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Abstract

Geoscience Australia has ben conducting a series of national risk assessments for a range of natural hazards
such as severe winds. The impact of severe wind varies considerably between equivalent structures located at
different sites due to local roughness of the upwind terrain, shielding provided by upwind structures and
topographic factors. Terrain surface roughness information is a critical spatial input to generate wind
multipliers. It is generally the first spatial field to be evaluated, as it is utilised in both the generation of the
terrain and topographic wind multiplier. Landsat imagery was employed to generate a terrain surface
roughness product for six major metropolitan areas across Australia. It was necessary to investigate the
applicability of multi-sensor approaches to generate a regional/national terrain surface roughness map based
on the Australian-New Zealand wind loading standard. This paper presents a methodology to derive terrain
surface roughness from various multi-source satellife images. MODIS, Landsat and IKONOS imagery were
acquired during 12 September — 26 November 2002 covering a significant portion of New South Wales,
Australia. An object-based image segmentation and classification technique was tested for seven bands of
MODIS, six bands of Landsat Thematic Mapper, and four bands of IKONOS. Eleven terrain categories were
identified using this technique which achieved classification accuracies of 79% and 93% over metropolitan
Sydney and ruralfurban areas respectively. It was revealed that the object-based image classification enhances
the quality of the terrain product compared to traditional spectral-based maximum likelihood classification
methods. To further improve the derivation of terrain roughness classification results, an integrated textural-
spectral analysis merged Synthetic Aperture Radar and optical datasets. A comparison with results derived
from textural-spectral classification showed considerable improvement over the results from earlier
classification techniques.

1. Introduction

Terrain surface categories derived from remote
sensing data are a primary input for the Geoscience
Australia Wind Risk Assessment. The categories
have an important role in determining height
multiplier characteristics of specific landscapes. In
earlier work, Landsat imagery was employed to
generate a terrain surface roughness product for six
major metropolitan areas across Australia (Forghani
et al., 2007). It was necessary to investigate the
applicability of multi-sensor approaches to generate
a regional/national terrain surface roughness map
based on the Australian/New Zealand wind loading
standard. The output was incorporated into the local
wind multipliers (terrain/height, shielding, and
topography) for eight cardinal directions with the
return period regional wind speeds (from AS/NZS
1170.2, 2002) on a 25 m x 25 m grid across each
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study region (Figure 1). The maximum wind value
for all directions was then sampled at each grid
location and used to assess hazard return period
residential damage. The assessments of wind hazard
covered both urban areas and adjacent rural regions.
It is anticipated that these hazard and risk assessment
resulis will be refined and updated as the
understanding of Australian peak wind gusts
improves. Peak wind gusts pose risk to a number of
Australian communities.

The wind risk product provides the first step
towards a national peak wind gust risk assessment
level for Australia and represents the first iteration of
a continuously improving product (JHD, 2006) and
Lin and Nadimpalli (2005). This trend highlights the
need for a multi-scale, consistent and seamless terrain
surface roughness product at the national level.
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V = Site wind speed for & derections
Vr = Reptonal wind speeds

Mg =Wiind directional multipliers
Mz = Terratn/height multiplier
Ms = Shiglding rudtiplter

Mt = Topographicymultiplier

Site Wind Speeds = Vo x My x M, x M, x M,

Figure 1: Diagrammatic representation for deriving wind multipliers from topographic and remotely sensed
data and the Australian/New Zealand wind loading standard (AS/NZS 1170.2, 2002; Lin and Nadimpalli, 2005)

The 2005 wind modelling workshop at Geoscience
Australia highlighted the need for accessing such a
terrain product (JHD, 2006). Procedures, protocols,
and operational guidelines were subsequently
produced that enabled production of a national terrain
surface roughness product. The output of the Wind
Risk Assessment activity will prove to be of value to
government decision-making in managing natural
disaster risks, to the wind engineering industry and to
the Australia and New Zealand building standards
community. Understanding spatially distributed wind
fields over complex terrain is important for a variety
of applications including pollutant dispersion
modeling, fire spread modeling and bush fire risk
management (Sharples et al., 2010). The concept
behind wind speed simulation from DEM roughness
has been previously address in AS/NZS 1170.2
(2002).

