can provide sufficient information
about the reflectance from a submerged surface as
well as suspended and dissolved matters (Vahtmie
and Kutser, 2016). However, these particular
approaches have a number of drawbacks; for
example, hyperspectral images are not available
over large areas and have coarse spatial resolutions.
Moreover, these images require extensive
processing times and relatively complex processing
methods. Alternative empirical methods include the
linear band model (Lyzenga, 1985), the wave
kinematics bathymetry method (Piotrowski and
Dugan, 2002), the bands ratio transform model
(Stumpf et al., 2003), the least-squares fit model
(Lee et al., 2011), and the k-nearest neighbor model
(Kibele and Shears, 2016). However, most of these
empirical algorithms assume that the water column
is similar and the environmental factors are
homogenous over the entire area being observed (Su
et al,, 2008). This assumption may decrease the
accuracy of depth measurements as these factors are
not found in most areas. In addition, linear
techniques, such as the Lyzenga model (Lyzenga et
al., 2006) and the least-squares fit regression model,
result in poor bathymetry measurements due to the
bathymetric system’s nonlingar nature (Paul and
Roehl, 20086).

Ceyhun and Yalgin (2010) recently proposed an
aliernative approach for detecting water depth; their
technique utilized an artificial neural network (NN).
NNs are flexible mathematical structure models that
are capable of performing nonlinear functions
between the spectral bands of satellite images and
water depth values. As a result, they are able to
overcome the limitations of the abovementioned
regressive models discussed earlier in this section.
Numerous studies have used NN algorithms to
determine water depths from satellite imagery. For
example, NN approaches were combined with
Landsat images (Gholamalifard et al.,, 2013), IRS
P6-LISS III (Moses et al., 2013), and Quickbird
images (Corucci et al.,, 2011). These particular
studies found that the NNs outperformed other
empirical methods. In addition, random forest
ensemble regression trees can be used for highly
accurate bathymetry mapping; this approach is less
affected by environmental factors than other
empirical methods and it is invincible to overfitting

drawback as compared to NN method (Mohamed et
al, 2017). The present study proposes a hybrid
approach that uses RFE for bathymetry purposes in
shallow coastal areas. The proposed algorithm
offers complementary information from both the
NN and SVR approaches and, as a result, the
obtained depths can be improved. The RFE
methodology was then tested using free Landsat-8
and Quickbird images. Finally, the obtained
bathymetry results were evaluated by an
echosounder field measurement performed over two
different areas.

2. Study Areas and Available Data
2.1 Study Areas

Two different areas to be studied were selected. The
first study area was Alexandria harbor, Egypt (see

Figure 1}.
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Figure 1: The 1st study area of Alexandria port
coastal area, Egyp
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Figure 2: The 2nd study area of Shiraho, Ishigaki
Island, Japan
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It is a deep and calm water area with low turbidity
and has a depth range of 10.5 m. Most of the port
seabed area is covered with silt and sand. The
second area of study was Shiraho, a sub-tropical
region that is located in the south-eastern part of
Ishigaki Island, Japan (see Figure 2). It is a shallow
water area with non-uniform bottom composition,
and the depth range is up to 12.5 m. Shiraho is an
area of rich marine biodiversity, and there are
numerous ecosystems, such as algae, sediments,
seagrass, and coral reefs,

2.2 Imagery Data

Freely available Landsat-8 and Quickbird satellite
images were used for the bathymetry measurements
of the first and second study areas, respectively. The
Landsat-8 images had a spatial resolution of 30 m,
and they were captured during calm weather
conditions on 22 March 2014. Moreover, the
Quickbird images had a spatial resolution of 0.6 m
and were collected during windy conditions on 20
July 2007. The Landsat-8 images were selected so
that they could be synchronized with the
echosounder field measurements time for the port of
Alexandria area. The sounding field data for the
Shiraho area was collected on 25-31 January 2013.
Note that for Shiraho area there was a time
difference between when the images were taken and
when the field data was taken. As Shiraho area did
not experience any tsunamis or abnormally large
waves during these years, the time difference was
not expected to have a significant impact on the
bathymetry measurements (Collin et al., 2014). The
required values for imageries processing or
radiometric calibrations were presented in the
images’ metadata files.

