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Abstract 
 

Lately, new materialism has been proposed as a theoretical framework to better 
understand material-dialogic relationships in learning, and concurrently 

network analysis has emerged as a method in science education research. This 

paper explores how to include materiality in network analysis and reports the 
development of a method to construct network data from video. The approaches, 

1) information flow, 2) material semantic and 3) material engagement, were 

identified based on the literature on network analysis and new materialism in 

science education. The method was applied and further improved with a video 
segment from an upper secondary school physics lesson. The example networks 

from the video segment show that network analysis is a potential research method 

within the materialist framework and that the method allows studies into the 
material and dialogic relationships that emerge when students are engaged in 

investigations in school. 
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1. Introduction 
 

Science education research has been criticized for its tendency to ignore material culture and 
how it is theoretically centred in social culture and especially in discursive practices (Milne & 

Scantelebury, 2019; Hetherington et al., 2018). In recent years, new materialism has been seen as a 

potential theoretical approach to start answering this criticism. 

Although there are different orientations of new materialism, it is quite widely agreed that the 
privileged role of humans is diminished and the role and meaning of materials is emphasised (Gamble 

et al., 2019). Current research engaging in new materialism has studied, for example, science teachers’ 

thoughts about the role of materials (Hetherington & Wegerif, 2018) and the use of microblogging to 
support students’ conceptual development (Cook, Warwick, Vrikki, Major, & Wegerif, 2019). There 

has also been theoretical work to understand better the role of materials in science learning by 

Hetherington et al. (2018), who propose a theoretical framework based on Barad’s agential realism and 

a Bakhtinian dialogic pedagogy. 

For science education, new materialism implies that, in addition to the students, materials such 
as laboratory equipment and instruments themselves play an active role in constructing knowledge. 

Moreover, knowledge is not independent of the context, such as the investigations and the material 

world in which it was constructed. This active role of materials has not been adequately theorised even 

though there has been research into how and why students should engage in investigative activities 
(Hetherington et al., 2018). Although different research orientations have included materiality to a 

varied degree, typically the instruments are seen as passive tools that when used correctly will produce 

the expected or correct values. The instruments are given higher authority than the students who use 
them, and thus the instruments are taken for granted (Milne, 2019). For example, project-based learning 

(PBL) in science sees instruments in conjunction with cognitive tools (Krajcik & Shin, 2014). The 

cognitive tools enable students to achieve learning goals that are otherwise unattainable. For example, 

using data loggers and computer-based laboratory tools, computers function as cognitive tools that show 
graphical representations of the data. These representations then allow students to see patterns in the 

data, providing insight into the phenomena students are investigating and enabling knowledge 

construction. 

In the new materialist view, computers are seen as active participants in knowledge 

construction. A Computer can modify or even process information or data; for example, the raw data 
acquired by a sensor from the phenomena is processed and displayed in graphical form. Therefore, the 

computer offers information in a more comprehensible form to the students (actors) who are affected 

and can construct new knowledge of the phenomena. Thus, the computer has become non-human actor 
in knowledge construction. This kind of interconnected or networked nature of knowledge construction 

is a feature of new materialist theories, especially in the work of Bruno Latour (Latour & Woolgar, 

1979; Latour, 2005). The Actor-Network Theory (ANT) aims to explain social by tracing associations 

of actor-networks that include human and non-human actors (Latour, 2005). In education, ANT has 
been used to understand curriculum or policy development (Fenwick & Edwards, 2017) and has also 

been employed in educational reform studies (Nespor, 2002; Fenwick, 2011). 

We focus here on students’ investigations and collaboration. Consequently, we use a different  

conceptualisation of a network than the actor-networks of ANT. Networks based on graph theory are 

used to analyse and visualise the collection of connected elements, such as communication or social 
systems (Barabási, 2012). In science education research, it has been proposed that these network-based 

approaches complement other research methods (Koponen & Mäntylä, 2020) and they have been used 

to study, for example, classroom interactions (e.g., Bokhove, 2018) and classroom discussions (e.g., 
Bruun, Lindahl, & Linder, 2019). In education, networks are applied mainly through Social Network 

Analysis (SNA). Although the two network approaches, SNA and ANT, differ in their theoretical 

background and applications, both could benefit from the ideas of the other (Vicsek et al., 2016). In 
particular, the SNA researcher should develop methods that include non-human actors in the networks 

alongside human actors. 
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In this article, we explore how to include materiality in network analysis and develop a method 

to construct network data from video within the new materialist perspective in order to understand better 

the role of material and dialogic relationships in science learning. Students’ investigations provide a rich 

setting to develop a method applying sophisticated network analysis techniques. We begin with a brief 
review concerning the way in which networks have been used in science education research, and 

examine what possibilities there are to include materiality in different network approaches. Additionally, 

an authentic video sample from an upper secondary school physics lesson is used to develop new 
materialist network approaches. 

