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Absiract

Wildfires have had massive impacts on recreational areas in national parks in Thailand that have seen a
decline in tourism activities due to fire damage. Therefore, prevention and control of wildfires can minimize
fire damage at recreation sites for existence of national parks. This study integrates remote sensing and
geographic information system (GIS) techniques for modeling and mapping wildfire risks to evaluate the
potentials for fires at recreational sites. The factors comprehensively recognized as influencing wildfire
occurrence, namely leaf fuel load, slope, aspect, elevation, distance from roads, and proximity to settlements
were selected for establishing a wildfire risk model. A differenced normalized burn ratio (ANBR) was used to
rate wildfire sensitivity for subclasses of each factor. All factors were then weighted using pairwise
comparison, where the leaf fuel load was the most important factor and we show that soil moisture can be
used as a new factor for modeling wildfire risk. Our model correctly classified 74.67% of real wildfire
instances, confirming that the selected factors could be used for mapping wildfire-prone areas. The mapping
showed three different categories of wildfire risk; 22.15% of the study area was predicted to be a high
wildfire risk zone, and 42.25% and 35.60% were categorized as moderate and low risk, respectively. A map of
wildfire risk zones was overlaid with recreation sites in Sri Lanna national parks, revealing that 6 of 22
recreation sites were at high risk from wildfires. Hence, this study contributes to reducing wildfire threats to

recreational areas and can help develop appropriate method for accessing areas prone to wildfires.

1. Introduction

National parks in Thailand are protected forest areas
that contain natural resources, biodiversity, and
appealing scenery and landscape that attracts
tourism. Recreation and tourism plays an important
role in the life of the national park because most
visitors cite scenery and landscape as their main
reasons for visiting a national park. Recreation areas
in the national park have a wide variety of natural
places and landscapes that enable activities for
tourism such as camping, boating, walking and
climbing trails, and wildlife viewing. Such
recreational areas are increasingly threatened and
damaged by wildfires, resulting in a decline in
tourism activities. Wildfires are complicated events
that occur as a result of natural processes and human
activities (Vasilakos et al, 2009). Statistical
evidence demonstrates increasing trends in fire
frequency and area burned within Thai protected
forest areas from 2014 to 2016, with 4,207, 4,982,
and 6,685 wildfires, accounting for 50,723, 60,453
and 125,896 ha of burned area in 2014, 2015, and
2016, respectively (Forest Fire Control Division,
2016). These numbers imply that the wildfires are
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occurring more frequently and are burning larger
areas, expanding into recreational zones. Most
wildfires in Thailand occur in national parks,
especially in the north, and are mainly attributed to
human activities.

Wildfires occur when three requirements needed
for ignition and combustion are met, the so-called
fire triangle: fuel to burn, air to supply oxygen, and
a heat source to ignite the fire. After a fire starts, a
wide range of factors determines the fire duration
and intensity. These factors include the quantity and
type of fuel, topographic characteristics (slope,
aspect, and elevation), favorable environmental
conditions (e.g., extreme drought and low soil
moisture), which can accelerate fire combustion and
result in uncontrollable spread of fire over large
arcas. Hence, factors influencing fire behavior need
to be analyzed when mapping wildfire risk zones
(Chuvieco and Congalton, 1989).