‘Wind multipliers determines the impact of severe
wind that varies considerably between structures at
various locations due to the geographic terrain, the
height of the structure concerned, the surrounding
structures and topographic factors. These quantify
how the local conditions adjust the regional wind
speeds at each location (Lin and Nadimpalli, 2005).
There are four wind multipliers; the terrain
(roughness) multiplier (Mz), the shielding multiplier
(Ms), the topographic (hillshape) multiplier (Mt) and
directional multiplier (Md). The relationship between
the regional wind speed (VR) in open terrain at 10 m
height, the maximum local (site) wind speed (Vsite)
and the local wind multipliers is: Vsite = VR X Md x
Mz x Msx Mt Each of these multipliers is described
and also used by other studies (Forghani et al., 2006a,
and 2007). Formulas to estimate these wind
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multipliers for a given location are given in AS/NZS
1170.2 (2002).

Recently, at a local and at a regional level, the
terrain surface roughness product was extracted from
low and high spatial resolution satellite imagery. The
study was carried out over a number of different
landscapes of New South Wales region covering an
area from Newcastle in the north, Nowra in the south
and Bathurst in the west. A terrain surface roughness
classification includes information not only about
land cover, but also about feature heights that are
important in wind modelling. This type of
classification must therefore incorporate information
from disparate sources to fulfil the requirements of
the above mentioned application. The aim of this
work was to develop an operational methodology
specifically for extracting terrain categories using
various remote sensing satellite imagery sources. To
date, a number of data sources have been used to
derive land cover and terrain surface roughness
products, mainly from Landsat Thematic Mapper
(TM) and Landsat Enhanced Thematic Mapper Plus
(ETM+) data.

Data sources such as Landsat TM images can
provide basic information at regional scale for
compiling forest stand type maps especially
classified with an object-based technique (Dorren et
al.,, 2003). However, due to increasing spatial
resolutions of data sources, more detailed
information is now available and the use of object
based segmentation for land cover is becoming
increasingly popular (Zhou and Troy, 2008, Kong et
al., 2006, Mo et al., 2007 and Yu et al., 2006). Object
based segmentation can be improved significantly by
the combined use of multispectral and laser data



(Grebby et al., 2010, Maier et al., 2008 and Zhou and
Troy, 2008). Grebby et al,, (2010) found that the
integration of LiDAR-derived topographic variables
led to improvements of up to 22.5% in the overall
mapping accuracy compared to spectral-only
approaches. Using high-resolution digital aerial
imagery and LiDAR data Zhou and Troy (2008)
presented an object-oriented approach for analysing
and characterising the urban landscape structure at
the parcel level. They incorporated a three-level
hierarchy, in which objects were classified
differently at each level, reporting an overall
classification accuracy of 92.3%. Chen et al., (2007)
also demonstrated the potential of object based
classification to map urban land cover for Beijing
from ASTER data with a relatively high accuracy.
IKONOS images have been used to automatically
delineate and classify land-use polygons in Ontario,
Canada, within an urban setting, with high overall
accuracies, for six- and ten-class maps, with 90% and
86% accuracy respectively (Lackner and Conway,
2008). These increased land classification accuracies
contribute towards higher accuracies in predicting the
affect of natural hazards such as severe winds.

A number of researchers have attempted to
develop operational methodologies for land cover
mapping that have been well documented in the
remote sensing and GIS literature. For example, Petit
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and Lambin (2001) developed a scheme for
classification and generalization of remote sensing
data to extract and generalise land use features using
an image classification and database generalisation
approach. Their scheme is based on the previous
research of Daley et al, (1997). These studies
focused on three techniques to control the properties
of the generalised data including supervised
classification, thematic generalisation, and spatial
aggregation. Experience shows that this technique is
particularly applicable to the delineation of land
cover at the local scale (Moody, 1998). Its
applicability at a regional to national scale needs to
be explored by examining different image
classification techniques (Kazemi et al., 2005). This
research examined the hypothesis to derive terrain
categories at a regional scale. A review of different
image segmentation/classification techniques is
beyond the scope of this paper. However, detailed
description of several spectral classification
techniques and image segmentation is provided in a
recent study by Forghani et al., (2006), Haralick an
Shapiro (1985), Cufi et al., (2002), Pal and Pal (1993)
and Pekkarinen (2002).

2. Methodology

A graphic of the project methodology is presented in
Figure 2, and key steps are outlined here.
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Figure 2: Methodology workflow
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2.1 Study Area

This study area covers an area of about 81,500 km?
in the NSW, Australia and was used to develep and
test the proposal of deriving terrain categories at a
regional scale in an operational context. The study
area provides a mixture of land uses with reasonable
levels of built-up areas that are representative of
terrain categories at a regional/national scale.