 

 

 

2. Network Analysis in Science Education Research 
 

A network is a collection of nodes (also called vertices or points) that have pairwise connections 
known as edges (also called links or arcs) that represent a real-world system. The nodes can represent, 

for example, computers, humans or cities, and the edges represent internet connections, social 

relationships or railway sections, respectively. Depending on what the network represents, the edges 
may be directional, showing the direction of the connections or edges can have weight to indicate the 

strength of the connection. Weighted directed networks are also possible. Examples of basic directed 

and weighted networks are shown in Figure 1. 

 

 

 

 
Figure 1. Examples of a directed simple network (left) and a weighted network (right). 

The analysis of networks is based on local or global measures characterising the whole network 
or distinct nodes or edges. One common network measure in social sciences is the different centralities 

(Knoke & Yang, 2008), like the degree centrality, which refers to the number of edges a node has. For 

example, node E is the most central with a node degree of four in Figure 1. The more edges a node has, 

the more central and thus more relevant it is. Even though centrality measures are often used, networks 
can also be analysed using network motifs or roles. Network motifs are considered the building blocks 

of networks (Milo, Shen-Orr, Itzkovitz & Kashtan, 2002). For example, in Figure 1 nodes C, D and G 

form one triadic motif, and in the directed network the role for nodes C and G is the source, whereas D 
node’s role is the sink. 

Zweig (2016) argues that for a network analysis to be purposeful there should be flow within 

the network. This flow originates from local exchange of, for example, used goods, money or e-mails 
that are transferred or replicated between nodes. In different types of networks this flow is implied to be 

information; for example, computers connected with the internet or other communication networks. 

Similarly, social networks enable exchange of information between people. However, whereas e-mails 
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are often sent to multiple recipients, confidential gossip is told to one person at a time, and therefore the 

flow process is different in the respective networks. Understanding the flow process within the network 

is important in order to choose the right analysis methods, as different centrality measures are 

appropriate for different types of flow (Borgatti, 2005). 

In education research, network analysis is often understood as the analysis of social networks. 

Social network analysis (SNA) is the study of social connections and structures using networks 

(Wasserman, 1994). In SNA the nodes represent people, and the edges represent social connections. 
These connections can be constructed from social media, questionnaires or otherwise reported 

relationships or interactions. For example, SNA has been used to study online written communications 

(e.g., Martínez, Dimitriadis, Rubia, Gómez, & De la Fuente, 2003; Turkkila & Lommi, 2020) and 
classroom interactions. These interactions have been defined differently, but usually they are connected 

to student discourse. The types of interactions include each individual utterance between actors 

(Bokhove, 2018), taking turns in argumentation (González-Howard, 2019), or discussion in joint work 
(Dou & Zwolak, 2019). 

In addition to analysing social networks, science education research networks have also been 

used to analyse texts or the content of discussion. For example, Bruun et al. (2019) applied semantic 

networks to analyse annotated speech as text to characterise the whole content of the discussion. This 
approach adopts the same techniques used in the network analysis of textbooks (Yun & Park, 2018) and 

students’ written answers (Wagner et al., 2020). Similar, but distinct from semantic networks, are 

conceptual networks that study subject-specific concepts found in texts or utterances (Caballero et al. 

2020) or in concepts maps (Koponen & Nousiainen, 2019). There is also Epistemic Network Analysis 
(ENA), which considers epistemic elements coded from text or speech as nodes instead of single words 

or concepts (Shaffer at al., 2009). Co-occurrence of the epistemic elements are mapped temporally to 

investigate, for example, how students share and improve ideas (Oshima, Oshima & Saruwatari, 2020) 
and how student discourse supports the development of scientific practices (Bressler et al., 2019). 

 
2.1 Including the material 

 

New materialism sees humans as only one type of agent that never acts in isolation of each other 

(Bennett, 2010). In science classrooms or laboratories there are other non-human actors with whom 

humans act together. Thus, the network could comprise these human and non-human actors instead of 

solely humans. If a network of students can be characterised by the exchange of information, it would 
be possible to consider laboratory equipment and digital tools as actors capable of providing information 

(e.g., a graph on a computer screen) to the students. Similarly, the measuring apparatus provides students 

with qualitative information about the phenomenon they are studying (assuming that the phenomenon 
is visible). Thus, a network could be constructed where, for example, computers and other devices that 

are used to measure and observe phenomena would be nodes alongside students and there would be 

information exchange between these nodes that would constitute directed edges within the network. 

