Methodologies for Studying Visual Expertise

Main Article Content

Andreas Gegenfurtner
Jeroen J. G. van Merriënboer

Abstract

Visual expertise can be defined as maximal adaptation to the requirements of a vision-intensive task. The process of developing a “good eye” in vision-intensive tasks is proposed, indicated, and elaborated by various measures contingent on diverse methodological arenas, all of which attempt to advance our understanding of what constitutes visual expertise. The aim of this special issue is to provide a reflection on this methodological pluralism and to offer a discussion of the affordances and constraints of some of these methodological approaches. Specifically, grounded on the medical domain, this special issue brings together a selection of nine articles that discuss cognitive-neurosciences, receiver operating characteristics (ROC) analysis, eye tracking, pupillometry, the flash-preview moving window paradigm, the combination of eye tracking data and verbal report data, the use of interviews and verbal protocols, ethnomethodology, and the expert performance approach. Two commentaries conclude the special issue. As an introduction, this article presents a comparative metaphorical mapping of visual expertise research. Metaphors are a useful tool for mirroring in simple terms the often complex paradigms underlying theory and applied research practice. We first identify four metaphors used in the analysis of visual cognition: activation, detection, inference, and practice. These metaphors are described with an empirical example and discussed to elicit (partly tacit) assumptions associated with prototypical method decisions. We then link the proposed metaphorical mapping to the contributions in this special issue. 

Article Details

How to Cite
Gegenfurtner, A., & van Merriënboer, J. J. G. (2017). Methodologies for Studying Visual Expertise. Frontline Learning Research, 5(3), 1-13. https://doi.org/10.14786/flr.v5i3.316
Section
Articles

References

Alexander, P. A., Schallert, D. L., & Reynolds, R. E. (2009). What is learning anyway? A topographical perspective reconsidered. Educational Psychologist, 44, 176-192. doi:10.1080/00461520903029006
Ansari, D., & Coch, D. (2006) Bridge over troubled waters: education and cognitive neuroscience. Trends in Cognitive Sciences, 10, 146-151. doi:10.1016/j.tics.2006.02.007
Arnheim, R. (1969). Visual thinking. Berkeley: University of California Press.
Bilalić, M. (2017). The neuroscience of expertise. Cambridge: Cambridge University Press.
Boshuizen, H. P. A. (1989). De ontwikkeling van medische expertise: Een cognitief-psychologische benadering. Maastricht: Maastricht University.
Boshuizen, H. P. A., & Schmidt, H. G. (2008). The development of clinical reasoning expertise; Implications for teaching. In J. Higgs, M. Jones, S. Loftus, & N. Christensen (Eds.), Clinical reasoning in the health professions (pp. 113-121). Oxford: Butterworth-Heinemann.
Boucheix, J.-M. (2017). The interplay between methodologies, tasks and visualisation formats in the study of visual expertise. Frontline Learning Research.
Boucheix, J.-M., Bonnetain, E., Avena, C., & Freysz, M. (2010). Benefits of learning technologies in medical training, from full-scale simulators to virtual reality and multimedia presentations. In J. P. Didier, E. Bigand, & A. Vinter (Eds.), Rethinking physical and rehabilitation medicine (pp. 171-191). New York: Springer.
Boucheix, J.-M., & Lowe, R. (in press). Generative processing of animated partial depictions fosters fish identification skills: Eye tracking evidence. Le Travail Humain.
Bransford, J., Stevens, R., Schwartz, D., Meltzoff, A., Pea, R., Roschelle, J., et al. (2006). Learning theories and education. Toward a decade of synergy. In P. A. Alexander & P. H. Winne (Eds.), Handbook of educational psychology (pp. 209-244). Mahwah, NJ: Erlbaum.
Burri, R. V., & Dumit, J. (2008). Social studies of scientific imaging and visualization. In E. J. Hackett, O. Amsterdamska, M. Lynch, & J. Wajcman (Eds.), Handbook of science and technology studies (pp. 297-317). Cambridge, MA: MIT Press.
