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Abstract

We investigated the minimum field size and sample density needed for collecting soil samples for
geostatistical analyses of field-scale spatial variability of electrical conductivity of the saturation extract
(EC,), in 3 salt-affected soil classes (percentage salt crusts: very severely = class 1; severely = class 2, and
moderately = class 3). In areas of each class, 2 representative sites of 50 % 50 m? were selected (n=6). At
each site, 100 soil samples were collected using stratified, systematic, unaligned sampling, then we analyzed
Jor EC.. These data were rearranged info 6 datasets representing different field sizes and/or sample density
for semivariogram analysis and kriging interpolation. Through comparisons of the datasets, it was found that
the field size should be > 40 % 40 m?, and the sample density > 1: 10 x 10 m?. This was particularly true for
areas of classes 1 and 3; however, because of the extremely high variation of soil EC, in class 2 areas,
accuracy of the relevant interpolated (kriged) maps was relatively poor, and further study is required fo

improve the method for areas of extreme variability.

1. Introduction

Salt-affected soils represents a major environmental
problem worldwide, and it has serious adverse
effects on agriculture and environmental
sustainability (Khan et al., 2010). In Thailand, salt-
affected soils are found predominantly in the
northeastern region (Katawatin and Sukchan, 2012).
At present, in the official salt-affected soils maps
produced by the Land Development Department
(LDD) of Thailand, soils are primarily classified
based on the percentage of surface salt crusts in the
dry season, not soil properties (Sukchan, 2005).
Scant information is, therefore, available on the
spatial variability of soil electrical conductivity of
the saturation extract (EC.), which is essential for
development of effective salt-affected soils
management plans.

Interpolation is a valuable approach for
characterizing the spatial variability of EC..
Currently, there are many interpolation methods-
non-geostatistical and geostatistical that can be used
to generate spatial variation data from point data
(e.g., trend surface analysis, inverse distance weight,
and kriging) (Burroughs and Mcdonell, 1998)
among others (Li and Heap, 2008). The current
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study focused on the geostatistical method called
kriging. This method generally produces better
estimates, because it accounts for the existing spatial
dependence of the data (Mabit and Bernard, 2007)
and provides the Best Linear Unbiased Estimator
(BLUE) an indication of the reliability of the
estimates (Oliver and Webster, 2014).

The literature has shown that successful
application of the geostatistical method depends on
various factors, including the soil sampling strategy;
i.e., the sampling method {(Delmelle and Goovaerts,
2009), the field size (Xu and Dowd, 2012), the
sample density and the sample size (Or, 2010). Yan
et al., (2007) stated that the sampling strategies of
inland salt-affected soils strongly influence the
reliability of the results, cost of the process, and
feasibility of a long-term monitoring. In terms of
the sampling method, previous studies indicated that
(a} systematic and (b) stratified systematic
unaligned sampling methods were most effective for
mitigating the spatial variability of soil properties
(Stephen, 2009 and Delmelle and Goovaerts, 2009).
The former, however, is less suitable because as
Caeiro et al., (2003) reported the systematic method
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imposes regular periodicities and does not
satisfactorily estimate variance. These restrictions,
however, do not apply to the latter method (Clark
and Hosking, 1986). A study conducted to describe
the spatial variability of EC. geostatistically in
Northeast (NE) Thailand confirmed the
effectiveness of the stratified systematic unaligned
method (Phontusang et al., 2014). The sampling
strategy including the minimum field size and
sample density remains unclear and requires further
investigation. The current study was thus designed
to inform the sampling strategy appropriate for
geostatistical analyses of the field-scale spatial
variability of EC. in inland salt-affected soils;
including (g) minimum field size and () the
respective minimum sample density.

2. Materials and Methods

2.1 Study Area and Study Sites

The study area was located between 16° 01°-16°117
N latitude and 102° 37'-102° 42’ E longitude, in the
inland salt-affected area of Khon Kaen provinge,
northeasten Thailand (Figure 1). Landforms are
typically low tecrraces with clevations ranging
between 150 and 200 m above mean sca level.

Myanmar

Cambodia

Malaysia

* Study arca

Underlying the soil surface is the near surface, salt-
bearing Mahasarakam rock formation (Mitsuchi et
al., 1986). On the surface, a very high variation of
EC. is common. According to Wichaidit {1995},
there can be a 5-fold difference in EC, within 10 m;
consequently, to describe the spatial variation of
EC., soil sample density must be sufficiently high.

At present, inland salt-affected soils in NE
Thailand are categorized into 6 classes, based on the
percentage of surface salt crust in the dry season
(Table 1). The study sites were selected accordingly,
with emphasis on 3 classes, i.e., very severely (class
1), severely (class 2), and moderately (class 3). For
each class, 2 representative study sites were chosen
s0 a total of 6 sites was considered (sites 1.1 t0 3.2
in Table 2). The dominant soils in the study sites
were fine, mixed, active, isohyperthermic Typic
Natraquerts. The exception was at the class 2 study
site, where the soils were very fine, smectitic
isohyperthermic Typic Natraquerts. Both are
representative of 2 major inland salt-affected soils in
the northeast. Field observations conducted during
soil sample collection revealed the respective
percentage of salt crust of class 1, 2, and 3 areas was
80-90, 20-35, and 2-4.