Satellite remote sensing and geographic
information system (GIS) technmiques have been
widely used in wildfire assessment, such as
predicting wildfire severity based on vegetation
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indices (VI), establishing wildfire risk models, and
analyzing factors responsible for wildfire.
Topography, anthropogenic data, and the
characteristics of vegetation or fuel have been used
as the most important factors influencing wildfire
occurrence. Many studies have integrated these
factors to establish wildfire risk models. Jaiswal et
al., (2002) undertook a wildfire risk assessment for
areas in India. They used the vegetation type, slope,
aspect, and distance from roads and settlements to
establish a wildfire risk model that showed strong
agreement with actual fire-affected sites. Adab et
al., (2013) applied vegetation moisture, slope,
aspect, elevation, distance from roads, and vicinity
to setflements as factors influencing accidental fires.
Moreover, the quality, size, and shape of vegetation
or fuel were used with other wildfire potential
factors (slope, elevation, aspect, weather, land
cover/use map, etc.) to establish a wildfire risk and
hazard model (Yakubu et al., 2013). In addition to
fuel type and moisture input, the quantity of fuel
should also be analyzed, since large amounts of fuel
result in higher intensity fires. Additionally, soil
moisture should be considered as a wildfire factor
because it is positively correlated with fuel moisture
content (Burapapol and Nagasawa, 2016a). The
present study integrated remote sensing and GIS
techniques for modeling and mapping wildfire risk
and evaluating recreation sites at risk from wildfires.
To achieve these goals, data were obtained from
Landsat 8 operational land imager (OLI} and
thermal infrared sensor (TIRS), and moderate-
resolution imaging spectroradiometer (MODIS)
images, and were integrated with GIS data to
establish a wildfire risk model for mapping wildfire-
prone areas in Sri Lanna national park. This study
introduces soil moisture as a new factor for
establishing a wildfire risk model, and proposes a
differenced normalized burn ratio (ANBR) to rate
wildfire sensitivity for subclasses of each risk factor.
A wildfire risk map produced from this model was
used to assess potential wildfire risk at recreation
sites. Authors propose that a wildfire risk map
produced by their model can be used as a
complementary data for local officials and other
decision makers dealing with wildfires, in
developing appropriate plans for preventing
wildfires in national parks and recreational areas.

2. Materials and Methods

2.1 Study area

The study area was Sri Lanna National Park, located
in Chiang Mai province, northern Thailand (Figure
1). The national park covers 140,600 ha, with an
elevation range of 400-1,718 m, and includes a
mountain range running north to south. The climate

is tropical and the weather is generally hot and
humid. The mean annual temperature is 26.7 °C,
with minimum and maximum temperatures of
10.0 °C (January} and 41.6 °C (April), respectively
(Thai Meteorological Department, 2015). Dry
season begins in December and lasts through April,
with a minimum average precipitation of 4.10 mm
in February (Department of National Parks,
Wildlife, and Plant Conservation [DNP], 2003).

Sri Lanna
National Park
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Figure 1; Study site in Sri Lanna National Park,
Thailand

The park encompasses numerous forest types,
including deciduous, dipterocarp, dry evergreen, hill
evergreen, and pine forests. The soil characteristics
in the park are closely related to the slope; 92.2% of
the total forest area is classified as a soil slope
complex series, which is found in areas with slopes
that exceed 35%. Sandy and sandy loam soils are
dominant (DNP, 2003). Due to the large range of
elevations and diverse forest types, the national park
features various attractions, such as fertile forests,
waterfalls, freshwater springs, caves, and mountains.
These attractions have become well-known
recreational and tourism locations. Moreover, many
forms of recreation are available in this park, such
as campsites, natural study trails, and a reservoir.
Unfortunately, some of the recreation areas have
been damaged by wildfires which occur annually
during the dry season, peaking in February and
March, and mainly occur in the dipterocarp and
deciduous forests. Most wildfires in the park are
classified as surface fires. Fires start during the dry
season, when there is the greatest leaf accumulation
on the ground surface from dipterocarp and
deciduous trees, providing the largest proportion of
fuel load. Thus, this study was limited to such areas
of the national park with the highest potential for
wildfires.
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2.2 Datasets

The datasets and overall methodology used in the
present study are presented in Figure 2, where the
corresponding data sources are shown in Table 1.
The parameters involved in wildfire occurrence and
those influencing wildfire behavior were selected as
described in the following sub-sections:

2.2.1 Leaf fuel load

The fuel plays a major role in the initial stage of
wildfires (fire ignition), and the fuel load also
contributes to fire intensity. Higher fuel loads create
longer flames and more intense fires for a given rate
of spread. The largest component of surface fuel is
dead leaves, which provide an efficient fuel for
surface wildfires. In this study, we therefore focused
on analyzing leaf fuel load. Fuel load can be
assessed using the greenness index, especially the
normalized difference vegetation index (NDVI)
which has been tested to predict leaf fuel load
(Burapapol and Nagasawa, 2016b). Their predictions
were applied here to estimate the spatial distribution
of leaf fuel load. Seasonal NDVI values were

calculated from the Landsat 8 OLI.
I 1
Landsat 8 OLITIRS Topographic Data
and MODIS
: Leaf Fuel Load Slope
| Soil Moisture Aspect
i Elevation
4
> dNBR p  Rating wildfire sensitivity scores

v

Weighting Factors

Recreation sites

2.2.2 Soil moisture

A low degree of soil moisture can indicate drought
conditions, which influence the likelihood of wildfires.
Soil moisture is positively correlated with fuel
moisture. Under dry conditions, areas with low soil
moisture and resulting low fuel moisture are more
prone to wildfires and fires spread quickly. Therefore,
soil moisture should be considered as a factor in wildfire
models. A soil moisture model established by Burapapol
and Nagasawa (2016a) was used to estimate the
spatial distribution of soil moisture in the study area.

2.2.3 Topographic data

The topography is the most stable variable in fire
behavior. The slope can be a primary influence on
wildfire behavior (Weise and Biging, 1997) and
affects both the rate and direction of fire spread.
Fires generally tend to move faster up, rather than
down, a slope (Adab et al., 2011). Steeper slopes
result in faster fires due to more aggressive wind
action. The aspect (slope direction) determines how
much radiated heat a slope will receive from the
sun, South to southwest aspects receive the most
solar radiation, with comparatively higher

temperature and lower humidity.
Anthropogenic Data Actual wildfire sites
. during 2013-2015
.
Distance from roads
Proximity to settlements
»  Wildfire Risk Model
4 c Y
» Wildfire Risk Map Validation

Y
Mapping Recreation siles
on wildfire risk

Table 1: Data sources of parameters used for modeling and mapping wildfire risk and evaluating wildfire risk

Figure 2: Overall methodology

to recreational sites

Data/Parameters Sonrce of data Creation of data Acquisition date Furpose

Leaf fuel load Landsat 8 OLI (30m) NDVI in normel season | 14 Oct 2014 Medeling wildfire risk
NDVT in dry season 19 Feh 2015

Soil moisture Landeat § OLI/TIRS (30m) NDDI and TVDI 19 Feb 2015 Medeling wildfire risk

MODIS (1km)/ MOD11A2 LST 18-25 Feb 2015

Slope DEM (30 m) Slope map - Modeling wildfire risk

Aspect DEM (30 m) Aspect map — Modeling wildfire risk

Elevation DEM (30 m) Elevation map = Modeling wildfire risk

Distance from roads Shapefile Lines - Modeling wildfire risk

Proximity to Shapefile Points - Modeling wildfire rigk

setilements

dNBR Landsat 8 OLI (30m) NBR pre fire 14 Oct 2014 Rating wildfire sensitivity scores
NBR post fire 19 Feb 2015

Actual wildfire sites Shapefile Points 2013-2015 Validating wildfire risk map

Recreation sites Shapefile Points - Evaluating risk of wildfire
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Therefore, fuels tend to dry out sooner, ignite more
thoroughly, and burn longer on south-facing slopes
(Noonan, 2003 and Iwan et al., 2004). The elevation
influences the amount of precipitation, wind
exposure, temperature, and moisture that an area
receives. Thus, elevation plays a large role in
determining the condition of the fuel (Castro and
Chuvieco, 1998). At lower elevations, fuels tend to
dry out fast because of higher temperatures and
lower precipitation. In this study, the slope, aspect,
and elevation data were extracted from a digital
elevation model (DEM), provided by the Royal Thai
Survey Department.

2.2.4 Anthropogenic data

Wildfires can be caused by the movements of
humans and vehicles. Human activities are often
linked to the occurrence of fires (Dong et al., 2005).
Forests that are near centers of human activity, such
as roads and settlements, can be more prone to fires,
especially accidental man-made fires and hence, the
distance from roads and scttlements are important
variables. For the proposed model, distances from
roads and settlements were obtained from the DNP
and were available in the GIS database in vector
format (Shapefile).