2.3 Echo-Sounder-Benthic Cover Field Data

The depth of the water in the first study area was
measured by a NaviSound Hydrographic Systems
model 210 echosounder device that had a Trimble
2000 GNSS instrument attached to it. This
echosounder system is able to make measurements
to depths of 400 m, and its vertical accuracy is 1 cm
at 210 kHz (see Figure 3). In addition,
measurements of the depth of the water of the
second study area were collected by a single-beam
Lowrance LCX-15MT dual frequency (50/200 kHz)
transducer with a 12-channel GNSS antenna (see
Figure 4). The horizontal and vertical accuracies of
the Lowrance device were =1 m and +0.03 m,
respectively (Heyman et al., 2007). Approximately
2500 and B106 field points were measured in the
first and second study areas, respectively, and they
were referenced to that of the mean sea level. These
ficld points were used to calibrate and evaluate all
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of the bathymetric approaches investigated in this

Figure 3: Field bathymetry observed points of 1st
study area from echo-sounder
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Figure 4: In-situ bathymetry observed points of 2nd
study area from echo-sounder

3. Methodology

Both the Landsat-8 and Quickbird multispectral
images were preprocessed for bathymetric mapping
by the following steps: first, the image pixel values
were converted to radiance values through the use of
the metadata file values of the images. Atmospheric
corrections were then performed on the image
radiance valucs with the FLAASH tool. The input
parameters for the FLAASH tool were defined as
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illustrated in the methodology sec 3.1.2. The
resultant images from the atmospheric correction
were checked against the field signal curves for each
reflectance value. Lastly, the atmospherically
corrected wvalues were subject to sun-glint
corrections that were made using the Hedley method
(Hedley et al., 2005). All of the abovementioned
steps were performed in an ENVI 5.3 environment.

For the bathymetry mapping, both the NN and
SVR approaches were applied to the preprocessed
Landsat-8 and Quickbird multispectral images, and
their predicted outputs were combined using the
RFE algorithm. The input values for the NN and
SVR approaches were extracted from the corrected
images at the corresponding locations of the
echosounder reference points. Four inputs that were
extracted from the corrected reflectance images
were used for training all the approaches at the same
locations of the field sounding points. These input
values were red, green, blue divided by red, and
green divided by red bands logarithms then the
outputs were the predicted water depths.
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Figure 5: Processing steps for bathymetry detection
using BE approach

For all of the study areas, these values were
randomly separated, with 65% of the values being
allocated to training, 10% to validation, and 25% to
testing. For example, the Shiraho study area field
points were divided into 5472, 608, and 2026 points
for training, validation, and testing, respectively.
The RFE approach was then applied to ensemble the
outputs from the NN and SVR methods. The
validation points were used to train the RFE
approach, with the NN and SVR outputs being used

as input values and the predicted water depth values
as outputs. Finally, all of the outputs from the
various approaches were evaluated using the same
independent testing points, depending on the RMSE
and R? values (see Figure 5).

The SVR kernel function was fine Gaussian with
0.5 kernel scale. On the other hand, the NN training
function was the Levenberg—Marquardt
backpropagation with 10 hidden layers, while the
RFE algorithm ensemble the output values from
SVR and NN approaches with 50 trees and a two
thirds split percentage. These parameters were
selected for each algorithm based on the least
possible RMSE and highest R? values. All of these
algorithms were implemented in a Matlab
environment.

3.1.1 Spectral top of atmosphere radiance

The Landsat-8 and Quickbird data were provided as
digital number (DN} images. These DN values were
converted to spectral top-of-atmosphere radiance
values for each pixel; these values denote the
amount of energy received by the sensor. This
conversion can be applied through the use of the
following equation (Landsat-8, 2013):

LA=G*DN+I
Equation 1

Where LA = top-of-atmosphere spectral radiance,
DN = digital number recorded by the sensor, G =
band-specific multiplicative rescaling  factor for
radiance values, and 1 = band-specific additive
rescaling factor for radiance values. Both the G and
I values can be found in the metadata files of the
images.

3.1.2 Atmospheric correction

Both the Landsat-8 and Quickbird images were
corrected for atmospheric errors using the fast line-
ofsight atmospheric analysis of hypercubes
(FLAASH™) algorithm in the Envi 5.3 program.
Numerous studies have wused the FLAASH
algorithm to perform atmospheric corrections,
especially, when  conducting  bathymetry
measurements (Blakey et al., 2015, Lyons et al.,
2011 and Wahidin et al., 2015). The radiance values
calculated as part of 2.4.1 were used as inputs for
the FLAASH algorithm. FLAASH performs a
radiative transfer model on the obtained data by
using a MODTRAN4 code (Berk et al, 1998)
beside using look-up tables for diverse categories of
atmosphere (Liu and Zhou, 2011). Moreover, the
FLAASH algorithm contains various types of
aerosols that define the properties of the particles in
the atmosphere. For our two study areas, we chose
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the maritime type for the aerosol model, the tropical
type as the atmospheric model, and the blue and
near-infrared bands as the aerosol retrieval type over
water areas (Su et al, 2008). This step finally
produced atmospherically corrected reflectance
images.