Figure 1: Study area in Khon Kaen, Thailand
Table 1: Classification scheme used to map salt-affected soils based on percentage of surface salt crust

Salt-affected soil class Salt crust (%)
1: Very severely salt-affected soils >50
2: Severely salt-affected soils >10-50
3: Moderately salt-affected soils >1-10
4 : Slightly salt-affected soils >0-1

5; Potentially salt-affected soils

No salt crust but underlain with salt-bearing rock

6: Non-salt-affected soils

Salt-free areas

Others

€.g., setflements, water bodies, ctc.

Source: modified from Katawatin and Sukchan (2012)
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Table 2: Basic statistics of the EC, datasets %
=
Class® | Site | Dataset Field size Density EC£dSm) CcvY &
(m?) (sample: ) i Max Mean (%) =
111 30%50 1:5%5 5670 | 433.00 | 20569 | 42.18 2
1.12 40x40 1:5%5 5670 | 433.00 | 21882 | 3935 s
1.13 30x30 1:5%5 7480 | 37200 | 21626 | 3536 %
= 1.1.4 2020 1:5%5 8560 | 368.00 | 219.65 | 3522 :g
1.15 50%50 1:10x10 6590 | 379.00 | 21164 | 42.13 §
. 1.1.6 40x40 1:10%10 61.10 | 433.00 | 20706 | 4547 g
1.2.1 50x350 1:5%5 6470 | 242.00 | 15890 | 26.03 &
122 4040 1:5%3 85.10 | 242.00 | 15836 | 25.97 =
2 123 30x30 1:5x5 85.10 | 232.00 | 165.74 | 22.32 é
124 2020 1:5%5 10560 | 232.00 | 180.50 | 19.31 &
125 50%50 1:10x10 8540 | 24200 | 16632 | 25.46 E
126 4040 1:10x10 8720 | 24200 | 15278 | 31.05 E
>33 o1 50%350 1:5%5 0.16 2490 | 473 11532 g
212 4040 1:5%5 0.16 2120 | 447 111.63 §
213 30%30 1:5x5 0.16 1893 | 3.86 116.58 %
%l 2.1.4 20%20 1:5x5 0.93 447 2.00 1.1 ﬁ
215 50%30 1:10x10 0.16 2490 | 526 126.81 %
2.1.6 40%40 1:10x10 0.98 1066 | 3.63 76.31 %:‘ED
2 221 50x50 1:5x5 1.85 4900 | 1116 | 77.05 E
222 40%40 1:5x5 2.68 4900 | 1186 | 7538 -
’s 223 30%30 1:5%5 3.18 4900 | 1139 | 80.33
| 224 20x20 1:5%5 3.18 1967 | 9.79 55.26
225 50%50 1:10x10 4.16 4900 | 1253 | 89.31
22.6 4040 1:10x10 318 2890 | 1150 | 7435
311 50%50 1:5%5 0.11 1.39 0.55 49.57
3.12 40x40 1:5%5 0.11 1.39 0.54 4815
313 30x30 1:5x5 0.11 1.02 0.43 4651
- 3.14 20%20 1:5x5 0.17 0.81 0.40 45.00
315 50%50 1:10x10 0.17 1.39 0.63 53.29
316 40%40 1:10x10 0.17 112 0.53 39.62
} 321 S0%50 L:5%5 0.72 526 2.19 38.82
322 4040 L:5%5 0.72 526 2.00 41,00
12 323 30x30 L:5%5 1.12 526 2,07 38.16
| 324 20%20 1:5x5 112 3,70 191 32.98
325 50%50 1:10x10 0.76 4.09 2,06 36.65
326 40240 1:10x10 0.72 370 2,06 3592

*See Table 1 for class names

2.2 Soil Sampling and the Dataset Preparation

Previously, a study conducted in salt-affected areas
of NE Thailand (Phontusang et al., 2014) revealed
that a promising sampling strategy was stratified
systematic unaligned sampling method at 50x50 m?
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field size, with a sample density of 1: 5x5 m?
equivalent grid (i.e., the associated sample size
being 100 samples). This strategy was employed as
a basis for further investigation in the current study.
For each study site, therefore, a representative area
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of 50x50 m? was sclected, and divided into 100
equivalent grids of 5x5 m?, Within each grid, 1 soil
sample was randomly collected (n=100} at 0-30 cm
depth in the dry season of 2012 (Figure 2a), and
analyzed for EC, using the standard method (United
States Salinity Laboratory Staff, 1954). To assess
the performances of smaller field sizes, and lower
sample density, the data from the 100 samples were
rearranged into 6 datasets of different field sizes

ficld size, sample density remained constantly high
(i.e., 1:5%5 m?) and the field size varied from 50x50
m? to 20x20 m? (Figure 2a-d). On the other hand, to
investigate the minimum sample density, 2 field
sizes and 2 densities were considered (Figure 2a-b
and e-f). Note that in the assessment of minimum
sample density, only 50x50 m? and 40x40 m? fields
were tested; as shown in section 3.2.1, the datasets
from smaller field sizes, even with high sample