2.2.5 dNBR

The dNBR is calculated from the normalized burn
ratio (NBR) of pre-fire and post-fire events.
Initially, the dANBR and NBR estimated from
remotely sensed data were developed to identify
burned from unburned areas (Lopez-Garcia and
Caselles, 1991). Both indices were accepted for
their ability to distinguish levels of burn severity
within a fire-affected region (Bisson et al., 2008 and
Key and Benson, 2006). We therefore applied the
dNBR to evaluate the wildfire sensitivity rating
scores for subclasses of each factor. An NBR
dataset was generated from the reflectances of the
near-infrared (NIR) and shortwave infrared (SWIR)
bands of Landsat 8 OLI images, as expressed by
Equation 1. A final dNBR dataset was derived from
NBR values of pre-fire and post-fire images, as
described by Equation 2.

_ NIR-SWIR
NIR + SWIR

NBR
Equation 1
dNBR = NBRpre fire — NBRpost fire

Equation 2

2.3 Methodology

The study methodology comprised two main parts;
modeling and mapping wildfire risk, and evaluating
recreational sites for wildfire risk. These are
presented in the following sections in more detail.

2.3.1 Preprocessing remotely sensed data

Landsat 8 and MODIS images acquired for the
study area are shown in Table 1. The Landsat 8 data
were converted from digital numbers (DNs) to
reflectance values before calculating the VI values.
The DN conversion followed the steps of the USGS
(2013). The Landsat 8 dataset used were L1G-level
products, which were geographically corrected and
projected into the UTM (Zone 47N, WGS 84
datum) coordinate system. Then, MODIS imagery
was co-registered to Landsat 8 imagery to reduce
potential geometric errors, Finally, both Landsat 8
and MODIS data were clipped within the boundary
of the study area, and clouds and cloud shadows
wete temoved,

2.3.2 Preparing GIS data

Leaf fuel load and soil moisture were classified into
three intervals on thematic maps. Slope, aspect, and
elevation computed from the DEM (30 m
resolution} were clipped based on the corresponding
study area, and then categorized into different
intervals on thematic maps. Settlement and road
locations were buffered at specified distances.
Buffer zones of 2,000 m and 4,000 m were created
around the settlement locations, and 1,000 m and
2,000 m were used around roads. The stratification
of each factor is presented in Table 2.

Table 2: Subclasses of each factor

Factors Subclasses
Leaf fuel load (kg ha1) <1000, 10002500, >2500
Soil moisture (%) <5,5-10,>10
Slope(degrees) <15, 15-35,>35
Aspect north, east, south, west
Elevation (m) <700, 7000-1400, >1400
Distance from roads {m) < 1000, 1000 — 2000, > 2000
Proximity to settlements (m) | <2000, 2000 — 4000, > 4000

2.3.3 Rating wildfire sensitivity scores

The dNBR of the thematic map was assigned a
value of 1 for burned areas and 0 for non-burned.
The stratified subclasses of each factor were
overlaid with the ANBR. The frequency of burned
areas was used to assign different wildfire
sensitivity scores to subclasses. For each class, the
total number of bumed pixels was calculated as a
percentage of the total class area. The percentage
was ordered to evaluate its susceptibility to wildfire
(3 = high, 2 = moderate, and 1 = low). The subclass
with the highest percentage of burned area was
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labelled as high wildfire risk and was given the
highest ranking of 3. Next, the class with a smaller
percentage was assigned a moderate risk of score 2,
and the class with lowest percentage was rated as
low risk with a score of 1.

2.3.4 Weighting faciors on wildfire

A pairwise comparison method developed by Saaty
(1980) in the context of the analytic hierarchy
process (AHP) decision making process, was
applied to prioritize the factors for wildfire risk in
the study area. The pairwise comparison was
weighted by decision makers to make comparative
judgments. This method has been tested
theoretically and empirically for a variety of
decision situations and multi-criteria decision
making problems, including spatial decision making
(Malczewski, 1999). It has been effectively adopted
into GIS-based decision making on wildfires
(Vasilakos et al., 2007, Vadrevu et al., 2010 and
Yakubu et al, 2013). Each factor was compared
pairwise and weighted on a scale of 1 to 9,
According to Saaty’s ranking scale, a scale of 1
indicates equal importance between two factors,
whereas a scale of 9 indicates that one factor is 9
times more important than the other. Three wildfire
experts and stakeholders from the DNP (a fire
specialist, a fire planner, and a wildfire fighter), who
are involved in wildfire management in Thailand,
were asked to weight the importance and priority of
these pairwise comparisons. Then, a decision matrix
(comparison table) was constructed using a ratio
matrix. The relative weights were normalized to
sum to 1, and finally averaged among the three
experts.