Carsetti, A. (2004). The embodied meaning. Self-organization and symbolic dynamics in visual cognition. In A. Carsetti (Ed.), Seeing, thinking, and knowing. Meaning and self-organization in visual cognition and thought (pp. 307-327). Dordrecht: Kluwer.
Damsa, C. I., Froehlich, D. E., & Gegenfurtner, A. (in press). Reflections on empirical and methodological accounts of agency at work. In M. Goller & S. Paloniemi (Eds.), Agency at work: An agentic perspective on professional learning and development. New York: Springer.
De Jong, T., Van Gog, T., Jenks, K., Manlove, S., Van Hell, J., Jolles, J., et al. (2009). Explorations in learning and the brain. On the potential of cognitive neuroscience for educational science. Berlin: Springer.
Ericsson, K. A. (2004). Deliberate practice and the acquisition and maintenance of expert performance in medicine and related domains. Academic Medicine, 79, S70-S81. doi:10.1097/00001888-200410001-00022
Fox, S. E., & Faulkner-Jones, B. E. (2017). Eye-tracking in the study of visual expertise: Methodology and approaches in medicine. Frontline Learning Research. doi: doi:10.14786/flr.v5i3.258
Garfinkel, H. (1967). Studies in ethnomethodology. Englewood Cliffs, NJ: Prentice Hall.
Gegenfurtner, A. (2013). Transitions of expertise. In J. Seifried & E. Wuttke (Eds.), Transitions in vocational education (pp. 305-319). Opladen: Budrich.
Gegenfurtner, A., Kok, E., Van Geel, K., De Bruin, A., Jarodzka, H., Szulewski, A., & Van Merriënboer, J. J. G. (2017a). The challenges of studying visual expertise in medical image diagnosis. Medical Education, 51, 97-104. doi:10.1111/medu.13205
Gegenfurtner, A., Kok, E. M., Van Geel, K., De Bruin, A. B. H., & Sorger, B. (2017b). Neural correlates of visual perceptual expertise: Evidence from cognitive neuroscience using functional neuroimaging. Frontline Learning Research. doi:10.14786/flr.v5i3.259
Gegenfurtner, A., Lehtinen, E., Jarodzka, H., & Säljö, R. (2017c). Effects of eye movement modeling examples on adaptive expertise in medical image diagnosis. Computers & Education, 113, 212-225. doi:10.1016/j.compedu.2017.06.001
Gegenfurtner, A., Nivala, M., Säljö, R., & Lehtinen, E. (2009). Capturing individual and institutional change: Exploring horizontal versus vertical transitions in technology-rich environments. In U. Cress, V. Dimitrova, & M. Specht (Eds.), Learning in the synergy of multiple disciplines. Lecture Notes in Computer Science (pp. 676-681). Berlin: Springer. doi:10.1007/978-3-642-04636-0_67
Gegenfurtner, A., & Seppänen M. (2013). Transfer of expertise: An eye-tracking and think-aloud study using dynamic medical visualizations. Computers & Education, 63, 393-403. doi:10.1016/j.compedu.2012.12.021
Gegenfurtner, A., Siewiorek, A., Lehtinen, E., & Säljö, R. (2013). Assessing the quality of expertise differences in the comprehension of medical visualizations. Vocations and Learning, 6, 37-54. doi:10.1007/s12186-012-9088-7
Gegenfurtner, A., & Szulewski, A. (2016). Visual expertise and the Quiet Eye in sports - comment on Vickers. Current Issues in Sport Science, 1, 108. doi:10.15203/CISS_2016.108
Gegenfurtner, A., Vauras, M., Gruber, H., & Festner, D. (2010). Motivation to transfer revisited. In K. Gomez, L. Lyons, & J. Radinsky (Eds.), Learning in the disciplines: ICLS2010 proceedings (Vol. 1, pp. 452-459). Chicago, IL: International Society of the Learning Sciences.