3.1.3 Sun glint correction

A literature review revealed that there are various
methods for comrecting sun glint (Kay et al., 2009).
The Hedley method is the most widely used method
for correcting sun glint (Hedley et al., 2005). This
method uses the relationship between the bands
used for bathymetry mapping and the near-infrared
band because the near-infrared band has a negligible
amount of sun glint (Hedley et al., 2005 and
Sénchez-Carnero et al., 2014). The atmospherically
corrected reflectance images had sun-glint
corrections applied to them. Moreover, the corrected
pixel values can be calculated using a sample of
pixels and the following equation:

Li (VIS)’ = Li (VIS) * bi (LNIR — Lmin (NIR))
Equation 2

Where Li (VIS) = de-glinted pixel reflectance
values, Li (VIS) = atmospherically corrected
reflectance values, bi = regression line slope, LNIR
= corresponding pixel values in the near-infrared
band, and Lmin (NIR) = minimum near-infrared
values existing in the sample.

3.2 Proposed Algorithms for Bathymetry Mapping
3.2.1 Support vector regression

Vapnik and Chervonenkis (1964) offered support
vector machines (SVMs) for classification
applications and solving statistical problems.
Support Vector Regression (SVR) targets to nd a
linear hyperplane, which can ts the multi-
dimensional input vectors to output values. At that
point, the outcome can be used to predict future
output values that are contained in a separated
testing set. As instance, in any regression problem,
suppose that we have a training dataset of D = (y;, t;
and i = 1, 2, 3...n) with input vectors y; and target
vectors t;. So, the main regression algorithm target is
to find a fitting function f (y) that estimates the
relationship between the input and target points
(Mohamed et al., 2017). For linear fimctions f, the
hyperplane that is constructed by the SVR is
determined as follows:

f@=w*ytb

Equation 3

The predicted value, f (%), depends on a slope (w)
and an intercept (b) which displays relationships to a
linear regression model.

Flatness in the regression problems can be
solved by minimizing the norm Euclidian space
Iwl’. As a result, the problem of nding an optimum
hyperplane is a convex optimization problem.
Moreover, to solve the non-linear relations between
input vectors and outputs it is necessary to define a
map (¢) that transforms the training points x into a
higher-dimensional feature space. The result is that
w, after creating a Lagrangean function from
Equation (1) will be a function of ¢ (x;) and that the
product ¢ (x;) ¢ (x) needs to be calculated (Smola
and Schélkopf, 2004). This function ¢ (x;) ¢ (x) is
identified as a kernel function K (xi, x}. In other
words, SVMs use kernel functions to project the
data on a new hyperspace to simply represent the
complex non-linear patterns (Williams, 2011 and
Were et al., 2015).

3.2.2 Neural network

The supervised multilayer perception (MLP)
approach combined with the back propagation (BP)
method can be used as a training algorithm to
determine the nonlinear relationship between input
and output data (Rumelhart et al, 1986). This
approach comprises three parts: the input layers act
as neurons, which are the multispectral image band
values in bathymetry detection problems; the hidden
layer is used to control the network training
procedure; and the output layer describes the
predicted water depth (Gholamalifard et al., 2013).
The BP algorithm attempts to reach a predefined
level of accuracy. As a result, the algorithm starts
with initial weightings that are used to find values
with the highest levels of accuracy; it does this by
comparing predicted outputs with desired values in
an iterative process (Razavi, 2014). As it is the most
widely used algorithm in the training process of
MLP approaches, the Levenberg—Marquard training
algorithm was used in the BP training process in this
study (Ranganathan, 2004). Finally, a log-sigmoid
function was selected for the transferring of the
neural network input values to the final node output
values. Since the derivative of the log-sigmoid
function can be easily computed and it is widely
used already (Ceyhun and Yalgm, 2010).