and/or sample densities; there were 36 datasets (6 density, frequently yielded inadequate
datasets for each site % 6 selected sites) prepared for semivariogram models, so they were not suitable for
geostatistical analyses. To determine the minimum further geostatistical analyses.
Sm i _ §m -
Sm Sm " [alefa|e] go]s
- - 3 - L *glo|® e a]"
- 5m : :.-: .' :: .ﬂ“m
L - - -. Hsn smL"F. ':h' : .: './- : I...-: c.:'. :
= a = [ *], [*Lals - lele o fo o |“]e o] |
" Ll 'l h o b Ll [ ] aja I e :
() L) LN R 2 '] 1 L] : » C. .. a m e
® | S0m | bd bl o Y '“;I\ =TS
on o Gl = .. \‘ » 1w
L] - | ] - L] - \I '
A .o: .- .- N .t - .. .-.n\ '.L‘_ o
Sm s
s | i q ® $0m I - =
*
- [——
= 40m
» ; . - l la T
a|m | 20m
(/] el 18 J-
} 40m i @lelel®®
—2a—

Figure 2: Six datasets prepared for each study site (a) - (d) represent the dataset of 1 sample:5x5 m? in areas

of 50x50,40x40, 30x30, and 20x20 m?, respectively.

Figures fe) and (f) represent the dataset of 1 sample:

10x10 m? in areas of 50x50 m? and 40%40 m?, respectively
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Figure 3: Diagram: the study framework for statistical analyses of each dataset (a) basic statistics, and (3}
geostatistics

s
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2.3 Approach

For a study site, each of the 6 datasets was
statistically analyzed. As shown in Figure 3a, basic
statistics were first applied to a discrete set of
known data points to obtain general information
about the dataset, (i.e., minimum, maximum, mean,
and coefficient of variation). The results were
supplementary for interpretation of the subsequent
geostatistical analyses shown in our results.
Skewness was also calculated and used to prepare
the EC, datasets. The skewed (abnormal
distribution) datasets (if skewness > 1 or < -1) were
subjected to log-transformation and the normality
rechecked prior to geostatistical analyses (Webster
and Oliver, 2001).

Geostatistics including semivariogram analysis

and kriging interpolation were employed to
elucidate the characteristics in spatial variation (i.e.,
small-scale variation, highest wvariation, spatial
dependence, and spatial distribution pattern) and to
generate a spatial variation map of soil EC..
Mapping accuracy was assessed by using cross-
validation (Figure 3b). More details on geostatistical
analysis and mapping accuracy assessment were
described in section 2.4.
After all statistical analyses, the results (i.e.,
semivariograms and kriged maps) generated from
the relevant datasets were compared to determine
minimum field size, and sample density (Figure 4).
The comparison is based on (@) types and
correlation between distance and variation (R?) of
the best-fit semivariogram models, and (b) mapping
accuracy as indicated by Mean Prediction Error
(MPE) and Root Mean Square Prediction Error
(RMSPE) values.

2.4 Geostatistical Analysis

2.4.1 Semivariogram

Geostatistics including semivariogram analysis and
kriging interpolation were applied to each dataset to
elucidate the spatial variation of soil EC,..

A semivariogram was developed to assess the
characteristics in spatial variation of the EC. in a
specific area (represented by the relevant dataset)
based on Equation 1 (Johnston et al., 2001):

SO = () — Zxs + R
7 )_2Ni=1[ (x;)— Z(x; + )]

Equation 1
where:
#(h): a semivariance for lag vector representing
separation between two locations
N: total number of data pairs separated by

distance h
Z(x;): measured value for soil property; and x; is
the position 1 of soil samples

Several standard models including spherical,
exponential, Gaussian, and linear (Marchetti et al,,
2012) were tested by using the visual and statistical
(ordinary least squarc) combined method. The best-
fit model was determined based on the cocfficient of
determination (R?) and lowest Residual Sum of
Square (RSS). The GS+ Software V 9.1 {Gamma

Designed Software, 2008) was used for this purpose.

Related parameters (i.e., nugget, sill, and range)
were obtained from the best-fit semivariogram
model, where nugget indicates small-scale variation
(error of measurement or spatial variability at
distances smaller than the sampling interval) and sill
represents the maximum variation observed
(Webster and Oliver, 2001).

/ Dat:setl* // Dﬂtﬂlsetz* // Dataset 3* // Dataset4* // Dataset 5% // Dataset6* /

| Geostatistics

v

Semlvamgram Semivariogram Semivatiogram
and and and

Kriged map

Sem:vamgmm Semwamgram Semlvamgram
and and and
Knged map Knged map Knged map

iged map iged map

Comparison

Il
.

* For cxplanation of each dataset,sce Table2.