If the students are engaged with materials during their discussions, these materials should appear 
within the student dialogue and therefore within a network constructed from annotated dialogue. 

However, how the materials appear within the annotations might not be straightforward, and 

combination with content analysis might be needed. An approach based on semantic networks rather 

than conceptual networks should be more applicable as the material references may or may not be 
connected to (physics) concepts. In any case, the network would consist of words relating to the topic 

of students’ investigations, science concepts or materials as nodes and semantic connection between 

words are represented by edges. This kind of material semantic network could show how materials are 
semantically linked or embedded within student dialogues. 

An additional approach is inspired by assemblages of the material-dialogic framework (see of 

Hetherington et al., 2018). These assemblages are continually formed, dissolved and re-formed by 
agents engaging materially and dialogically. Engaging with materials is seen as embodied actions, like 
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pointing or manipulating an object, and hence bringing the material directly into the dialogue. Similarly, 

students engage with each other verbally, and through these engagements spoken dialogue and materials 

are linked. Thus, it would be possible to construct a network from these material and verbal 

engagements, where engagements are represented by the edges in a network of agents. 

In conclusion, we have identified three possibilities for new materialist network approaches: 

information flow, material-semantic and material engagement networks. In the next section we explore 

how these approaches can be applied with a video sample of students’ investigations. 

 

 

 

3. Constructing material network data from video 
 

Typically, in video-based research, video file or recording itself is not considered as data but is 

instead a source of data. How to define that data is a key challenge in video analysis (Erickson, 2012). 

Our aim is to construct network data from video; the information used for this construction is student 
(and teacher) dialogue and their embodied action with each other and the materials evident within the 

video. We begin with an outline of the method to give general overviews of the process. Afterwards we 

provide a detailed account of the video selection and specific descriptions for each network approach. 

 
3.1 Overview of the data processing 

 

The flowchart in Figure 2 shows an outline of the process. After selecting a video segment for 

analysis, precise annotations of student and teacher talk are made. Next, descriptions of students’ 

embodied actions are added in brackets next to the annotations. Similarly, students’ referencing 

materials are described and added in brackets into the annotations. The steps up to this point are made 
within the annotation software when referencing back to the video is needed. 
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Figure 2. Flowchart of the data processing. 

 
 

Next, the annotations with the description of student actions and references are exported from 

the annotation software as a spreadsheet. This spreadsheet is then copied onto three separate 
spreadsheets for the different networks. 

The individual spreadsheets are used to code information exchange, conduct the manual text 

processing and code material and verbal engagements. These are then used with network analysis 

software to construct the network data. 

 
3.2 Video selection and annotations 

 

The material for constructing the network data were obtained from videos collected as part of a 

larger research project in which project-based learning units of Newtonian mechanics were co-designed 
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with in-service teachers (Juuti et al., 2021; Schneider et al., 2020). The PBL units provided rich sources 

for student activities in which computers and laboratory equipment could play an active role in the 

knowledge construction. 

Altogether, six focus groups of three to four students from five classrooms of two separate upper 

secondary schools participated in the study. The activities of each focus group were recorded with two 

small video cameras during the PBL units, which were six to seven lessons long. During the unit, 
students planned and investigated the motions of different objects, explored what causes changes in the 

motion, made models for the objects’ motion with constant speed and acceleration, and constructed 

explanations. Video selection and analysis adapts the three-level approach of video-based research 
proposed by Ash (2007). At each level, videos are divided into shorter segments that are analysed in 

more detail. Here the first level constituted discrete phases of instructional activities that were observed 

and coded in real time by the researcher operating the video cameras. The raw video material (32 hours) 

was cut according to the coded phases of instructional activities, resulting in 16 individual cases of 
student investigations. One such case (duration of 13 mins) was selected for the analysis. The selection 

was based on video and audio quality, the clarity of student actions and lack of distractions for the 

students. The selected case is from the early stage of the PBL unit where three students, S1, S2 and S3, 
investigate the motion of a car on a track using computer-based data loggers and an ultrasound sensor. 

A sketch of the data collection situation is shown in Figure 3. After data collection, the students (S1 and 

S2) beside the apparatus (A) moved back next to student S3 by the computer (C). 
 

 

Figure 3. 3D-sketch showing students’ positions while they measure the speed of the car. While 

discussing the results, all the students are behind the computer C (yellow). The measuring apparatus, 

A, consisting of the track (red), the car (blue) and the ultrasound sensor (green). 