2.2 Datasets

Criteria for selection of imagery are temporal
coincident, and cloud free. Cloud-free MODIS Bands
1-7, Landsat TM, ASTER, SPOT-5, and IKONOS
images were acquired between 12 September and 9
December 2004 over the study area. Geoscience
Australia’s 1:250 000 topographic data, NSW
Department of Lands 1:25 000 topographic maps
(Edition, 2006), and a street directory were used as
supplementary references.

2.3 Data Preparation

The following steps were used to create a multi-
resolution satellite image dataset: Projection of
images to equirectangular on WGS84 datum and
mosaicking. A check was made to ensure the accurate
geometric registration o the datasets. A subset of the
composite of imagery was generated to cover the
study area.

2.4 Image Segmentation

The eCognition software was used for image
segmentation and object-oriented image analysis
classification (Baatz and Schipe, 2000, Flanders et
al,, 2003 and Benz et al,, 2004). The underlying
principle of the system uses a region growing
technique, which starts with regions of one pixel in
size based on the spectral and spatial characteristics
of the pixel that is detailed in Baatz et al., (2004). The
local homogeneity criteria are then used to make
decisions about merging regions of interest by taking
into account the image analyst’s expertise. The goal
is to build a hierarchical set of image object
primitives at different resolutions, the so-called
‘multi-resolution segmentation’ in which fine objects
are subjects of coarse structures. The parameters
controlling the algorithm include scale, homogeneity
criteria, shape, and colour. These are discussed in
detail later.

2.4.1 Creation of new project in eCognition

The project dataset was created by loading and
importing image layers in eCognition Large Data
Handling (LDH) to create the project dataset. It was
noted that eCognition LDH allows the handling of
over 900 million objects {(eCognition, 2013), but is
not optimised for performance. The eCognition
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Enterprise product allows the parallel processing of
large datasets and considerably reduces processing
times for large datasets, but this product was not
available for this project. A multi-resolution dataset
was then developed to produce image object
primitives by partitioning the whole image into a
series of closed objects that coincide with the actual
spatial pattern when segmenting the image database
(Wang et al., 2004).

2.4.2 Segmentation parameterisation
In this study, scale parameter, single layer weights,
and the mixing of the heterogeneity criterion about
tone and shape of objects were used. The resulting
segments (objects) are based upon spectral values of
input bands and segmentation parameters defined by
the image analyst. As the size of the data set used in
the study exceeded the threshold for the number of
objects generated, segmentation was done separately
for each data set. Visual interpretation and
comparison of derived terrain maps using object-
oriented image segmentation against pixel-based
image classification showed that the image
segmentation algorithm enhances the classification
outputs, and hence improves the quality of the terrain
product but at a significantly increased labour cost.
There was incomplete coverage of IKONOS of
study area. Therefore, individual image segmentation
was carried out, but using the same training sites
within each image. In order to provide an effective
visualisation of the image for the segmentation and
classification process, the desired band combination
¢.g. Landsat Bands 3, 2, and 1, was carried out
through a layer-mixing function to display the image
with a linear stretch. Examination of the image
revealed that visually there was a good delineation of
urban built-up areas from non-urban and vegetation
areas. Three major features need to be incorporated
into the image segmentation routine when setting
segmentation parameters, namely:

a) Layer weights that assess those layers with
more important information about particular
features for the segmentation process are
given higher weights

b) Scale parameter which measures the
maximum change in heterogeneity when
merging image objects, and

¢) Composition of homogeneity criterion that
prioritises the drivers for object creation
such as colour has preference to shape.

Consequently, protocols were developed for the use
of different scale factors of shape and
smoothness/compactness parameters when
employing multi source imagery to generate the best



desired segmentation results (Table 1), Identifying
appropriate parameters maximises the efficiency of
the classification routine. The outcome of the
segmentation is determined by defining the scale
parameter, the single layer weights, and the mixing
of the heterogeneity criterion concerning tone and
shape.

In summary, a number of iterations regarding the
segmentation routine were performed to determine
the most appropriate combination of the scale
parameter and homogeneity criterion factors. The
selection of an appropriate factor was based on trial
and error with the segmentation procedure until a
satisfactory pattern was found. A number of tools
available (eg statistical analysis, creating polygons,
etc) in eCognition were used to determine optimum
segmentation parameters. The general rule of thumb
for setting the scale parameter is that image objects
must be smaller than the target features. The
delineation of urban built-up area categories relies
heavily on spectral differences. The shape parameter
is not a significant contributor due to the resolution
of such imagery as Landsat. In practice, when
determining the optimal segmentation settings, the
process of image segmentation involved significant
difficulties such as the determination of the optimum
segmentation parameters and the number of
segmentation levels. It was very complex and
therefore time-consuming for an image analyst. In
addition, while multiple tools and features embedded
in eCognition equips the image analyst to take
advantage of textural, contextual and hierarchical
properties of image structures, nevertheless the
classification with this software demands
significantly higher skills, is comparably complex
and the development of robust techniques is operator
intensive. The comments of Harris and Ventura
(1995) also support this observation.