Comparison

+
Minimum
Sample density

Figure 4: Diagram: the study framework to assess the minimum field size and sample density
for each study site

International Journal of Geoinformatics, Vol. 13, No. 2, June, 2017

71-84

Sampling Strategies for Geostatistical Analyses of Fleld-Seale Spatid Variability of Electrical Conductivity in Inland Salt- Affected Soils




The higher the sill value, the more heterogeneous
the variable (Lopez-Granados et al., 2002).The
range is the distance at which the semivariogram
model reaches the sill or a distance beyond which
observations are not spatially dependent (Webster
and Oliver, 2001). Note that for Gaussian and
exponential models, there is no range value, so that
the “range of influence” is used instead (Clark and
Harper, 2007). In the current study, the effective
range was preferred. Robertson (2008) explained
that an effective range is calculated by multiplying
the range/range of influence value with a constant,
wherein values of the constants depend on the
semivariogram models employed. These values are
1, 3, and 1.732 (orv3 ) for the spherical,
exponential, and Gaussian models, respectively, The
linear model has no effective range.

To describe the characteristics in spatial
variability, for each semivariogram model, the
nugget, sill and effective range were interpreted as
described carlier. Furthermore, the nugget to sill
ratio was used to define classes of the spatial
dependence of soil EC,. The ratios of < 0.25, 0.25-
0.75, and > 0.75 are classified as strong, moderate,
and weak spatial dependence, respectively (Ldpez-
Granados et al., 2002). In general, the stronger the
spatial dependence, the more distinct pattern of
patches formed. A ratio of 1 signifies the pure
nugget effect, or absence of spatial dependence. In
this case, kriging interpolation and accuracy
assessment using cross-validation cannot be applied
(Li and Heap, 2008). In addition, for every dataset,
the number of point pairs used for each lag distance
class was observed; these data were supplementary
for interpretation of the adequacy of the
semivariogram model.

2.4.2 Kriging

Kriging interpolation was undertaken to estimate the
spatial variation of soil EC, for each of the discrete
sets of known data points in a study site and
displayed the results in the form of interpolated
(kriged) maps. This method uses a weighted average
of neighboring samples to calculate the unknown
value at a given location (Triantafilis and Buchanan,
2010) as shown in Equation 2:

N
Z(x;) = Zwi xZ(x;),
i=l

Equation 2
where:
Z(x): predicted value for one output pixel
Z(x;): value of input point i
wi: weight factor for input point i

More details on this equation were provided by
Triantafilis and Buchanan (2010). In the current
study, ordinary kriging available in ILWIS 3.3 (IT
Department, 2001) was employed.

2.4.3 Accuracy assessment

The cross-validation was employed to assess
accuracy of the kriged maps, based on 2 indices: (i)
Mean Prediction Error (MPE)} and (ii) Root Mean
Square Prediction Error (RMSPE). The MPE
{Equation 3) yields a true prediction of accuracy by
summing the residual observed and estimated values
(Hengl et al., 2004). This value should be near zero
for an unbiased prediction. Positive and negative
values indicate wunder and over-estimations,
respectively (Yao et al., 2014). The RMSPE
{Equation 4) quantifies the degree of deviation in
the model simulation from observations (Marchetti
et al., 2012}. To be able to compare the accuracy of
different datasets, the MPE and RMSPE were
normalized, based on the observation mean as
shown in Equation 5 and Equation 6:

1n 5
MPE=— 2[Z(x;) - Z(x;)],
n l=1

Equation 3
n A 2
,§1[Z (x;) — Z(x;)]
RMSPE =& .
A
Equation 4
'E
WE% = X 100 Il
Z(x;)
Equation 5
'E
RMSPE Y% = — =100,
Z(x;)
Equation 6

where:

MPE% : relative mean prediction error

RMSPE% : relative root mean square
prediction error

Z(x;) : mean of observation values

3. Results and Discussion

3.1 Basic Statistics of the Original Datasets

Basic statistics representing central tendency and
variability (i.e., mean, minimum, maximum, CV)
and skewness, were calculated for every dataset and
are presented (Table 2). The degree and variation of
soil EC, differed by salt-affected soil class, study
site, field size, and sample density; however, in
general, the EC, values of class 1 soils were
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significantly higher than those in areas of classes 2
and 3; thus high variation of this soil property was
common. For most of the datasets, the CV were >
35%. Some datasets, especially those from site 1.2,
showed a somewhat lower variation (CV ~19 -
32%). Datasets with little variation were
encountered infrequently. According to Wilding
(1985), the values of > 35% denoted high variation;
those of > 15 - 35%, and < 15% indicated moderate
and little degrees of variation, respectively.

Variation of soil EC. in class 2 areas was
noteworthy. Normally, the CV values of datasets
taken from areas of this class (> 100%) were
significantly higher than those calculated from the
other datasets; however, where the field size was too
small (20x20 m?), very little variation of EC. (CV ~
1%) was observed (dataset 2.1.4).

3.2 Semivariogram Models and Characteristics in
Spatial Variability

Semivariogram models and their related
characteristics in spatial variability of soil EC,, were
used as a basis for assessment of the minimum field
size and sample density. The results were reported
separately as follows.

3.2.1 Assessment of the minimum field size

Relevant semivariograms were compared to assess
the minimum field size (Figure 5). For both study
sites of each salt-affected soil class, when the
sample density was set at 1: 5x5 m?, datasets from
40x40 m? field sizes and larger yielded adequate
results. The best-fit semivariogram models were
spherical, Gaussian, or exponential; with R? > 0.7;
meaning that > 70% of the relationship between
distance and variation could be explained by the
models.