2.3.5 Establishing and validating wildfire risk model
and map

The weighted factors (layers), which were rated in
different subclasses, were integrated using the GIS
union process to establish a wildfire risk model. The
model used to determine wildlife risk areas is shown
in Equation 3:

WEFR = W1(Fim13) + Wa(SMi=1.3) + Wa(S=13) +
WalA=14) + Ws(Ei=1.3) + We(Ri=13) + W(ST i=1.3)

Equation 3

Where WFR is the numerical index of wildfire risk;
Wi are the weighting values of each factors based
on the pairwise comparison; F, SM, 8, A, E, R and
ST are the factors influencing wildfire, namely: leaf
fuel load, soil moisture, slope, aspect, elevation,
distance from roads, and proximity to settlements,
respectively. The superscript i indicates subclasses
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based on rating the wildfire sensitivity scores using
the dNBR. Authors then defined the interval size of
the WFR value to classify wildfire risks into three
risk categories; low, medium, and high. Finally, a
map showing the wildfire risk zones in different
categories was obtained.

The accuracy of the wildfire risk map was tested
against actual wildfire occurrences during 2013-
2015. A confusion matrix, showing the
correspondence between predicted and actual
classifications (Congalton, 1991), was adopted to
verify the map. The actual wildfire points were used
as ground-truth data for the high risk class only.
Both the actual and predicted wildfire points were
evaluated in the matrix (Table 3) and the accuracy
was calculated from the percentage of correctly
classified instances, as described by Equation 4:

A+D

% of correctly classified instances = x 100
(A+B+C+D)
Equation 4
Table 3: Confusion matrix modified from
Congalton (1991)
Predicted wildfire points

Actual H MorL
wildfire

points H A B

MorL C D

Note: H = High risk, M = Moderate risk and L = Low risk

2.3.6 Assessment of wildfire risk at recreational
sites

The verified wildfire risk map was further used to
evaluate the risk of wildfire to recreational sites
within Sri Lanna national park. Buffers of 500 m were
created around recreational sites and overlaid with the
wildfire risk map. From the buffered areas, the
fraction of each area prone to wildfire was assessed
based on the wildfire risk categories. Finally, a map
was produced showing wildfire risk within the
buffered areas, which can help in wildfire
prevention at these locations.

3. Results and Discussion
The burned areas in 2015 (Figure 3a) detected by
dNBR covered 4,489.38 ha (5.40% of total area). The
dNBR in the thematic map was overlaid with each
factor assigned to different subclasses. The relative
frequencies of burmed areas in each subclass were
calculated to evaluate the wildfire sensitivity of each
subclass, as illustrated in Table 4.

Areas with leaf fuel load >2,500 kg ha™ showed
the highest percentage of burned area, indicating
greatest sensitivity to wildfire (score of 3). In
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comparisen, leaf fuel loads of 1,000-2,500 kg ha
and <1,000 kg ha had lower percentages of burned
areas, and were ranked as having moderate (score of
2) and low (score of 1) wildfire sensitivity,
respectively (Figure 3b). Hence, the risk of wildfire
is a function of the amount of leaf fuels. The results
showed that soil moisture levels were inversely
related to the number of burned areas. Areas with
soil moisture <5% showed a high percentage of
burned area, and therefore categorized as having
high wildfire sensitivity (score of 3). Areas with soil
moisture of 5-10% and >10% had lower
percentages of burned areas and were classified as
having moderate (score of 2) and low (score of 1)
wildfire sensitivity, respectively (Figure 3c). This
implies that lower soil moisture is associated with
increased wildfire risk, and vice versa. This supports
the findings of previous research, which showed that
low soil moisture was associated with large
wildfires during the vegetation growing season
(Krueger et al., 2015).