The selected case was further divided into shorter, distinct segments of investigation subtasks 
identified from the video. These tasks were, for example, preparation, collecting data and interpreting 

data that were inductively identified from the video. There were clear transitions between these segments 

where the students, for example, agreed to move on from collecting data to interpreting results. 
Descriptions of each segment are given in Table 1. 
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Table 1 

Segments of distinct student activities during students’ investigations 
 

Segment Label of the 
segment 

Description of the segment. Length Number of 
utterances 

1 Preparation Student S3, who owns the laptop, stays with the 

computer while the two other students move 

next to the apparatus (i.e., the track). Student S2 

takes the ultrasonic sensor and holds it at the far 

end of the track. Student S1 takes the car and 

prepares to project it down the track it for the 

measurement. 

24 s 15 

2 Collecting data The students measure the speed of the car three 

times as student S3 is not satisfied with the 

graphs from the first two attempts. The 

apparatus and the computer provide qualitative 

and quantitative information of the speed of the 

car. 

1min 14 s 27 

3 Interpreting data The students discuss and interpret the graph. 

They ponder what to do next. The computer 

provides information of the measurement. 

1min 17 s 43 

4 Teacher support The students ask the teacher how to analyse the 

graph. The teacher also gives additional 

instructions. The computer provides 

information of the measurement. 

50 s 20 

5 Analysing data The students analyse the graph and discuss what 

the results mean and what number in the results 

box indicates the slope. The students discuss 

what they should analyse. The computer 

provides information of the measurement. 

2min 36 s 60 

6 Teacher support 2 The students ask the teacher which results are 

the slope and what else they should analyse. 

The teacher gives brief instructions. The 

computer provides information on the 

measurement. 

39 s 20 

7 Collecting data 2 The students take new measurements with the 

same set up and positions as in the first 

measurement. The second attempt is successful 

with the car clearly being projected faster than 

before. The apparatus and the computer provide 

qualitative and quantitative information on the 

speed of the car. 

47 s 23 

8 Constructing an 

explanation 

The students construct an explanation after 

analysing the new graph and comparing the 

slopes of the graphs from the first and second 

measurements. The students arrive at the 

conclusion that with a higher speed the slope of 

the graph is greater. The computer provides 

information on the measurement. 

2min 28 s 37 
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The third segment, interpreting data, was chosen for initial trials for constructing the network 

data before analysing the other segments. The segment was chosen so that it was not too short, had the 

fewest number of outside distractions, and seemed to contain all the necessary student actions and 

engagements, as detailed in sections 3.3.-3.5. 

All three approaches (sections 3.3-3.5) to build the network data required annotations of the 

dialogue. Additionally, gestures and embodied actions were needed to interpret information exchange, 

the materials referenced and material engagements. For example, talk includes many demonstrative 
pronouns (i.e., this, that) that cannot be deciphered without gestures or embodied actions. The student 

talk was annotated using ELAN annotation software (2019). Next, different embodied actions and 

gestures were described next to the annotation in brackets, and finally the meanings of demonstrative 
pronouns were added in brackets next to the pronouns. An excerpt of the annotations is shown in Table 

2. 

Table 2 

Excerpt of annotations from segment 3 Interpreting data. Student S2 was present but did not 

participate in the discussion. 
 

 Student S1 Student S2 Student S3 

1 That [part of the graph] is the first 

[part of the car movement] one 

  

2   Over here, here [part of the graph] it [the 
car], like, slows down [points at the 
computer screen] 

3 All look at the computer screen in silence 

4   So, that [part of the graph] is it [part of the 
car movement] [points at the computer 
screen] 

5 At this point [points at the computer 
screen] when it [the car] hits that end 
[points at the end of the track] it [the 
car] slows down 

  

6   Yeah 

7 But then it [the car] starts to 
accelerate again when it [the car] 
returns 

  

 
In practice, the process of constructing the networks was iterative, namely, looking at the 

annotated data, going back to the video data and making notes and observations of aspects that needed 

to be included for constructing the network data. After the initial networks of segment 3 were completed, 

the practice of constructing the network data was applied to the other segments and revised where 

necessary. 

 
3.3 Information Flow 

 

Information flow can be used to characterise social or communication networks (Zweig, 2016). 

For example, people connected through social media can transmit information between each other or 
pass information from one to another. Similarly, online communication assumes an exchange of 

information. However, what this information is, is rarely explicitly stated. 

Even if information is not explicitly defined, in written online communications building the 

network is straightforward. For example, nodes represent people and edges correspond to the messages 
between people. However, face-to-face communication differs from online communications. Face-to- 

face communication includes gestures and other non-verbal communication that are not possible in 

online communication. Spoken utterances are also generally shorter and more indecisive than online 
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messages. Additionally, dialogue contains small utterances that maintain the socially expected structure 

of the dialogue (Heritage, 1984). These are, for example, small agreements (yes, yeah). Thus, not all 

utterances contain relevant information for knowledge construction. Additionally, demonstrative 

pronouns with gestures like pointing can indicate information exchange that is not clear from the text 
alone. Lastly, student discussion might contain irrelevant talk. For example, the students might comment 

on some outside distraction. 

