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Abstract

This work represents a computer method for the modeling of a 3D geological object. A lot of work and
sofiware have been realized in this domain, but we tried fo use the matrix calculation to simulate the state of
an object representing the result of one or more deformation processes. By a simple matrix calculation, the
geological object is kept within the determined limits which make it possible to fix the points that result the
deformation of the object, and the object will be represented in a fixed memory place. We have classified the
set of basic transformations as three types (translation, rotation, and scale change); as in computer graphics
there is a correlation between rotation, translation, scaling and a matrix of order 4, then a modification of the
object will be a multiplication of the several base matrixes. The visualization of 3D object on a screen of 2D
compuler consists on making a profection of the object on a flat surface taking into consideration its cache

part, and then framing this 2D object by a resultant matrix into the frame of the computer screen.

1. Introduction

This work can be applied in the modeling of
geological objects domain wusing the tools of
computer development; the goal of our work is to
realize 2D} or 3D geological objects by a determined
number of memory based on a matrix calculation,
making it possible to manipulate the interior and the
exterior of this object, and to know all the riches
that are inside or outside the geological object. A
geological object has an initial geometrical form
that will has along the time many deformations due
to physical processes (Cheaito M., 1993, Cheaito,
M. and Cheaito M., 2014, 2014a and Cheaito et al.,
2016). In this work we classify certain processes of
deformations as three types of geometrical
transformations which are either a “translation”
along a fixed vector V (a, b, ¢), a “rotation” around
the origin, or “On scale change™ (ey, ¢y, ¢). Along
its history, geological objects do several types of
transformations (T;) i = 1... n which are linked in
form by a chronological structure, so if A is the
geometrical form at a specific time, then B is
obtained by the formula:

B—(ﬁTi)éA

1

On the other hand, the visualization of a geological
object consists of making a transformation from the
real world to the world of the screen which is a
problem we represent its solution, as indicated in the
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tools of computer graphics (opengl), by a
composition of four basic transformations, by
definition of a frame by a unit of measurement such
as meters or kilometers, based on the use case. This
frame can be simulated as a rectangle in the real
world that is called window, and as a rectangle of
pixel measurement in the world of the screen that is
called fence.

All the deformations applied on a geological
object (Spraggins and Dunne, 2002) must be
realized in the real world, and then the final object
will be visualized on the screen by a transformation
of the transfer from the real world to the world of
the screen. The storage of the set of points as well as
the correlation structure between them, which
reflect either the topography or the object interior,
must be all recorded in an information system,
based on a Databases Management System, which
represent this set of points and structures by a set of
tables related to each other and at least in the third
normal form (Worboys, 2013, Guillemot and Le
Meur, 2014, Slusarczyk et al., 2017).

2, The Basic Transformations

The three types of transformations that are the base
of our work are: translation, rotation, change of
scale. These three basic types are well studied in the
domain of computer graphice and there is a link
between matrix writing and each one of them, in
other words translation along a fixed vector V (a, b,
C) Will be described by the following matrix and
calculation:
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1 0 0 -—a
|01 0 -b
M= 0 0 1 —c
0 0 0 1

The matrix of rotation of an angle § around an axis
passing through the origin and having a vector
V(a,b,¢) in an orthonormal system axis is:

Having
dy=vVa®+b? , dy=VaZ+b?+?
a = acos(b/dy) , B = acos(c/d,)

[cos(a) —sin(a) 0
M. = sin(fa) cos(a) 0
! 0 0 1
0 0 0
0 0
cos(B) —sin(p)
sin(B) cos(p)
0 0
[cos(B) —sin(8) 0
sin(B) cos(®) 0
1
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The rotation matrix will be: Ma*Ms*Ma*Mz*M;,
The scaling matrix along the three axes x, y and z is:

ex 0 0 O
|0 ey 0 O
M=
0 0 ez O
0o 0o 0 1
rxvmax —xvmin TUYMax — xrmin
: : 0 0 —xwmin — + xvmin
xwmax — xwmin xwmax — xwmin
yrmax — yvmin . yvmax —yvmin )
Mp = 0 - 0 —ywmin — + yrmin
Mp = ywmax — ywmin ywmax — ywmin
Zrmax — zvmin . Zrmax — zvmin )
0 0 ——— —IZwmin———  + Zvmin
0 0 Zwmax — ZWmin IZwmax — Zwmin
0 £
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Note that for scaling only the point O (0, 0, 0)is a
fixed point. On the other hand, when two
transformations T; and T, are played on an initial
geological object Gy to have a final geological
object Gj then if M; is the matrix of the
transformation T: and M: is the matrix of the
transformation T> then Mz * M; is the Matrix of the
resulting transformation T = T o T» (Figure 1).