A large percentage of burned areas occurred in
areas with slopes less than 15 degrees, which was
therefore classified as having high wildfire
sensitivity (score of 3). It was found that most of the
areas with slopes less than 15 degrees were close to
settlements and agricultural areas, which might
account for their high sensitivity to wildfire. Areas
with the slopes of 15-35 degrees and slopes steeper
than 35 degrees were evaluated as having moderate

(score of 2) and low (score of 1) wildfire sensitivity,
respectively (Figure 3d). South-facing areas showed
the highest percentage of burned areas
(approximately 48%), and were therefore rated as
having high wildfire sensitivity (a score of 3). This
is because south-facing areas usually receive more
sunlight resulting in higher temperatures and fuel
with a lower moisture content.

Therefore, wildfires can more easily ignite and
spread more rapidly. Hence, south-facing areas are
the most critical in terms of the initiation and spread
of wildfires. East- and west-facing areas were
assigned moderate wildfire sensitivity (score of 2).
Lastly, north-facing areas had lower percentage of
burned area (approximately 17%), and were
therefore evaluated as having low wildfire
sensitivity (a score of 1) (Figure 3¢). According to
the percentage of burned area, high elevation areas
were less susceptible to wildfires. Most of the
burned area occurred at elevations below 700 m
which was assigned a score of 3. This is probably
because there is much more moisture in the air and
less oxygen at higher elevations, so wildfires are
less likely to occur. Meanwhile, areas at 700-1,400
m elevation had the second-highest percentage of
burned area, and were assigned moderate wildfire
sensitivity (a score of 2). The smallest percentage of
burned area was found at elevations higher than
1,400 m, which were evaluated as having low
wildfire sensitivity with a score of 1 (Figure 3f).

Table 4: Rating wildfire sensitivity scores assigned to subclasses for wildfire risk modeling

Factor Subclass Burned area Total area Percentage of | Rating Wildfire
(ha) (ha) burned area sensitivity

Leaf foel load (kg ha™) | <1000 171.99 25,532.37 3.84% 1 Low
1000-2500 1,034.55 45,253.98 23.04% 2 Moderate

>2500 3,282.84 12,407.94 73.12% 3 High

Soil meisture (%) <5 4,188.06 36,952.02 93.25% 3 High
510 299.43 38,757.60 6.67% 2 Moderate

>10 1.89 7,484.67 0.04% 1 Low

Slope (degrees) <15 2,641.05 35,957.97 58.83% 3 High
15-35 1,579.41 44,394.30 35.18% 2 Moderate

>35 268.92 28,42.02 5.99% 1 Low

Aspect North 678.06 19,524.15 17.7%% 1 Low
East 1,028.92 19,827.63 27.00% 2 Moderate

South 1,834.20 22,371.84 48.13% 3 High
West 948.24 21,470.67 24.88% 2 Moderate

Elevation (m) <700 3,355.28 46,425.24 74.74% 3 High
700-1400 1,133.10 36,749.61 2524% 2 Moderate

>1400 0.99 19.44 0.02% 1 Low

Distance to roads (m) <1000 1,796.76 28.714.86 40.02% 3 High

10002000 982.08 22,721.31 21.88% 1 Low
>2000 1,710.54 31,758.12 38.10% 2 Moderate

Proximity to <2000 1,749.60 26,458.38 3897% 3 High

settlements {(m)

2000-4000 1,623.06 40,861.71 36.16% 2 Moderate

>4000 1,116.72 15,874.2 24.87% Low
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Areas <1,000 m from road networks had the highest
percentage of burned area and were assigned a high
wildfire sensitivity of 3, while areas 1,000-2,000 m
and >2,000 m from roads were classified as having
low and moderate wildfire sensitivity, respectively
(Figure 3g). The largest percentage of burned areas
was found at distances <2,000 m from settlements
(highly sensitive to wildfire). Those areas at
distances of 2,000-4,000 m and >4,000 m from
settlements were classified as having moderate and
low wildfire sensitivity, respectively (Figure 3h).
Hence, forest areas located close to roads and
settlements are at highest risk from wildfires.
According to the results of rating scores, dNBR can
be appropriately applied to all factors to evaluate the
levels of wildfire sensitivity. This is because factors
assigned a wildfire sensitivity by the dNBR
followed the same trends as the physical theory of
wildfire behavior and interactions in the fire
environment.