Gibson, J. J. (1979). The ecological approach to visual perception. Boston, MA: Houghton.
Goodwin, C. (1994). Professional vision. American Anthropologist, 96, 606-633. doi:10.1525/aa.1994.96.3.02a00100
Goodwin, C. (2000). Practices of seeing: Visual analysis: An ethnomethodological approach. In T. van Leeuwen & C. Jewitt (Eds.), Handbook of visual analysis (pp. 157-182). London: Sage.
Greeno, J. A. (2006). Learning in activity. In R. Sawyer (Ed.), The Cambridge handbook of the learning sciences (pp. 79-96). Cambridge, MA: Cambridge University Press.
Gruber, H., & Degner, S. (2016). Expertise und Kompetenz [Expertise and competence]. In M. Dick, W. Marotzki, & H. Mieg (Eds.), Handbuch Professionsentwicklung (pp. 173-180). Bad Heilbrunn: Klinkhardt.
Hakkarainen, K., Palonen, T., Paavola, S., & Lehtinen, E. (2004). Communities of networked expertise: Professional and educational perspectives. Amsterdam: Elsevier.
Haller, S., & Radue, E. W. (2005). What is different about a radiologist’s brain? Radiology, 236, 983-989. doi:10.1148/radiol.2363041370
Helle, L. (2017). Prospects and pitfalls in combining eye-tracking data and verbal reports. Frontline Learning Research. doi:10.14786/flr.v5i3.254
Helle, L., Nivala, M., Kronqvist, P., Gegenfurtner, A., Björk, P., & Säljö, R. (2011). Traditional microscopy instruction versus process-oriented virtual microscopy instruction: A naturalistic experiment with control group. Diagnostic Pathology, 6, S81-S89. doi:10.1186/1746-1596-6-S1-S8
Ivarsson, J. (2017). Visual expertise as embodied practice. Frontline Learning Research. doi:10.14786/flr.v5i3.253
Jarodzka, H., & Boshuizen, H. P. A. (2017). Unboxing the black box of visual expertise in medicine. Frontline Learning Research.
Jarodzka, H., Scheiter, K., Gerjets, P., & Van Gog, T. (2010). In the eyes of the beholder: How experts and novices interpret dynamic stimuli. Learning and Instruction, 20, 146-154. doi:10.1016/j.learninstruc.2009.02.019
Johansson, E., Lindwall, O., & Rystedt, H. (2017). Experiences, appearances, and interprofessional training: The instructional use of video in post-simulation defbriefings. International Journal of Computer-Supported Collaborative Learning, 12, 91-112. doi:10.1007/s11412-017-9252-z
Knogler, M., Gegenfurtner, A., & Quesada Pallarès, C. (2013). Social design in digital simulations: Effects of single versus multi-player simulations on efficacy beliefs and transfer. In N. Rummel, M. Kapur, M. Nathan, & S. Puntambekar (Eds.), To see the world and a grain of sand: Learning across levels of space, time, and scale (Vol. 2, pp. 293-294). Madison, WI: International Society of the Learning Sciences.
Kok, E. M., Van Geel, K., Van Merriënboer, J. J. G., & Robben, S. G. F. (2017). What we do and do not know about teaching medical image interpretation. Frontiers in Psychology, 8, 309. doi: 10.3389/fpsyg.2017.00309
Kolodner, J. L. (1983). Towards an understanding of the role of experience in the evolution from novice to expert. International Journal of Man-Machine Systems, 19, 497-518. doi:S0020-7373(83)80068-6
Koschmann, T., LeBaron, C., Goodwin, C., Zemel, A., & Dunnington, G. (2007). Formulating the triangle of doom. Gesture, 7, 97-118. doi:10.1075/gest.7.1.06kos
Koschmann, T., & Zemel, A. (2009). Optical pulsars and black arrows: Discoveries as occasioned productions. Journal of the Learning Sciences, 18, 200-246. doi:10.1080/10508400902797966
Krupinski, E. A. (2017). Receiver operating characteristics. Frontline Learning Research. doi: doi:10.14786/flr.v5i3.250
Krupinski, E. A., Graham, A., R., & Weinstein, R. S. (2013). Characterizing the development of visual search expertise in pathology residents viewing whole slide images. Human Pathology, 44, 357-364. doi:10.1016/j.humpath.2012.05.024
Kundel, H. L., Nodine, C. F., & Carmody, D. (1978). Visual scanning, pattern recognition, and decision-making in pulmonary nodule detection. Investigative Radiology, 13, 175-181.
