Individual interest and learning in secondary school STEM education

Main Article Content

Erkka Laine
Marjaana Veermans
Andreas Gegenfurtner
Koen Veermans, Dr.


Interest research offers different hypotheses about the association between interest and learning outcomes. The standard hypothesis proposes that interest predicts learning outcomes: people acquire new knowledge about a topic they find interesting. The affective by-product hypothesis assumes that learning predicts interest: by learning something, people develop an interest in this topic. Finally, the reciprocal hypothesis states that interest and learning covary. This longitudinal study aimed to test the predictive validity of these three hypotheses in the context of secondary school STEM education. The participants were 104 Finnish 7th grade students aged 12-14. Data were collected at three times during the school year through questionnaires and grade evaluations in mathematics and biology. A partial least squares (PLS) path modeling approach was used to determine the relationships between interest and course grades across the three measurement points: at the beginning of the autumn semester, at the beginning of the spring semester, and after the spring semester at the end of the school year. The results differed between the autumn and spring semesters: During the autumn semester, students’ interest predicted their grades, whereas during the spring semester, grades predicted their interest. These findings indicate that the relationships between students’ individual interest towards science and mathematics with learning vary. As a practical implication, more focus should be put on when and what type of performance feedback is given to students with differing interest profiles.    

Article Details

How to Cite
Laine, E., Veermans, M., Gegenfurtner, A., & Veermans, K. (2020). Individual interest and learning in secondary school STEM education. Frontline Learning Research, 8(2), 90–108.
Author Biography