All factors with subclasses rated the scores were
weighted according to their corresponding risk for
wildfire, based on the judgments of wildfire experts
and stakeholders (Table 5). Leaf fuel load had the
highest weighting (therefore contributing greatly to
wildfire), followed by slope, proximity to
settlements, distance from roads, aspect, and soil

moisture, whereas elevation was the least important.
It can be concluded that, among these factors, fuel
load is highly influential for wildfire and is
considered the most important factor because it
contributes both stages of wildfire occurrence
(ignition and spread/intensity). The averaged
weighting of each factor was substituted in the
wildfire risk model using Equation 3. The wildfire
risk map produced from the model shows the
estimated possibility of wildfires in the study area
(Figure 4a).

Model validation is an essential part in any
natural hazards assessment, where the predictions
are compared to a real-world dataset (Begueria,
2006). Therefore, in this study, we used wildfire site
data to validate our wildfire risk maps. The number
of wildfire sites in each risk class was determined
and the fraction of correctly classified instances.
The results shown in Figure 4a demonstrate that the
actual wildfire sites are mostly found in the high
risk zone (56) as classified by the model. In
addition, the confusion matrix showed that the map
achieved 74.67% classification accuracy (Table 6).
Hence, the proposed model can reliably estimate
wildfire risk. The use of the seven factors generated
from remotely sensed and GIS data was effective for
predicting wildfire-prone areas.

Table 5: Weightings assigned to factors influencing wildfire, based on the judgments of wildfire experts and
stakeholders using a pairwise comparison method

Weighting scores
Factors Wildfire specialist Wildfire planner ‘Wildfire-fighter Average
Leaf fuel load 0.301 0.406 0.082 0.263
Soil moisture 0.020 0.084 0.077 0.060
Slope 0.073 0.108 0417 0.200
Aspect 0.048 0.034 0.142 0.075
Elevation 0.043 0.040 0.093 0.059
Distance from roads 0.163 0.164 0.134 0.154
Proximity to settlements 0.353 0.164 0.054 0.191
Sum 1.000 1.000 1.000 1.000

Table 6: Accuracy assessment of wildfire risk map based on the confusion matrix

Predicted wildfire points % of correctly
H MorL | classified instances
Actual wildfire
H 56 0
ints 67
L MorL | 19 0 14.67%