Kundel, H. L., Nodine, C. F., Conant, E. F., Weinstein, S. P. (2007). Holistic component of image perception in mammogram interpretation: Gaze-tracking study. Radiology, 242, 396-402. Doi:10.1148/radiol.2422051997
Lehtinen, E. (2012). Learning of complex competences: On the need to coordinate multiple theoretical perspectives. In A. Koskensalo, J. Smeds, R. de Cillia, & Á. Huguet (Eds.), Language: Competencies - change - contact (pp. 13-27). Berlin: LIT.
Lesgold, A., Rubinson, H., Feltovich, P., Glaser, R., Klopfer, D., & Wang, Y. (1988). Expertise in a complex skill: Diagnosing X ray pictures. In M. T. H. Chi, R. Glaser, & M. J. Farr (Eds.), The nature of expertise (pp. 311-342). Hillsdale, NJ: Erlbaum.
Lindwall, O., & Lymer, G. (2008). The dark matter of lab work: Illuminating the negotiation of disciplined perception in mechanics. Journal of the Learning Sciences, 17, 180-224. doi:10.1080/10508400801986082
Litchfield, D., & Donovan, T. (2017). The flash-preview moving window paradigm: Unpacking visual expertise one glimpse at a time. Frontline Learning Research. doi:10.14786/flr.v5i3.269
Livingston, E. (1986). The ethnomethodological foundations of mathematics. London: Kegan Paul.
Love, B. C., Medin, D. L., & Gureckis, T. M. (2004). SUSTAIN: A network model of category learning. Psychological Review, 111, 309-332. doi:10.1037/0033-295X.111.2.309
Meltzoff, A. N., Kuhl, P. K., Movellan, J., & Sejnowski, T. J. (2009). Foundations for a new science of learning. Science, 325, 284-288. doi:10.1126/science.1175626
Morita, J., Miwa, K., Kitasaka, T., Mori, K., Suenaga, Y., Iwano, S., et al. (2008). Interactions of perceptual and conceptual processing: Expertise in medical image diagnosing. International Journal of Human-Computer Studies, 66, 370-390. doi:10.1016/j.ijhcs.2007.11.004
Paavola, S., Lipponen, L., & Hakkarainen, K. (2002). Epistemological foundations for CSCL: A comparison of three models of innovative knowledge communities. In G. Stahl (Ed.), Computer support for collaborative learning: Foundations for a CSCL community. CSCL 2002 Proceedings (pp. 24-32). Hillsdale, NJ: Erlbaum.
Palonen, T., Boshuizen, H. P. A, & Lehtinen, E. (2014). How expertise is created in emerging professional fields. In S. Billett, T. Halttunen, & M. Koivisto (Eds.), Promoting, assessing, recognizing and certifying lifelong learning: International perspectives and practices (pp. 131-150). New York: Springer.
Patel, V. L., Arocha, J. F., & Zhang, J. (2005). Thinking and reasoning in medicine. In K. J. Holyoak (Ed.), The Cambridge handbook of thinking and reasoning (pp. 727-750). Cambridge, MA: Cambridge University Press.