2.5 Building Class Hierarchy

Developing a class hierarchy is one of the important
steps for the success of the classification protocol in
eCognition. The class hierarchy is considered as the
‘knowledge-base’ for the classification of the data by
containing the sum of all classes with their specific
descriptions structured in a hierarchal manner i.e.
inheritance, group, and structure. Stored knowledge
in the class hierarchy utilises spectral, geometrical,

textural, and hierarchical characteristics of the image
objects. The classification hierarchy is based on
classes supplied by the Australian/New Zealand wind
loading standard (AS/NZS 1170.2, 2002). The
classification hierarchy structure was performed
using multi source imagery supported by GIS
datasets.

a) MODIS was utilised to derive the first four
categories of broad terrain cover i.e. built up
areas, forests, grasslands, and water

b) Landsat-7 and ASTER was used to support
deriving suburban classes over selected
areas,

¢) SPOT-5, 2.5 and Sm resolution data, was
used to differentiate the five urban sub-
classes ie. city buildings, high density
metropolitan, centre of small towns, and
airport runways, and open areas over
selected areas eg Sydney, Wollongong and
Newecastle, and

d) IKONOS was utilised to differentiate the
city buildings from other suburban classes.

2.6 Training Set Generation

A supervised classification using the class hierarchy
was conducted. For methodological consistency, all
image datasets were classified using an object-based
nearest neighbour (NN) classification. The NN
classifier was used to produce a set of spectral classes
that represents the variation in the image. The
candidate training sets were selected in a number of
ways to achieve full coverage of the variation. Based
on the information collected from the reference GIS
data, 2 number of training areas representative of
known terrain cover classes were selected from the
raw data to generate detailed training areas. For
consistency, all image datasets were classified using
an object-based NN technique. Level I represents the
basic level of terrain data extraction from MODIS,
followed by breaking down this data into sub classes
in Level 2 derived from Landsat 7 data, and then
using detailed classification categories in Level 3
using SPOT-5 and IKONOS imagery. Finally, in
Level 4, high resolution IKONOS, and QuickBird
data, were used to derive detailed urban features such
as critical infrastructure. GIS layers assisted in
prioritising the choice of particular imagery for
selected areas based on terrain land use.

Table 1: Segmentation parameters information

Imagery Scale Homogeneity Criterion Shape Ratio
Fasameters Color % Shape % | Compactness | Smoothness

MODIS 18 80 20 0.5 0.5

Landsat 14 70 30 0.3 0.7

IKONOS 12 50 50 0.4 0.6
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2.7 Post-Classification Processing

The earlier iteration of the classification initially
grouped pixels into 18 statistical classes. The
supervised class samples (signatures) were based on
existing GIS and local knowledge. Once desired
classes were separated, they were used to create a
single thematic dataset. Some of the spectrally
similar classes were collapsed into a smaller number
that adequately reflected the terrain cover categories.
This was performed by evaluating the classified
output and the reference data by interactive viewing
of the classes on the screen. The aggregation of
classes was based on spatial contiguous and spectral
similarity. This was achieved through visual
interpretation of the spectral classes assessing their
spatial patterns and by analysing the spatial similarity
of classes using their co-occurrence statistics (Baatz
et al., 2004), Spectral classes were aggregated if they
were spectrally similar and spatially contiguous.
Where spectrally similar classes were spatially
different, those classes were kept separate. Finally, a
terrain classification map was produced.

3. Results

Based on validation and ground information in this
study, the object-oriented classification method
produces better results over city and metropolitan
areas compared to a spectral-based classifier. In
addition, vegetation classes can be more easily
extracted and separability of built-up regions was
evident. The following issues were considered in the
process of identification and mapping: Acquisition
date - the images were not acquired at the same date.
Comment can be made on the seasonal conditions at

MODIS Level 1

ETM+ASTER Level 2

Quickbird IKONOS
Level 4

Building Foot Prints
e
GA 250K Seamless
Database
UBD Field Data

the time of image acquisition and the effect of those
conditions on feature interpretability. Therefore,
acquisition date has slightly influenced the terrain
features that were mapped in this study, and
Detectability - the resolution of the imagery may
prevent identification of all terrain features that are
included in the AS/NZS 1170.2 specification. This is
particularly relevant in the identification of those
problematic features such as airport runways, sandy
beaches, cut grass and crops, etc.