’ Field size
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-
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11 é E Eggg ; 4434 o o
s = 400 e 3 20
# # 2000} Camannz;RI-0916 A0 g gy pionsey # 200 1o arimi- 0S50
@ 102032 43350 62 TR B g0 20 32 4 LN 10 20 10 2, PP 30
5 stamere o) [Natymes{m) Diatases (=) Ditamer (=)
2499 g . o A 1400
g . e S Sy i 21200 _O_Lu_
= 1 t 1208 g £ 1008 -
1.2 T t0m H z sag Z goa
L i = = saa = Gdd
ST ) . H H g 400 )
i el WT-0842 # 00| Expameagal Bi- 0424 F 2g9| Lincas:iR-049
9 192030 4930 6078 By 10 20 30 40 30 LT 10 2 30 % 1l 20
Destames (=) DHstmacc(m=) Diitames (=) Dadzac (=)
a 3 2 239 = 923
4 2 2 2 poaf- A
= = = 1.58 o W-EN 3]
2.1 % . Z 100 z 843
A : = = 1. g & o+ v N * ot
z s 3 3 " Gasasiza; n- 0939 A =TT ST
¥ 10 20 30 u 10 2
Deatames (=) Dimptames (=) Dimtames (=)
g 039 8 g 450 g 49
o I e {rﬂ“ﬂf 3 Zasnf __D'_g.’—-n : o
L.l Il @ oa| _—F o™ Z n
- b " 5 - - - =
2 L": Sphorizmal ;RI-0.933 2 BN gaumine  BT-0.960 3420 Expamcetial ; BRI -0.460 & 1 Expascstial ; R - 303
010 20 30 40 20 80 T b 1a 10 38 a8 = e 10 2 EL . 10 2
Dadames (=) Diiasames (=) Datames (=) Datames (=)
- Yo - faw - —e o B o
= H an B
g 012 : gotte-  fenpg 0 Y o
31 s L ass I oaz
- = 006 E = ¥1] =
E Y e - 3 001 2
e [ T Spherical:R3-0929  * 00| Eerencagar W 0sd F gl Limess s B ag77
an:l £0 20 34 40 S2 €3 TR ’lq id 20 3@ 49 58 'Ja 14 24 ET) [} 1d el |
Diadames (=) Danasci=) Daase: (=) DNatamecim)
: 5 812
2 51 i G
n W = 315 o i
. g : r_n_ﬂ-g‘aﬂ'ﬁ—ng,_ % 0.4 Zass|
3.2 T = aab =904 zag4f
= = ] = = gus .
J oo § 005 Eepaseagat mi- 0810 300 Papascssimiimiogasy 30T Spbercali - 000
Yy eamsadezesaTa 0§ g2 22 30 40 54 “a T 20 2 [ 1 n

Datases (=)

Dindames (=)

Déatamee (=) Dis tamex (=)

Figure 5: Best-fit semivariograms generated for 4 datasets of different field sizes in each study site
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These models were good enough for further
geostatistical analyses  kriging to  generate
interpolated maps because (a) the types of
semivariogram model were valid (Clark and Harper,
2007) and (b) acceptable correlation between
distance and variation of soil EC, (R?> 0.5) was
obtained (Duffera et al.,, 2007). By contrast, the
results from the datasets of smaller field sizes (i.e.,
30x30 and 20%20 m?) were erratic. These field sizes
were, therefore, considered too small. Irrespective
of the salt-affected soil class (Figure 5), many of the
semivariogram models generated from datasets of
the smaller fields were inadequate for kriging
interpolation, because (a) spatial dependence was
absent (i.e., pure nugget model) (Dubrule, 2003)
and/or (b) unsatisfactory semivariogram models
(R?*< 0.5) (Duffera et al., 2007). The unacceptable
results could partly be explained by the field size
itself. Additional explanations could be {a) the
lower number of samples associated with the
smaller field size, and () the limited space available
for varying lag distance class; this could result in
deficiency of experimental semivariogram samples
(experimental data) and the number of point pairs
available for calculation of the semivariogram
(Journel and Huijbregts, 1987, Clark and Harper,
2007, Robertson, 2008 and Oliver and Webster,
2014).

There might also be other factors causing the
unacceptable results, but their influences were
unclear. Because only the resultant semivariograms
representing the datasets of 40x40 m? areas or larger
were applicable for further geostatistical analyses:
this field size was determined as the minimum,

In the current study, therefore, further investigations
did not include datasets from smaller fields. Further
analyses were done of the relevant best-fit
semivariogram model’s parameters to determine
characteristics in the spatial variability of soil EC,
(i.e., nugget, sill, and effective range) (Table 3 and
Figure 5). It was found that for each study site of
each salt-affected soil class, the semivariogram
models representing relatively large fields (ie.,
40x40 and 50x50 m?) indicated strong to moderate
spatial dependence, because of their relatively low
nugget to sill ratios (i.e., < 0.25, and 0.25-0.75,
respectively).