The network based on information flow represents the exchange of information by having the 

students as nodes and edges. To build this network, consideration is first needed when to include an 

edge, meaning when information is exchanged between the actors. Information might have different 

definitions in different fields of science. In our case, meaningful information is connected to knowledge 
construction. While conducting the investigation, students need conceptual knowledge about the 

phenomena they are investigating, but they also need procedural knowledge concerning how to conduct 

the experiment. Thus, information is exchanged when the student’s utterance, or utterance in 
conjunction with embodied actions, contains information related to the phenomena they are 

investigating (e.g., the first utterance of student 1 in Table 1), or how to investigate that phenomenon 

and the receiving person is present and not distracted. 

Information exchange from the material world is more challenging, as materials continuously 
provide information. However, continuously tracking this information is impractical and therefore only 

clear instances of humans looking at the materials like the computer screen or the measuring apparatus 

are considered. Additionally, as the ultrasound sensor measures the distance of the car as a function of 

time, it transmits this information to the computer. 
 

 

Figure 4. The process of constructing an information flow network. 

The annotated dialogue with the embodied actions was used to code the information flow into 
a table on a from-to basis. An example of this, with corresponding network visualisation, is shown in 

Figure 4. Each row in the table is a directed edge between nodes (from left to right). The table, and thus 

the networks, may have multiple edges between them and therefore it is possible to construct weighted 
networks. 

 
3.4 Material Semantic 

 

A semantic network consists of words and the semantic connections between these words. 

Semantic connections can be found after text pre-processing that removes the structural features of the 
text. The pre-processing includes removing punctuation, converting capitals to lower case, and 

removing words that are used for the structure of the sentence rather than to carry meaning. The material 

semantic network was built on the ideas of thematic discourse network analysis introduced by Bruun et 
al. (2019). The thematic discourse network analysis used an iterative process that combines network 

analysis and qualitative discourse analysis to study students’ group discussions. Qualitative discourse 
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analysis was used to revise initial semantic networks with the following steps: grammatical reductions 

to reduce all words referring to the same concept/meaning to one word, combine synonyms and treat 

slang words as synonyms, treat phrases as a single word and remove indefinite pronouns that do not 

carry meaning. 

In addition to synonyms, we considered homonyms as they convey a different meaning even 

though the word has the same spelling. For example, the Finnish word ‘aika’ means ‘time’ or ‘quite’. 

Thus, it was changed to a different synonym with the meaning ‘quite’ so as not to combine these two 
meanings with the same node. 

During the dialogue, students refer to materials using demonstrative pronouns. For example, the 

utterance “Here it slows down” refers to the graph (“here”) and to the car on the track (“it”). Therefore, 

to include the material aspects of the dialogue, all demonstrative pronouns that referred to some material 
aspect or physics knowledge were changed to those references. 

In practice, to build the material semantic network from the annotated speech, we considered 

the following steps for text processing: 

1. Replace demonstrative pronouns with the references 

2. Grammatical reductions 

3. Homonyms, synonyms and slang (spoken expressions) 

4. Remove irrelevant utterances (e.g., reacting to outside distraction) 

5. Remove punctuation and structural words (computationally). 

After processing, the text network was built. Each distinct word is a node, and a directed edge is added 

between node A and node B when word B follows word A. Figure 5 visualises this process and shows 

the difference between the network straight from the text and after text processing. 

 

 

Figure 5. Example of a network without text processing (above) and a material semantic network 

constructed after text processing. 

For the complete material semantic network, all unique words or connected phrases in the 

utterances are added as nodes. Then, edges are added between nodes from consecutive words within the 

utterances. Here again, there can be multiple connections between the same nodes as two consecutive 

words can be present in many different utterances and thus the network can also be constructed as a 
weighted network. 

 
3.5 Material engagement 

The material engagement network is built around the notion of intra-acting assemblages of the 

material-dialogic framework of Hetherington et al. (2018). As a network representation, an assemblage 
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would consist of human (i.e., students and teacher) and non-human (i.e., computer and apparatus) actors 

as nodes. Gradually, the assemblages form the material engagement network when the assemblages are 

formed and re-formed through the students’ verbal and material engagements. Thus, the network has 

the students (and teacher), the computer and the apparatus as nodes just like the information flow 
network. The engagements are represented, however, by undirected edges as the engagement is shared 

between the actors without any meaningful direction for the engagement. 

Human actors engage with non-human actors through embodied actions or references. In doing 

so, they form an edge between human and non-human nodes. Similarly, an edge between two human 

nodes is formed with verbal engagements when a student reacts to another student’s utterance, giving 

additional voice to the dialogue. 