Patel, V. L., & Groen, G. J. (1986). Knowledge-based solution strategies in medical reasoning. Cognitive Science, 10, 91-116. doi:10.1207/s15516709cog1001_4
Quesada-Pallarès, C., & Gegenfurtner, A. (2015). Toward a unified model of motivation for training transfer: A phase perspective. Zeitschrift für Erziehungswissenschaft, 18 (Suppl. 1), 107-121. doi:10.1007/s11618-014-0604-4
Säljö, R. (2009). Learning, theories of learning, and units of analysis in research. Educational Psychologist, 44, 202-208. doi:10.1080/00461520903029030
Säljö, R. (2012). Literacy, digital literacy and epistemic practices: The co-evolution of hybrid minds and external memory systems. Nordic Journal of Digital Literacy, 7, 5-19.
Sangin, M., Molinari, G., Nüssli, M., & Dillenbourg, P. (2008). How learners use awareness cues about their peer knowledge? Insights from synchronized eye-tracking data. International Conference of the Learning Sciences Proceedings.
Sauseng, P., & Klimesch, W. (2008). What does phase information of oscillatory brain activity tell us about cognitive processes? Neuroscience and Biobehavioral Reviews, 32, 1001-1013. doi:10.1016/j.neubiorev.2008.03.014
Seppänen, M., & Gegenfurtner, A. (2012). Seeing through a teacher’s eyes improves students’ imaging interpretation. Medical Education, 46, 1113-1114. doi:10.1111/medu.12041
Sfard, A. (1998). On two metaphors for learning and the dangers of choosing just one. Educational Researcher, 27, 4-13. doi:10.3102/0013189X027002004
Siewiorek, A., & Gegenfurtner, A. (2010). Leading to win: The influence of leadership style on team performance during a computer game training. In K. Gomez, L. Lyons, & J. Radinsky (Eds.), Learning in the disciplines: ICLS2010 proceedings (Vol. 1, pp. 524-531). Chicago, IL: International Society of the Learning Sciences.
Simpson, S. A., & Gilhooly, K. J. (1997). Diagnostic thinking processes: Evidence from a constructive interaction study of electrocardiogram (ECG) interpretation. Applied Cognitive Psychology, 11, 543-554. doi:10.1002/(SICI)1099-0720(199712)11:6<543::AID-ACP486>3.0.CO;2-C
Slack, R., Hartswood, M., Procter, R., & Rouncefield, M. (2007). Cultures of reading: On professional vision and the lived work of mammography. In S. Hester & D. Francis (Eds.), Orders of ordinary action. Respecifying sociological knowledge (pp. 175-193). Aldershot: Ashgate.
Smith, P. L., & Ratcliff, R. (2009). An integrative theory of attention and decision-making in visual signal detection. Psychological Review, 116, 283-317. doi:10.1037/a0015156
Stevens, R., & Hall, R. (1998). Disciplined perception: Learning to see in technoscience. In M. Lampert & M. L. Bunk (Eds.), Talking mathematics in school: Studies of teaching and learning (pp. 107-149). New York: Cambridge University Press.
Suchman, L. (2007). Human-machine reconfigurations. Plans and situated actions (2nd ed.) Cambridge, MA: Cambridge University Press.
Szulewski, A., Gegenfurtner, A., Howes, D., Sivilotti, M., & Van Merriënboer, J. J. G. (in press). Measuring physician cognitive load: Validity evidence for a physiologic and a psychometric tool. Advances in Health Sciences Education. doi:10.1007/s10459-016-9725-2
Szulewski, A., Kelton, D., & Howes, D. (2017). Pupillometry as a tool to study expertise in medicine. Frontline Learning Research. doi:10.14786/flr.v5i3.256
Van de Wiel, M. (2017). Examining expertise using interviews and verbal protocols. Frontline Learning Research. doi:10.14786/flr.v5i3.257
Williams, M. A., Fawver, B., & Hodges, N. J. (2017). Using the ‘expert performance approach’ as a framework for examining and enhancing skill learning: Improving understanding of expert learning. Frontline Learning Research. doi:10.14786/flr.v5i3.267