Other characteristics including small-scale
variation, highest variation, and the distance at
which EC; values become independent of one
another, were erratic (Table 3). In general, various
degrees of small-scale variation were observed, and
very high variation of EC, was common, as
indicated by nugget and sill, respectively. The
small-scale variation and the highest variation, in
class 1 areas were remarkably higher than those
found in areas of the other classes, because of their
extremely high soil EC, (Table 2). The distance at
which EC, values become independent of one
another (effective range) also varied significantly
(Table 3).

Finally, for > 40%40 m? fields, no effect of
different field sizes on characteristics in the spatial
variability of soil EC. was detected. There might be
other factors mvolved, but currently no evidence
explains how they contribute to EC. spatial
variability,

Table 3: Semivariogram parameters calculated for datasets used to determine minimum field size. For each
study site, 4 datasets representing different field sizes with one sample density (1:5x5 m?) were calculated

Class*| Site | Dataset |Field size (m?) lzl“sgi‘ff), - if::t:;f) R? N;‘,;'ﬁet D"g:::g:::f“
L L 50%50 4950.000  31000.000 158.300 0978 0.1 Strong
! 1.1.2 40%40 5500.00| 3210000 141.66) 0916 0.17] Strong
g 121 50%50 1.00 1758.00) 8300  0.862 0.00| Strong
122 40%40 1213.00 2543.00 8597 0.732 048] Moderate
b 21l 50%50 0.25 1.47 54700 0995 0.17] Strong
. 2.1.2 40x40 0.53 1.86 5798 0965 0.29| Moderate
b, 221 50%50 026 0.66 66300  0.959 0.39 Moderate
2.2.2 40%40 0.33 1.76)  122.76]  0.960 0.19| Strong
b, Bl 50%50 0.03 0.15| 118200 0962 0.19 Strong
5 T Baz 40x40 0.03 0.07 3132 0929 0.43| Moderate
by 21 50%50 0.05 0.14 13400  0.966 036 Moderate
3.2.2 40%40 0.10 028 263.82 0812 0.36] Moderate
® See Tablel for class names

Sampling Strategies for Geostatistical Analyses of Field-Scale Spatial Varigbility of Electrical Conductivity in Tnland Salt-Affected Seils



Field size 50=<50 m™

Field size 40>40 m™

Site Sample density (sample : areas)

Sample density (sample : areas)

1: 10x10 m"

1:10x10 m’

g 8
2 E
1.1 & =
= = d - 1008 Gawmsisn;R*=0916
101030 40 508070 W EEETEL L O 10 2 30 & 2 o 10 2 3@ 40 5
Distance (m) 3100 D mnoe (m) Diztance {m)
53 ...'.l]' )
z £ 2400 mﬁ—— 5 /J—
8 L= = o -
12 = £ 1600 ){ﬁ/‘" ; 8 - o
= £ s ¢ . s
z v - }O Exponential ; R==0885 B ,n/s:hnu;a:ns:ﬁ
= 0 102030 405060 T0 0 100304050 670 0 10 20 3 40 3
Distance (m) Distance (m) D tamce (m) D ta nce (m)
8 g 189 8 4
g g 135 g g
£ £ : £ <
2.1 = E I E =
5 5 4% Sphericl; Re=0967 3 z
= = o i S L =
0 10 20 30 40 50 &0 T0
Diztance m) Diztamce fm
B B esor g B £ 1m0 Q
k E oso L= P i 1=
11 T 5 o o"0 : o1 5
et vl * F 049 E w0
z 5 02 E &
= 2 "W spherical; Rr= 0800 3 Gumsisn Ri=0980 2 3] GavosiesR:=0830
e =t [ = = 2 [
. . @ 10203040 S0 8 TO 0 10 20 30 4 W ® 10 20 30 40 S
D& mnce (m) Drist: m) Dhizts e (m]) Diztance (m)
B g @14 B g 02=
. 012 ] o z o
2 £ 010 E e
31 2 T
5 5o eny § W i i
"2 Spherical ;K= 0.742 = | Spherical ;Ri=0818 % Sphenirad; 0= 702
0 10 20 30 40 30 60 T 9 10 20 30 40 = 1o 20 36 40 5
DiEmnee{m) Dimtance {m) Dists ace {m) D ta mee {m)
, 0% , .
g o i g 050 o oo
= 950 oo 5 i
H 7 e~ t o
3.7 2 g ju] o g 040
A = 83 = i
5 5 02 =, . 3_ m
4 2 _fé;gﬂiul'f{::ﬂill 5 0 B 2 7 M ospherial ;R = 056!
TR ENELR “o 1020 30 4050 80 T 05 g 38 30 49 = e 10 2 3 4 5
Distance {m) Distance fm) Dz ta moe (m) D tun ce ()

Figure 6: Best-fit semivariograms generated for datasets of different sample densities in 2 field sizes

3.2.2 Assessment of minimum sample density

Assessment of the minimum sample density was
conducted only for larger fields (i.e., = 40x40 m?),
because previously it was found that the datasets
from smaller fields were not applicable for
geostatistical analyses. The results (Figure 6)
showed that, for each study site of every salt-
affected soil class, all semivariogram models
derived from the 4 datasets of 2 field sizes (i.e.,
40x40 and 50x50 m?) using 2 sample densities (i.e.,
1: 5x5 and 1: 10x10 m?), were adequate for further
analyses, as per Duffera et al., (2007). The best-fit
models were spherical, Gaussian, or exponential;
normally with R*> 0.7. The exception was for
models derived from some datasets in areas of
classes 2 (site 2.2) and 3 (site 3.2) at a sample
density of 1: 10x10 m? The R? values of these
models were relatively low (> 0.5-0.6); however,
according to Duffera et al., (2007), an R?> 0.5 is
acceptable. Thus, when field size was 40x40 m? or
larger, the minimum sample density for
geostatistical analyses could be as low as 1: 10x10
m?. Further analyses showed that characteristics in