Erkka Laine, University of Turku

Department of Teacher Education, Doctoral student


Ainley M. (2012) Students’ interest and engagement in classroom activities. In: Christenson S., Reschly A., Wylie C. (eds) Handbook of research on student engagement (283-302). Springer, Boston, MA
Ainley, M. D., Hidi, S., & Berndorff, D. (2002). Interest, learning and the psychological processes that mediate their relationship. Journal of Educational Psychology, 94, 1-17. doi:10.1037/0022-0663.94.3.545
Albin M. L., Benton S. L., Khramtsova I. (1996). Individual differences in interest and narrative writing. Contemporary Educational Psychology, 21, 305–324. doi:10.1006/ceps.1996.0024.
Baram-Tsabari, A. (2017). Promoting information seeking and questioning in science. In K. A. Renninger, M. Nieswandt, S. Hidi (Eds.), Interest in mathematics and science learning (pp. 135-152). doi:10.3102/978-0-935302-42-4
Baram-Tsabari, A., & Yarden, A. (2010) Quantifying the gender gap in science interest. International Journal of Science and Mathematics Education, 9, 523-550.
Bong, M., Lee, S. K., & Woo, Y-K. (2015). The roles of interest and self-efficacy in the decision to pursue mathematics and science. In K. A. Renninger, M. Nieswandt, S. Hidi (Eds.), Interest in mathematics and science learning (pp. 33-48). doi:10.3102/978-0-935302-42-4
Chen, J. A., Tutwiler, M. S., Metcalf, S. J., Kamarainen, A., Grotzer, T., & Dede, C. (2016). A multi-user virtual environment to support students' self-efficacy and interest in science: A latent growth model analysis. Learning and Instruction, 41, 11–22. doi: 10.1016/j.learninstruc.2015.09.007.
European Commision (EC), Directorate-General for Education and Culture. Unit B.1–Higher Education (2015). Does the EU need more STEM graduates? Final report. Luxembourg: Publications Office of the European Union. doi: 10.2766/000444.
Gil-Garcia, J. R. (2008). Using partial least squares in digital government research. Handbook of research on public information technology. Idea Group, Hershey.
Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2017). A Primer on partial least squares structural equation modeling. 2nd Ed. Thousand Oaks: Sage.
Harackiewicz, J. M., Durik, A. M., Barron, K. E., Linnenbrink-Garcia, L., & Tauer, J. M. (2008). The role of achievement goals in the development of interest: Reciprocal relations between achievement goals, interest, and performance. Journal of Educational Psychology, 100(1), 105–122.
Hay, I., Callingham, R., & Carmichael, C. (2015). Interest, Self-efficacy, and Academic Achievement in a Statistics Lesson. In K. A. Renninger, M. Nieswandt, S. Hidi (Eds.), Interest in Mathematics and Science Learning (pp. 203-224). doi:10.3102/978-0-935302-42-4
Hidi, S., & Renninger, A. (2006). The four-phase model of interest development. Educational Psychologist, 41(2), 111-127. doi:10.1207/s15326985ep4102_4
Hofer, M. (2010). Adolescents’ development of individual interests: A product of multiple goal regulation?. Educational Psychologist, 45(3), 149–166.
Hulleman, C. S., & Harackiewicz, J. M. (2009). Promoting interest and performance in high school science classes. Science, 326, 1410-1412. doi: 10.1126/science.1177067
Knogler, M., Harackiewicz, J. M., Gegenfurtner, A., & Lewalter, D. (2015). How situational is situational interest? Investigating the longitudinal structure of situational interest. Contemporary Educational Psychology, 43, 39-50. doi:10.1016/j.cedpsych.2015.08.004
Krapp, A., Hidi, S., & Renninger, K. A. (1992). Interest, learning and development. In K. A. Renninger, S. Hidi, & A. Krapp (Eds.), The role of interest in learning and development (pp. 3–25). Hillsdale, NJ: Erlbaum.
Krapp, A., & Prenzel, M. (2011). Research on interest in science: Theories, methods, and findings. International Journal of Science Education, 33, 27-50.
Köller, O., Baumert, J., & Schnabel, K. (2001). Does interest matter? The relationship between academic interest and achievement in mathematics. Journal for Research in Mathematics Education, 32, 448–470.
Maltese, A. V., & Harsh, J. A. (2015). Students’ pathways of entry into STEM. In K. A. Renninger, M. Nieswandt, S. Hidi (Eds.), Interest in mathematics and science learning (pp. 203-224). doi:10.3102/978-0-935302-42-4
Nieswandt, M. (2007). Student affect and conceptual understanding in learning chemistry. Journal of Research in Science Teaching, 44(7), 908–937. doi:10.1002/tea.20169.
Osborne, J., Simon, S., & Collins, S. (2003). Attitudes towards science: A review of the literature and its implications. International Journal of Science Education, 25, 1049–1079.
Renninger, K. A., Austin, L., Bachrach, J. E., Chau, A., Emmerson, M.S., King, B. R., Riley, K. R., Stevens, S. J. (2014). Going beyond whoa! That’s cool! Achieving science interest and learning with the ICAN Intervention. In S. Karabenick & T. Urdan (Eds.), Motivation-based learning interventions: Advances in motivation and achievement series (Vol. 18, 107–140). doi:10.1108/S0749-742320140000018003
Renninger, K. A., & Hidi, S. (2011). Revisiting the conceptualization, measurement, and generation of interest. Educational Psychologist, 46, 168–184. doi:10.1080/00461520.2011.587723
Rodríguez‐Aflecht, G., Jaakkola, T., Pongsakdi, N., Hannula-Sormunen, M., Brezovszky, B., & Lehtinen, E. (2018). The development of situational interest during a digital mathematics game. Journal of Computer Assisted Learning, 34, 259–268. doi: 10.1111/jcal.12239
Rotgans, J. I., & Schmidt, H. G. (2011). Situational interest and academic achievement in the active-learning classroom. Learning and Instruction, 21, 58-67. doi:10.1016/j.learninstruc.2009.11.001
Rotgans, J. I., & Schmidt, H. G. (2017a). How individual interest influences situational interest and how both are related to knowledge acquisition: A microanalytical investigation. The Journal of Educational Research. 671, 1–11. doi:/10.1080/00220671.2017.1310710
Rotgans, J. I. and Schmidt, H. G. (2017b). The relation between individual interest and knowledge acquisition. British Educational Research Journal, 43, 350-371. doi:10.1002/berj.3268
Rotgans, J. I. and Schmidt, H. G. (2017c). The role of interest in learning: knowledge acquisition at the intersection of situational and individual interest. In P. A. O'Keefe & J. M. Harackiewicz (Eds.) The science of interest (69-93). Cham : Springer 2017.
Tai, R. H., Liu, C. Q., Maltese, A. V., & Fan, X. (2006). Planning early for careers in science. Science, 312, 1143-1144.
Tapola, A., Jaakkola, T., & Niemivirta, M. (2014). The influence of achievement goal orientations and task concreteness on situational interest. Journal of Experimental Education, 82(4), 455-479.
Tapola, A., Veermans, M., & Niemivirta, M. (2013). Predictors and outcomes of situational interest during a science learning task. Instructional Science, 41(6), 1047–1064. doi:10.1007/s11251-013-9273-6
Uitto, A., Juuti, K., Lavonen, J., & Meisalo, V. (2006). Students' interest in biology and their out-of-school experiences. Journal of Biological Education, 40 (3), 124-129, doi:10.1080/00219266.2006.9656029