It should be noted here that the transfer from GO
to G2 passes by the two matrices M2 * M1, which
results that the retro transfer from G2 to GO, passes
by the inverse matrix M-1=M; ! * M,

T:TL O rlj:
TM=M: S M~
G ——+ G+ G

Figure 1: Composition of two transformations

3. Framing the Geological Object in the Real
World

A such geological object existing in the real world
must be framed in an initial cube Ci defined by two
points vmin (xvmin, yvmin, zvmin) and vmax
(xvmax, yvmax, zvmax) (see Figure 2). When the
geological object does many deformations, its frame
will be modified. That is why to use the object, it is
necessary to frame the resulting object in another
final cube Cf defined by the two points
wmin(xwmin, ywmin, zwmin) and wmax(xwmax,
ywmax , zwmax) (see Figure 2). Mp, the matrix of
passage of cube Ci to the cube Cf, will be obtained
by the following matrix of calculation:

M, : Translation by (xwmin,ywmin, zwmin)

M. Change of scale by ex=1/(xwmax-xwmin),

¢y=1/(ywmax-ywmin),c,=1/(zwmax-zwmin)

Ms ; Change of scale by e;=~(xvmax-xvmin),

ey=(yvmax-yvmin), e,~(zvmax-zvmin)

M, : Translation by (-xvmin,-yvimin, -zvimin)
So MP=M4*M3*M2*M1
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Figure 2: Framing of the geological objects and the passage matrix
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Figure 3: Transition from the real world to the screen world

4, Framing the Object in the World of the
Screen

To see a three-dimensional geological object on a
computer screen, you have to project this object on
a two-dimensional surface, then frame it in two
dimensions (xwmin, ywmin, Xwmax, ywmax),
choose a frame on the (xvmin, yvmin, xvmax,
yvmax) and then find the matrix of the transfer
from the real world to the world of the screen see
Figure 3 (Tian et al., 2009 and Zhao et al., 2013).
The transition matrix M; of the real world to the
screen world is defined by the following
transformations:

xvmax — xvmin

> 0
xwmax — xwmin

M;: Translation into the real world by the
vector (Xwmin,ywmin)
M;: Change of scale by the wvalues

&=1/(xwmax-xwmin), ey=1/(ywmax-ywmin)

Mj : Scaling in the world of the screen by

ex=(Xvmax-xvmin), ey=yvmax-yvmin

M, : Translation into the world of the screen

by (-xvmin,-yvmin)
So MP=M4*M3 *Mz*M]

xvmax — xvmin

—xwmin + xvmin

M,= yvmax — yvmin

0

ywmax — ywmin

0 0

The matrix of transfer from the world of the screen to the real world is M,
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—ywmin

rwmax — xwmin
yvmax — yvmin

— + yrmin
ywmax — ywmin -

1

65-73

Computer Modeling of Geological Objects by Matrix Calculation




AWIMaAX — XWmin

xwmax — Xwmin

- 0 —xvmin — + xwmin
XVmMax — xvmin XUMax — xvmin
MIl= ywmax — ywmin . ywmax — ywmin .
P 0 : . —  —yvmin — + ywmin
yvmax — yvmin - yvmax —yvmin -
0 0 1
point
float xy,z t
point(}{x=0;y=0:z=0t=1;}
ObjetGeol

cpoint

point P;
Color col;

float xwmin, ywmin, ZwWmin, Xxwmax,
ywmax, zwmax
intn.m
cpoint* T
ObjetGeol(int a,int b){
n=a:m=b;
T=new cpointin*m];

}
void CalculCadre();

Figure 4: Class diagram for the representation of the geological object

5. Representation of the Geological Object

A geological object must be represented in the real
world by a fixed number of points n * m which are a
representation in a frame of n * m pixels screen. On
the other hand, at each transformation step of the
geological object, it is mandatory to calculate the
new frame where the object in the real world exists,
to ensure a simple transition of the object from the
real world to the world of the screen.

The representation of the geological object in the
computer world must be described by the following
class diagram (Figure 4). The geological object is a
set of points where each point is defined by its
coordinates and its color indicating the
corresponding geological layer, a pointer cpoint * T
allowing a dynamic allocation of the set of points
describing this object. The function
CalculateCadre() allows to caleulate the frame of
the geological object and assigns the values of the
following members; xwmin, ywmin, zwmin, Xxvmax,
yvInax, Zvarmx,
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6. Algorithm for Projection and Visualization of
the Object

To display on a two-dimensional computer screen a
geological object, that exists in the real world in a
three-dimensional orthonormal system, it is
necessary to make a projection of the 3D object in
an orthonermal system 2D by eliminating the
hidden parts, that is why we use the Z-Buffer
method (Kolivand et al., 2011 and Ize et al., 2008),
we retain in 2D the point (i, j) having the largest z of
the object with its color (Figure 5).