International Journal of Geoinformatics, Vol. 13, No. 2, June, 2017 |

the spatial variability of soil EC. were erratic as
interpreted from the relevant best-fit semivariogram
models (Table 4). In summary, spatial dependence
of EC. might be strong or moderate. Various
degrees of small-scale variation were observed; such
that, very high variation of EC, was common and
the distance at which EC. values become
independent of one another (i.e., the effective range)
was uncertain.

3.3 Kriged Maps

In addition to the semivariogram, the accuracy of
the kriged maps was also used to assess the
minimum field size and sample demnsity. As
explained, only kriged maps representing the 40x40
and 50x50 m? fields were taken into consideration.
Two sample densities (i.e., 1: 5%5 and 1:10x10 m?)
were investigated, so 4 kriged maps were generated
for each study site (2 field sizes x 2 sample
dengities) for a total of 24 maps (Figure 7). Besides
mapping accuracy shown in Table 5, the spatial
distribution pattern was displayed on the maps.
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Ficld size 50%50 m

Ficld size 40x40 m~

Site Sample density (sample : areas)

Sample density (sample ; areas)

1:5x5m 1:10x10 m’

2
1: 5x5m

1:10x10m’

1.1

EC, (dSm'')
o High: 368

Low:52

12

EC, (dSmr")
po High: 245

Low : 65

2.1

EC, (dSm'")
por High: 25

Low:0

22

EC, (dSm!)
por High: 50

Low:3

31

EC, (dSm?)
por High: 1.50

Low:0.17

32

EC,(dSm™)
por High:5.7

HEEERN™

Low:0.7

Figure 7: Maps showing spatial variation of soil EC, generated for datasets of different sample densitics in 2

ficld sizes (Legends specific for cach study site)

3.3.1 Mapping accuracy

Prediction errors evaluated by means of MPE and

RMSPE to indicate the accuracy are presented in

Table 5. The errors of maps representing class 1 and

3 areas were comparable, and lower than those
belonging to class 2 areas. For all of the maps

representing classes 1 and 3, the prediction errors
indicated adequate mapping accuracy. The MPE
values were generally close to 0, indicating that the
relevant semivariogram models were nearly
unbiased, yielding either under or over estimates.
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Table 4: Semivariogram parameters calculated for datasets used to determine minimum sample density. For

each study site, 4 datasets representing different field sizes and/or sample densities were calculated

a Field size Density Nugget Sill Effective 2 |Nugget| Degree of spatial
Class™ | Site | Daganct {m?) (sample: m*) | (S (dSm')? | range(m) i Isill dependence
111 [50x50  J1:5%5 4950001 31000.00 158300 go7e 016 Strong
T oL L1 5%5 5500.000  32100.00 141.66 0914 0.17] Sirong
1.1.5 50x50 1:10x10 200,001  10600.00 51300 gg3o 002 Strong
i 116 @040 [1:10x10 7040.00  35180.00) 12163 07400 020 Strong
1.2.1 50x50 1:5%5 1.0 1758.00 8.30 p.gs2 0000 Strong
L A40x40 |1 :5%5 1213.000  2543.00 8597 0.732] 048 Moderate
“ ltas  [50xs50 [1:10x10 105.00{  2657.00 56.19 0885 0.4 Strong
126 {040 ]1:10x10 230000  3370.00 40.18) 0859 006 Strong
b11  [50x50  |1:5%5 0.25 147 5470 pogs| 017 Strong
b1 P2 A40x40 |1 :5%5 0.53 1.86 5798 0965 029 Moderate
" k15 [50x50  [1:10x10 0.00 1.74 30200 gosd 000 Strong
. 2.6  [@0xad  1:10x10 0.41 1.57 130.59 0.8600  0.26 Moderate
221 [50x50  |L:5%5 0.27 0.67 6630 0959 040 Moderate
L, p22 040 [1:5%S 0.33 176 12276 0960 0.9 Strong
“ pas 50x50 1:10x10 0.00 0.56 1620 06000 0.00 Strong
226 @040 1:10x10 35200 281300  101.89 0850 0.2 Strong
3.1.1  [50x50  [1:5%5 0.03 0.15 11820 gogd 021 Strong
by P2 4040 11 :5%5 0.03 0.07 3132) 0929 043 Moderate
T 1S [50xs0 [1:10x10 0.01 0.12 25000 0742] 0.08 Strong
s BSOS 0.1 0.8 1545 0743  0.60 Moderate
321  [50x50  [1:5x5 0.06 0.14 1340 0066 039 Moderate
L, P22 o |1:53 0.10) 028 26382 0812 036 Moderate
= PBas 50x50 1:10x10 0.00| 0.54 13.85 05121 000 Strong
3.2.6 (0«40 ]1:10x10 0.001 0.6 2144 0569 000 Strong
® See Tablel for class names