Figure 6 shows an example of material and verbal engagements. The first utterance of student 
S1 contains material engagements with the computer and the measuring apparatus that the student points 

at and references. Next, student S3 verbally engages with S1 by agreeing and inviting student S1 to 

continue. Student S1 accepts the invitation and verbally engages with student S3, and again with the 

apparatus, by referring to the car. 
 

Figure 6. The process of constructing an information material engagement network. 

The table with the material engagements is a collection of edges between nodes, as in the 

information flow network. Here there is no direction for the edges, but there may be multiple edges and 
therefore it is possible to construct weighted networks. 

 

 

 

4. Constructed Networks 
 

Three different types of networks were constructed for each eight segments (Table 1) from the 

video segment of the students’ investigations. All networks were constructed as weighted networks and 
node strengths were calculated for each node in each network. The node strength is the sum of the edge 

weights connected to the node (Barrat, Barthélemy, Pastor-Satorras, & Vespignani, 2004). The 

networks were constructed and visualised from the tabulated connections and the processed text using 
Python and the graph-tool module (Peixoto, 2014). 

The 24 visualisations of the networks are shown in Figures 7-10. For the information flow and 

the material engagement networks, the nodes are labelled by the actors: S1, S2, S3 are the students, T is 

the teacher, C is the computer the students used, and A is the apparatus that includes equipment used 
for the investigations (i.e., the track, the car and the ultrasound sensor). The nodes in the material 

semantic networks represent individual words or references, with the strongest (highest strength) nodes 

labelled with the corresponding words translated from Finnish. The weight of each edge is represented 
by the edge width. Similarly, node size is determined by the node’s strength. The layout for the 
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information flow and the material semantic networks is similar, with nodes arranged into a circular 

pattern with the same order throughout. The layout of the material semantic networks is based on the 

Fruchterman-Reingold spring-block layout (Fruchterman & Reingold, 1991). 
 

 

 

Figure 7. Visualisation of the different networks from segments 1 and 2. 
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Figure 8. Visualisation of the different networks from segments 3 and 4. 
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Figure 9. Visualisation of the different networks from segments 5 and 6. 
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Figure 10. Visualisation of the different networks from segments 7 and 8. 

The information flow networks show how information was exchanged locally between the 

different actors. Information was received from the measuring apparatus and the computer and 
exchanged between humans, creating an overall flow of information within the network. Collecting data 

shows clearly that student S3 receives information both from the apparatus and from the computer, 

whereas the other students only receive information from the apparatus. The student S3 also passes on 
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the information from the computer screen to the other students. It seems that it could be beneficial for 

the student to see the phenomena on the measuring apparatus simultaneously with the graph on the 

computer screen as this allows more opportunities to exchange information and engage with other actors 

resulting in the strong nodes for student S3. 

The material semantic networks show the semantic content of the student dialogue and reveal 

the strongest semantic connections. The material semantic networks of preparation, collecting data 2 

and constructing an explanation are separated into two or more components that are not connected with 
each other. This results from the dialogue having utterances that do not share semantic connections with 

each other. For example, during the preparation the students did not semantically connect the measuring 

apparatus and the computer. However, these were connected while doing the measurement, as can be 
seen in the corresponding semantic network of collecting data in Figure 7. In the other two cases, it is 

possible that the small components separated from the main body of the network are single utterances 

that while task related are not taken into part of the discussion as a whole. It is also possible that 
collecting data for the second time, the students did not need to discuss about conducting the 

measurement as each student’s role was the same as before, and thus there was little or no need to 

consider who does what and how. Similarly, in the last segment the smaller component is a single 

utterance about scaling the graph that is not an important part of interpreting the data and thus does not 
semantically connect with the discussion about the slope of the graph and the motion of the car. 

When the students discuss the results, the main content seems to be the connection between the 

graph on the computer screen and the car, but not the physics concepts relating to the two. Even in the 

final segment when students are able to connect the slope of the graph with the speed of the car, they do 

not use the word ‘speed’, instead, they use the phrase ‘goes faster’. This shows that even though the 
students can connect the phenomena with the measured results, they do not yet use the appropriate 

physics terminology. 

The material engagement network shows what the students and the teacher were engaging with 

during the investigations. During interpreting the data, student S3 is more strongly engaged with the 

computer than the other two students. Overall, the engagement between students S3 and S1 is strongest, 

but in analysing the data the engagement is strongest between students S3 and S2. In the final segment, 
student S1 is not engaged at all, and the only engagement is between students S2, S3 and the computer 

when these two students are discussing the results of the analysis. 