3.1 Evaluation of Classification Accuracy

The accuracy of the derived terrain map depends on
the spatial and spectral resolution as well as seasonal
variability in vegetation cover types depicted on
input satellite imagery, and access to a detailed
reference spatial dataset (Figures 3 and 4). Since this
study has been undertaken at a regional scale, well
known, seamless and consistent reference data
should be used for objective validation. No field
validation was performed for this study. However,
for accuracy assessment, Geoscience Australia’s
1:250 000 topographic data and NSW Department of
Lands 1:25 000 scale maps were utilised. The
accuracy of the three classified terrain products was
assessed by comparison with 20 independent
validation sites of known land use classes identified
from reference thematic datasets. The test sites
contained at least two representative examples of
each terrain category. The test data were extracted
from the various locations determined from visual
interpretation of images within each terrain type, to
ensure pure examples of each terrain type were
applied in the analysis.

Grasslands

Suburban | High
Buildings gg??(')“

Prioritising image use

. Support Classification

Figure 3: Classification hierarchy structure for land cover/use mapping from various remote sensing data

sources
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Figure 4: Terrain maps using object-oriented (eCognition) image segmentation for part of Sydney

Table 2: Quantitative accuracy assessment over the test image set of Landsat 7, Sydney.
Accuracy measures are for object oriented based segmentation

Terrain category Accuracy % Omission % Conmunission %
city buildings 74 26 22

| high density metropolitan 69 a1 17
centres of small towns 48 52 19
Suburban 92 g 11
Forests 88 h ¥ 6
isclated trees and long grass 8 17 16
Crop 76 24 17
cut grass 77 23 7
cpen areas 85 15 18

_W'am 98 2 4
Total 79 21 137
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Classification accuracy is expressed as the number of
correctly classified pixels divided by the total number
of pixels in the terrain category. Kappa coefficient
expresses the proportionate reduction in error
generated by a classification process compared with
the error of a completely random classification. A
kappa value of 1 indicates perfect agreement, and a
value of 0.79 would imply that the classification
process was avoiding 79% of the errors that a
completely random classification would generate.
Applying these measures of omission and
commission error is well accepted amongst remote
sensing specialists, GIS practitioners Harris and
Ventura (1995) and Zhang et al., (2002). Overall
classification accuracy for ETM+ was 79 per cent,
over Sydney, whereas the commission errors were
relatively high at 13.7 percent. This was achieved
over one of the most complex areas within the study
area (Table 2).

In addition, the accuracy of the classification
methodology was estimated to be 94% over
rural/urban areas when using the reference data and
maps. Thus, the average accuracy over all classes
was 86.5%. Overall, we obtained relative
improvements in classification accuracy using object
based classification when comparing to the spectral
based classification results. The improvement was
about 9-13% that is discussed in detail by Forghani et
al., (2006) (Figures 3 and 4).

4, Concluding Remarks

This study developed a terrain cover classification
scheme over the Greater Sydney region utilising a
four level hierarchical image segmentation scheme.
Comparative image classification and segmentation
of multi-sensor imagery revealed the following key
findings and suggests future recommendations:

e The study attempted the use of remote sensing
data to derive eleven categories of terrain
information for use at a national scale. Four
levels of data were identified for the
generation of mnational terrain surface
roughness, including MODIS to derive Level
1 (areas with no major towns),
Landsat/ASTER/SPQOT 2/4 to derive Level 2,
areas with major towns, SPOT-5 to derive
Level 3 areas with capital/major cities, and
IKONOS/QuickBird to derive Level 4, areas
containing significant critical infrastructure.

¢ Examination of eCognition revealed that the
processing of large data volumes of data in the
case of Landsat 7, SPOT 5 and IKONOS was
slow and time consuming, however it
enhances the classification outputs (as
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demonstrated by Forghani et al.,, 2006a,
2006b)

e Landsat TM/ETM+ imagery is suited for
derivation of 30m and 100m resolution terrain
maps based on this study. Thus, it should
continue to be used. SPOT-5 should only be
employed as a source of ancillary data. It is
anticipated that about 120 scenes of Landsat
(5 and 7) images are required to map
populated Australian regions that mainly
cover the eastern part of the country and in
limited areas in the west. The proposed
methodology in this study would be more
successful over areas similar to Australian
landscape.
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