The RMSPE values between class 1 and 3 maps
were not notably different (< 40 and < 45%,
respectively). For class 2, even though their relevant
semivariogram models fitted well enough compared
to those generated for the other classes, higher
mapping errors (lesser accuracy) were observed.
Relatively highly positive values of MPE were
common, indicating considerable under-estimation
of the relevant semivariogram models. Mapping
errors represented by RMSPE were constantly high
(> 63%), compared to those of the other 2 classes.
Higher errors might correspond to the remarkably
high variation of soil EC, in arcas of class 2 (Table
2); no relationship between mapping crror and field
gize and/or sample density could be observed. The
results confirmed the effectivencss of using > 40x40
m? field sizes, and > 1:10x10 m? sample densities in
class 1 and 3 areas; however, in arcas with
extremely high variation of soil EC, (class 2), the
accuracy of the kriged maps was relatively poor,
requiring further study to explore the possibility for
improvement.

3.3.2 Spatial distribution pattern of soil EC,
Although for classes 1 and 3, the kriged maps
representing 4 datasets of the same study site were
satisfactorily accurate, the maps were incongruent to
some extent (Figure 7); the dissimilarity being
attributable to the effects of field size and sample
density. In the current study, field size had more
influence on the spatial distribution pattern of soil
EC. shown on the maps; the kriged maps derived
from datasets collected at the larger fields (50x50
m?) generally provided more spatial details than
those representing smaller fields (40x40 m?). This
was probably duc to “edge eoffect” or cffect of
excluding data points beyond the study boundary
(Lovett and Appleton, 2008), caused by uncqual
field sizes. The edge effect could have an influence
on the performance of semivariogram and, in turn,
the kriged map (Van Meter et al., 2010). Xu and
Dowd (2012) stated that the spatial distribution
patiern was significantly affected by this factor,
particularly in somewhat small areas with a
relatively long effective range such as those
employed in the current study.
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Table 5: Accuracies of kriged maps generated for the EC. datasets used to determine the minimum field size
and sample density. For each study site, accuracies of the maps derived from 4 datasets representing different
field sizes and/or sample densities, were assessed using cross-validation method based on MPE and RMSPE

Class* | Site Dataset Fleldzsize Deniityz Ve RSrE
(m?%) (sample:m?) dSmt| % dSm? %,
111 i i 157 | 076 | 7505 | 3649
| St e 009 | 013| 8195| 3745
115 e Lalteld 753 | 356 | 8441 | 3988
. 116 S heloeld 1007 | 486 | 8199 | 39.60
12.1 30 i 006 | 004 | 4548 | 2862
5 |22 et i 018 | 028 | 3964 | 2503
125 30 L 1R10 081 | 049 | 4406 | 2649
126 e L1810 362 | 237| 4685 | 3067
2.1.1 st b 0.86 | 18.18 365 | 7716
5 |12 Sl bR 110 | 2453 394 | 8809
" | 2as et balield 119 | 2252 479 | 9093
5 2.16 il baleld 0.68 | 18.73 265 | 7307
221 a0 i 1.83 | 1640 764 | 6845
5y | 222 s i 1.89 | 15.94 749 | 6316
" | 225 Al L1810 257 | 2049 | 1015 | 8098
226 e L1810 027 | 235 772 | 6712
3.1 a0 bas 0.00 | 0.3 024 | 4481
41 342 il bas 0.00 | 0.0 022 | 4077
3.15 aat Lalgsld 001 | 107 025 | 39.68
g 3.16 e Lelgsld 0.04 | 026 022 | 4269
32.1 230 s 0.14 | 635 0.82 | 3745
45 | 322 i s 0.13 | 650 079 | 3962
325 230 ha1R10 0.03 | 145 079 | 3848
326 e ha1OR10 003 | -146 0.87 | 4232
* See Tablel for class names

Sample density was also responsible for the
appearance of the spatial distribution pattern shown
on the relevant kriged maps, but to a lesser extent.
The dissimilarity between maps generated from the
datasets of various sample densities can probably be
attributed to the magnitude of difference of the EC.
values and the number of data points employed
(Mazzella and Mazzella, 2013). Despite lower
mapping accuracy, comparisons between the 4
kriged maps derived from the datasets collected at
every site of class 2 areas revealed a similar
tendency.

4, Conclusions

In conclusion, the use of stratified, systematic,
unaligned sampling method to collect the soil
dataset from the > 40x40 m? field, by means of

relatively low sample density ( > 1: 10x10 m?) is
promising. For areas of every salt-affected soil class
considered in this study, this approach yielded
satisfactory semivariograms. In areas with
extremely high variation of soil EC. (class 2),
however, the accuracy of the relevant interpolated
(kriged) maps was relatively poor, and further
investigation is required to explore the possibility
for improvement. The results of this study could be
used as a guideline for determination of the
appropriate sampling strategies to improve the
reliability of geostatistical analyses, the cost-
effectiveness of the process, and feasibility of a
long-term monitoring study in inland salt-affected
soils.
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