In general, the teacher, when present, has a very clear role. The teacher receives information 

from the computer screen and gives information to the students. The material semantic networks are 

quite small and simple, and this probably results from the segments being short and there not being 

much dialogue, as the students are mainly listening to the teacher. However, the node representing the 
graph on the computer screen is strongest, showing that the semantic content in these situations concerns 

the graph. The engagement of the teacher is mainly with the computer and the student using the 

computer (student S3). Thus, when the teacher is present, he/she receives information about the graph, 
engages with the student using the computer and gives information. In practice, the teacher sees what 

stage the students are at and gives guidance for continuation. 

Preparation has the simplest networks of all the segments. It is possible that the network 

approach is not suited to this kind of student activity, but more likely the students did not need to do 
much preparing as the measuring apparatus was set up by the teacher previously and there was not much 

to do for the students other than to conduct the measurement. If they had needed to plan the investigation, 

and build the apparatus to conduct the measurement more precisely, the networks might be very 
different. 

Lastly, information flow and material engagement networks in Figures 7 to 10 are similar, but 

the flow network shows the direction of information, so it represents the students’ activity differently. 
For example, in the final segment, constructing explanation, student S1 is not engaged with other actors 

yet is receiving information. Thus, student S1 is a passive participant in the final discussion about the 

analysed results, showing that the student is not part of the intra-acting assemblage 
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5. Discussion 
 

Currently, science education research within a new materialist frame is still in its early stages. 

Theoretical work has been carried out formulating the material-dialogic approach (Hetherington et al., 

2018) and some empirical studies have applied the approach (e.g., Cook et al., 2019; Hetherington & 

Wegerif, 2018). Milne and Scantlebury (2019) have discussed materiality and material practices more 
broadly in science education. The growing use and interest of network analyses in science education 

research led us to explore how network analysis could be applied in authentic classroom learning where 

the role of materials, such as laboratory equipment, is acknowledged. 

The main aim of this study was to develop and demonstrate methods for constructing network 
data from video, using the materialist perspective to take into consideration the materials present in 

science investigation situations. Instead of resulting in a single network approach, we identified three 

possibilities that were then developed with the video sample from the physics lesson. The resulting 
networks show clearly that network approaches can be used to study the learning processes where 

students are engaged in investigations connected with materials for learning science knowledge and 

skills. For example, in this case the most worthwhile activities seem to be when students are analysing 

the data or discussing results. Then the students are exchanging information and engaging with the 
materials and each other. This results in strong (large) nodes with heavy (wide) reciprocal edges. 

Moreover, the semantic networks are more complex than at other times. 

In order to better understand the role of materials in learning, we grounded our approach to 

Network Analysis and a New Materialistic frame. The resulting method resembles Interaction Analysis 
(IA) that investigates the interactions between humans and the objects around them. IA considers human 

talk and non-verbal communication and aims to identify practices, problems and solutions (Jordan & 

Henderson, 1995). IA even has a material perspective as it sees interactions situated in the material 
world and considers how humans use artefacts and technology. However, IA is interested in the 

achievement of social order and “how people make sense of each other’s actions” (Jordan & Henderson, 

1995, p.41). This is where the methods diverge. Whereas both methods focus on interaction, we 
construct network data appearing through interactive actions of different actors as seen in the video, in 

contrast to trying to understand the moment-to-moment construction and maintenance of social order. 

This allows the use of several network analysis methods to quantitatively investigate different aspects 

of collaborative learning with a materialist perspective. Thus, the research aim, to use cases and data 
constructed from video, are different between the methods. 

 
5.1 Limitations and possible improvements 

 

Constructing the information flow network involves uncertainty, as coding the information 

exchange is challenging in face-to-face communication. There is always some need for interpretation, 
even if the student talk is taken per se. For example, interpreting student embodied actions or material 

references can be challenging. Moreover, there is no distinction between different information or the 

amount of information per utterance, therefore edge weight does not necessarily represent the quality or 

quantity of information. Similarly, material entities continuously transmit information, making 
identifying and selecting instances of information exchange challenging. A more detailed coding 

framework and analysis protocol could improve the interpretation, but it would result in more manual 

work. 

Additionally, it should be noted that the strength of the nodes cannot be directly interpreted as 

more flow or a stronger engagement as the longer video segments contain more information exchange 

and engagements; thus, they the nodes appear stronger in the network. It would be possible to normalise 
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the networks with the number of connections or length of time to gain more comparable results. 

However, at least for information flow, information content and thus the amount of information differs 

from utterance to utterance, and this should also be taken into account if edge weight is to be equated 

one-to-one with information. This would require a strict coding manual for information and would also 
require additional work and time spent on the coding. This additional work might not significantly 

improve the results, as the structures and patterns of the information exchange are more compelling than 

the exact amount of exchanged information. We considered information relating both to conceptual and 
procedural knowledge to be relevant information. It could be possible to separate and build networks 

relating to both types of knowledge that might reveal additional details of information exchange. 