3.2.3 Random forest

The random forest (RF) is an ensemble of decision
trees that have been created from learning sample
groups that have been assembled independently
from a training sample (Breiman, 2001). The
training of the RF algorithm is achieved through the
use of a bootstrap aggregating technique.
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In this technique, numerous trees are created, and
each tree is trained on a bootstrapped sample of the
training data with replacement. Bootstrapped
sampling means that the selected data for decision
trees training process is not eliminated from the next
generated subset of data. In addition, the RF method
was improved such that for each tree splitting at
every single node, the best split among a subset of
predictors randomly chosen were used (Kim and
Sohn, 2011). The random feature selection improves
both the overall accuracy of the method as well and
the variation between sample trees, and it prevents
overfitting. The final prediction will be calculated
using averaging or majority voting techniques for
regression or classification problems, respectively
(Ghimire et al., 2012). Two predefined parameters
are required before RF can be used: the amount of
samples used to split each node and the number of
developed trees (Guan et al,, 2012). The remaining
amount of calibration variables, known as out-of-

Water Depths:
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@50 m
E7.00 m
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bag data, can be used to estimate the regression
accuracy. For regression problems, setting the
splitting percentage to be two thirds of the overall
data usually achieves the most accurate results
(Breiman, 2014). An impurity criterion or attribute
selection measurement must then be applied so that
the best split selection at each node is made. One of
the most widely used example of such criterion is
the Gini diversity index (Immitzer et al., 2012).

4. Results

Figures 6-8 shows the bathymetric maps that were
computed by applying each model to the Landsat-8
and Quickbird satellite images for each study area,
while Figures 7-9 show the evaluation of each
model; Tables 1-3 summarize the corresponding
RMSE and R® values. Meanwhile, Tables 24,
present the RMSE values for various depth ranges
for cach method over the two study areas.

Eig kel

Figure 6: Bathymetric maps derived by applying each algorithm using Landsat-8 imagery over Alexandria
harbor area, Egypt. (a) SVR (b) NN (c) RFE
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Figure 7: The continuous fitted models for Alexandria port area, Egypt. Depths are represented as points, and
the continuous line represents the continuous fitted model (a) SVR (b) NN (c) RFE

Table 1: The RMSEs and R? of all methods for bathymetry detection over Alexandria port area, Egypt

Methodology SVR NN RFE
RMSE (m) 0.96 0.84 0.64
R’ 0.66 0.75 0.85
Table 2: The RMSEs (in meters) of all bathymetry detection methods in three levels of depths for
Alexandria port area, Egypt
Methodology SVR NN RFE
4-6 m 0.86 0.80 0.56
6-8 m 0.90 0.87 0.66
8-10.5m 1.09 0.85 0.68

Table 3: The RMSEs and R? of all methods for bathymetry detection for Shiraho Island, Japan

Methodology SVR NN RFE
RMSE (m) 1.03 0.98 0.90
R’ 0.834 | 0.851 | 0872
Table 4: The RMSEs (in meters) of all bathymetry detection methods in three levels of depths
for Shiraho Island, Japan
Methodology SVR NN RFE
0-4 m 0.84 0.81 0.75
4-8 m 1.25 1.16 1.08
8-12.5 m 1.53 1.43 1.32
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Figure 8: Bathymetric maps derived by applying each algorithm using Quickbird imagery over Shiraho Island
area, Japan. (a) SVR (b) NN (c) RFE

5. Discussion
Appropriate bands for the bathymetry estimations
were selected through a statistical analysis, which
was used to investigate the correlation between the
water depth values obtained and the satellite
imagery bands. This investigation confirmed that
there was a robust correlation between the red and
green bands and the water depth values (Su et al.,
2008 and Stumpf et al., 2003). However, the blue
bands in the Landsat-8 and Quickbird images
showed a slight correlation with the water depth
values in the two coastal areas. This slight
correlation can be explained by the absorption of
coastal and blue bands signals by the dissolved
organic matters and phytoplankton in the water
column (Gholamalifard et al., 2013).

The SVR algorithm is a stable approach that
uses the optimum kernel function to correlate the
imagery bands with water depth.

This correlation can be performed by creating an
optimum hyperplane that ts data and predicts with
the minimum complexity of the modelling function.
In this study, the optimum kernel function was
selected, after several trials, based on minimum
RMSE and maximum RZ In this study, the optimum
kernel function was fine Gaussian with 0.5 kernel
scale. Alternatively, the NN approach formed a
correlation between the imagery bands as inputs and
water depth values as predicted outputs using
multidimensional nonlinear functions. Previous
studies (Ceyhun and Yalgm, 2010 and
Gholamalifard et al., 2013) have proved the
superiority of NN approaches over those of classical
empirical models such as Stumpf et al., (2003) or
Lyzenga et al., (2006). However, NN approaches
suffer from significant drawbacks.
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Figure 9: The continuous fitted models for Shiraho Island, Japan. Depths are represented as points, and the
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For example, they require a lot of attempts before
they can determine the best weights of correlation.
As NN is an unstable technique that results in
different RMSE and R? values from one trail to
another.