Table 7: Results of the wildfire risk map

Number Total area prone to
WFR value Description of the value of pixels wildfire
ha Yo
05-19 Low-risk wildfire arca 209,640 30,330 35.60
2.0-24 Moderate-risk wildfire arca 359,889 35,990 42.25
25-30 High -risk wildfire area 336,998 18,868 22.15
Total 946,527 85,188 100
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Figure 4: (a) Spatial map of wildfire risk and actual wildfire sites and (b) Recreational sites overlaid onto zones of
estimated wildfire risk
Table 8: Evaluation of wildfire potential at recreational sites based on the wildfire risk map
D Areas prone to wildfire
(Figure 4) Name of recreational gite Type of recreation Risk level % ha
1 ‘Wat Mae Pang Temple site None 0.00 0.00
2 ‘Wat Tham Doi Kham Temple site None 0.00 0.00
3 Nam Ru Conservation Forest Natural learning site None 0.00 0.00
4 Wat Phra Chao Lan Thong Temple site None 000 0.00
5 Mae Wa Reservoir Rest viewpoint High 77.68 24,75
6 Ban Nong Krok Hot Spring Hot spring High 65.63 567
7 ‘Wat Phrathat Doi Nang Lae Temple site None 0.00 0.00
8 Huai Pa Phlu Waterfall ‘Waterfall Low 50.39 35.10
9 Mae Kon Reservoir Rest viewpoint Moderate 7444 29.88
10 ‘Wat Phrathat Jai Klang Muang Temple site None 0.00 0.00
11 Mae Pang Reservoir Rest viewpoint None 0.00 0.00
12 Huay Kum Nature Trail and Camping site Natyre trail and campgite Moderate 54,12 40.77
13 Pha Daeng Cave Cave High 51.89 40.77
14 Pla Prung Reservoir Rest viewpoint Moderate 63.41 37.44
15 The Elephant Training Center, Chisng Dao The Elephant Training Center Moderate 72.71 39.33
16 The Elephant Training Center, Mae Ping The Blephant Training Center High 53.38 29.88
17 Wat Phrathat Muang Noeng Temple site High 76.76 2259
18 Nang Lae Waterfall Waterfall Moderate 60.71 47.7
19 Mon Hin Lai Waterfall ‘Waterfall Moderate 65.37 18.18
20 Mon Hin Lai Viewpoint Rest viewpoint None 0,00 0,00
21 Sri Lanna office aren, Mae Ngad Reservoir Rest viewpoint and campsite Moderate 46.92 17.82
22 Doi Yo Hod Rest viewpaint High 7236 56.07
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Table 7 shows the verified wildfire risk zones
corresponding to levels of wildfire risk. The map
identified low, moderate, and high risk levels. An
area of 18,868 ha (22.15%) was estimated as having
high wildfire risk, followed by 42.25% moderate
and 35.60% low risk. The high-risk zones were
mostly located around the boundary of the national
park, adjacent to roads and settlements, and
generally had large amounts of leaf fuel. Finally, the
verified map was overlaid with the 500 m buffer
zones created around recreational sites, producing a
map of sites susceptible to wildfire risk (Figure 4b),
where the potential effects of wildfires on these sites
was ¢valuated (Table 8). The majority of
recreational sites had a moderate to high risk of
wildfire. Six recreational sites had high risk of being
affected by wildfire, especially sites 5, 17, and 22,
which had >70% risk. A further seven sites showed
moderate risk and only one recreational site was in
the low-risk category. Eight recreation sites had
negligible probability of wildfire risk. The resulting
map conftributes to minimizing wildfire impacts at
recreational sites and can help in planning and
decision making regarding the prevention and
control of wildfires. Moreover, the findings of this
study can help develop appropriate method for
accessing areas prone to wildfires.

4. Conclusion
The present study proposes integrating remote
sensing and GIS techniques to identify areas prone
to wildfires in forest arcas of Sri Lanna National
Park, northern Thailand. GIS and remotely sensed
data were combined to model wildfire tisk based on
leaf fuel load, soil moisture, slope, aspect, elevation,
distance from roads, and proximity to settlements,
The findings revealed that using dNBR as an
evaluator was appropriate for rating the wildfire
sensitivity of factor subclasses. The selected factors
produced a reliable model for mapping wildfire-
prone areas, with the resulting risk map showing
strong agreement with actual wildfire sites. The leaf
fuel load showed the greatest influence on wildfires,
and we proposed soil moisture as a new factor for
predicting wildfires. The resulting map of wildfire
risk can be used for evaluating recreational sites
under threat of potential fires, which is helpful for
preventing fire damage at such sites. The findings of
this study could improve wildfire risk assessment in
Thai national parks and other similar locations.
Moreover, the map can be used to develop basic
guidelines for relevant local officials and decision
makers, to enable appropriate fire management for
high-risk areas in order to protect recreational areas
from wildfire damage and support the sustainable
operation of national parks. The results of this study
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show that remote sensing and GIS technologies that
make use of spatial data integrated with appropriate
algorithm or model can provide information sets
that can be used to produce wildfire risk maps.
However, the subjective weight of each factor was
developed only for the dipterocarp and deciduous
forests. Hence, we cannot use the same weighting
values for other regions because the forest types and
wildfire characteristics in each region are different.
Therefore, to apply this method more generally, the
factors affecting the wildfire need to be weighted for
each region appropriately. Finally, the future study
on wildfire risk could be assessed by using higher
resolution remote sensing data; and could be added
other significant factors driving wildfire occurrence
such as fuel moisture in order to increase the
precision of wildfire risk assessment.
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