7. Algorithm for the Calculation of the Frame of
the Projected Object

After projecting the 3D geological object to a 2D
projected object as indicated in the paragraph 6. It is
necessary to translate this 2D object in a frame of
the computer screen; that is why, it is necessary to
find the passage matrix indicating this translation,
To find the frame of the object in 2D it is necessary
to pass the set of the points of the object and at each
step we change the value of xwmin, ywmin and
xwmax, ywmax as indicated in the following
flowchart (Figure 6).



| cpontPiefnm. |
v
for(int i=0i<n;i++)
.
Pamﬁ,j]Az=-1;P§x;!1,ﬂ_Cdar=Wh|te;
¥

Frame Cw=(0,0,0,n,m, r)
Frame Co=Frame of obj
Matrix M1=Transition(Co,Cw)
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Figure 5: Flowchart for the projection and the display of a 3D geological object
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8. The Deformation of a Geological Object

A deformation of a geological object G by a
function F (x) is a transfer of G to an object G'; for
cach point A (x, y) of G there is a point A' (x ', ¥') s0
that x '=x; y '=y + F (x) (Perrin ¢t al,, 1993, Suppe
and Connors, 2004). There is several deformation
functions that may be mentioned (Figure 7).

Sinusoidal Parabolic Fault
Figure 7: Example of training functions

=

9. Some Technical Results

The following figures are the technical results taken
from the software PCheGeol. PCheGeol is a
computer tool based on  object-oriented
programming that was developed and implemented
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within the IT department of the Lebanese University
(Cheaito, 2013). It allows the modecling of 3D
geological objects based on the dynamic modeling
process; starting from a simple object we can obtain
complex geological objects.

10. Results in Two Dimensions

The deformation of a geological object consists on
the representation of the object in an initial state.
For this purpose, the initial object is described by a
set of horizontal layers represented one on the other,
while retaining the chronological order of their
representation. It is necessary to have a deformation
function represented by a geologist, then this initial
object does a deformation phase by this function,
then it is rotated by an angle teta and the
deformation is repeated by another phase, so the
object will be obtained in its final state (Figure 8).

ACA

o0, o,

Deformation Rotation 45° Deformation

by two phases

Figure 8: Example of different deformation results in 2D

Object in the witial state by a view
wt an angle 457 about ihe mxis
(1,1,0)

Deformation of the mitial object by two
phases of smusobdal deformation

‘ () L e}

A top view of the objoct (k)

Figure 9: Process of deformation of the object by two phases of deformation
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Figure 10: Set of horizontal sections for an object in different levels
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Deformation of the object by two sinus-
soidal phases

A borizontal section ot the =75

A horizontal section at the r=4%0

Figure 11: Deformation and geological cutting of objects with a real topography

11. Results in Three Dimensions

The deformation of a geological object consists on
the representation of the object in an initial state.
For this purpose, the initial object is described by a
set of horizontal layers represented one on the other,
while maintaining the chronological order of their
representation it is necessary to provide a
deformation function which is repeated by a
constant value along the axis of z and then this
initial object does a deformation phase by this
function, and then the object obtained must be
projected in a 2D orthonormal system, so we
calculate the transition matrix to the screen frame

(Figure 9).

12. Geological Section

Since the modeling of our geological object is
described by a set of points in 3D, we can obtain a
geological section at an altitude h having a plane of
equation z = h, or a plane section of equation; ax +
by + ¢z + d = 0. To cbtain the cut it is enough to
traverse all the points of the objects in 3D and keep
the points which belongs to the plane of the cut.
Below is a geological section of object b and ¢
described in Figure 9.

13. Result and Deformation of a Real Image

We can apply our model on an object having a real
topography (plant, tree, rock, ..) and after
deformation we can obfain result with real
topographic texture (Figure 11).

14. Conclusion

In this work, we have represented a computer
method for modeling 3D geological objects (Shin et
al., 2008) based on a matrix calculation that always
allows a certain number of basic operators to frame
this object in a cube of fixed size. Then this
provides the ability to fix the number of points
affecting the deformation of an object, so it will be
possible to fix the memory space representing the
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concerned object. First, the trial to represent the
topography (Guilbert and Saux, 2008) by a simple
correlation with an image (jpg, bmp, png, ...) of the
reality, and second the fixing of the memory place
taking into consideration the number of points of the
object and framing it in a determined cube, then we
will be able to apply an interesting analysis of the
interior of the object. The presentation of the
geological section by a cut in the flat surface z=c¢
and by making a simple rotation of the object gives
an important result.

In the future, this work can be developed by
taking into consideration a surface structure instead
of being volumic, so we can have an optimization of
the set of points that describes the interior of the
object (Fuchs et al., 1983, Fuchs et al, 1980,
Guilbert and Lin, 2007 and Lysenko et al., 2008).
Since a deformation process is obtained by a
resultant matrix, this matrix can be stacked and
unfolded in order to have a back and forth of the
deformation of the initial state, This work can be
applied on the material modifications analysis.
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