RFE is a fitting ensemble of a regression trees
method that averages the regression trees generated
by a bootstrapped selection from an input sample.
The optimal number of regression trees was selected
after successive trails with numerous numbers of
trees (10, 20, 30... 100), and the best RMSE and R?
values were obtained with 50 trees. The Gini index
criterion was also used for the trees splitting. The
creation of random regression trees and the splitting
of the data into training and testing sets confirmed
that the RFE approach was not overfitting the input
data. In order to demonstrate the precedence of the
proposed RFE algorithm, it was tested over two
different areas with wvarious water column
characteristics and bottom coverage. Particularly,
Shiraho area which has a heterogeneous bottom
cover and variations in the water optical properties.
Figures 7 and 9 shows a scatter plot of the predicted
depths versus the field depths, obviously, there is a
variation of the results within each of these depth
intervals. As we removed the atmospheric errors so
the remained errors result from variations in either
the water optical properties or the bottom
composition. However, the proposed RFE approach
increased the resulted accuracy compared to NN or
RF approaches.
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The RFE approach was applied so as to
cnsemble the ocutputs from the NN and SVR
methods, The main advantage of enacting such a
combination is that it allows us to exploit the
differences between the two approaches, and
combining these approaches increases the overall
accuracy of the NN and SVR methods because they
have different sources of errors and weaknesses.
The obtained results in this study confirmed that this
combination increased the depths determination
accuracy by approximately 20 and 10 cm over a
silt-sand and coral reef areas, respectively. An
additional merit of the proposed approach is its
ability to produce accurate results even with a
limited number of training samples.

In order to compare our results with those of
comparable studies, many factors have to be
congidered. These factors include the spatial
resolution of the images, the bottom-type, water
turbidity, availability of an adequate number of field
points in a study area, and the depth range. For
example, Vinayaraj et al.,, (2016) argued that the
adaptive geographically weighted regression (A-
GWR)} model is the most suitable model for
bathymetry estimations in clear waters in
heterogenecus coastal areas. The A-GWR model
yielded a RMSE of 1.14 and 0.40 m for the Landsat-
8 and RapidEye images, respectively, at a depth
range of 20 m. Pacheco et al., (2015) tested Landsat-
8 coastal, blue, and green bands for bathymetry
estimations using the Lyzenga linear model over

35
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clear waters in a shallow coastal area and they
obtained a RMSE of 1.01 m at a depths range of 12
m. Kibele and Shears, (2016) proposed a K-Nearest
Neighbor (KNN) approach for measuring
bathymetry over a clear coral reef area with large
patches of sand and a 20-m depth range. The KNN
method resulted in water depths with 0.8 m RMSE
using Worldiew-2 satellite images, which
outperform the results obtained from Lyzenga linear
method. However, a large number of field points,
approximately 300,000 points, were required for the
training of the algorithm. Gholamalifard et al,
(2013) argued that a NN approach was greater than
that of PCA for a linear red band correlation using
Landsat-5 imagery over a deep water area. This
study produced a RMSE of 2.14 m at a depth range
of 45 m. Corucci et al., (2011) developed a neuro-
fuzzy approach that could be used for bathymetry
measurements over a sandy coastal area with clear
water using Quickbird images. An RMSE value of
about 0.64 m was obtained over a depth range of 14
m with small number of training samples. Qur
results are comparable to the results obtained from
these studies for both the processed images and the
NN approach within the same ranges of depths.
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6. Conclusions

This article proposed RFE as a hybrid-based
approach that could be used for bathymetry
measurements. This approach was applied in two
different areas that had a different number of
available field points: one was a low-turbidity, deep,
silt—sand bottomed area of the port of Alexandria,
Egypt, with a depth of up to 10.5 m, and the other
was a low-turbidity coral reef area of Shiraho
Island, Japan, which had a water depth range of 12.5
m. For both NN and SVR methods, the green and
red band logarithms that had been corrected for
atmospheric and sun-glint systematic errors were set
as input data, and the water depths were to be
obtained as output data. The propesed RFE
approach ensemble the water depths outputs from
the NN and SVR approaches. In order to validate
the improvements of the produced water depths
accuracy from the proposed RFE approach they
were compared to the single NN and SVR results.
We also compared these results with those of
echosounder water depth field data.

The SVR approach yielded RMSE values of 0.96
and 1.03 m over the two study areas, while the NN
approach yielded wvalues of 0.84 and 098 m.
Moreover, the proposed RFE approach produced
RMSE values of 0.64 and 0.90 m over the two study
areas. From these results, it can be concluded that
for bathymetry mapping over diverse areas, the RFE
ensemble produced more accurate results than the
single SVR or NN approaches.
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