However, the two knowledge types are not clearly distinguishable from each other, and relating the 
knowledge types to information within a single utterance might be unfeasible. However, the material 

semantic networks can distinguish the overall tendency for the type of knowledge. For example, while 

collecting the data, the strongest nodes are motion detector, end-of-the-track, and measurements, 

indicating that the students are discussing how to conduct the measurement using the motion detector at 
the end of the track. Conversely, while interpreting the data the strongest nodes are graph and car, 

showing that the semantic content is the connection between these two. 

When constructing material semantic networks during the text pre-processing, different steps 
might be easier to do manually than computationally and vice versa, depending on the tools available 

and on the language of the actors. For example, speech-to-text automation could help with the 

annotations as so-called first pass transcripts (Moore, 2015) before the manual work of identifying 

speakers and coding the embodied actions and material references. Similarly, eye-tracking technology 
would enable coding actors to gaze precisely and would help in identifying instances of receiving 

information from the materials. This would also allow identification of different parts of materials as 

nodes like, for example, the parts of a graph or the components of the measuring apparatus. Concerning 
the aims of our study, eye tracking was not applied as we wanted the method to cause as little disruption 

to teaching and learning as possible, and the technology was not mature enough for straightforward 

deployment. Similarly, text-to-speech was seen as unnecessary for the relatively short video segments, 
especially as the technology in Finnish was not reliable enough at the time. However, in the future, with 

a larger research setting, use of one or both methods could be a major improvement. 

There are also some practical technical limitations to this method. For example, even with two 

video cameras not all student actions were clearly visible as they can be obstructed by other students or 
material objects. Similarly, student speech can, at times, be indistinct or ambiguous. However, these 

challenges are more about video-based research in general and can be addressed by using good practices 

and appropriate equipment (Derry et al., 2010). Here the video material was collected from an authentic 
classroom setting, where there are always trade-offs with camera placements (Erickson, 2012). 

Moreover, there is always some degree of external sounds, noises and other distractions in authentic 

classrooms that affect the video and audio quality. A more controlled setting (e.g., a teaching laboratory) 

would provide clearer video material that could be used with the automated techniques mentioned above. 

 
5.2 Recommendations for future research 

 

The networks can be interpreted visually, but they could also be analysed more explicitly with 

the many different tools that network analysis offers. The analyses could show, for example, the roles 

in the information exchange, individual contributions to overall semantic networks, or what intra-acting 
assemblages students are part of. Thus, different network approaches and analyses could be used to 

answer different research questions concerning science learning. For example, combining background 

information or pre- and post-test scores would allow one to correlate learning with the roles of 
information exchange and explain how prior knowledge affects the roles or what effect the roles have 

on learning. Similarly, it could be asked how prior knowledge or experiences affect contributions to the 

material semantic network. Prior experiences with investigations might determine engagements with 

materials and it could then be asked who uses the materials during investigations and why. 
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Of the individual network approaches, the material engagement network approach seems 

promising applied within the material-dialogic framework of Hetherington et al. (2018). In essence, the 

networks are a collection of intra-acting assemblages of the framework. These assemblages could be 

equated with network motifs. It would be possible to compute different motifs and thus ascertain what 
kind of assemblages are present. 

Computing the network roles from the information flow network could show each individual’s 

role in the information flow. Network roles are directed motifs and include, for example, source, sink 

and relay (McDonnell et al., 2014). Finding the roles of each actor (human and non-human) could reveal 

the students’ abilities and the impact of material elements. For example, a student who is a source or 
who relays information should be more crucial in the knowledge construction of the group. 

Currently, the material semantic network does not differentiate the individual actor’s 

contributions. For example, the material semantic networks of teacher support are built almost entirely 

from teacher talk. However, this talk is not explicitly represented in the network. Additionally, 

aggregating the material semantic network into one network and using multidimensional network 

analysis methods, it would be possible to separate each student’s and teacher’s contribution to the overall 
material semantic network. Understanding each student’s contribution is an important part of the 

evaluation. Moreover, understanding how individual students contribute to the overall knowledge could 

be used to guide formative assessment practices. Additionally, understanding what or how teachers 
contribute to students’ knowledge could show the role the teacher has while supporting the students. 

The advantage of network analysis is that it provides an opportunity to analyse large and 

complex datasets. Therefore, the future applicability of our method depends on its scalability. Although 

including materiality requires manual coding, the ongoing development of text-to-speech automation 

promises easier initial steps for constructing the network data and thus makes constructing larger 
datasets easier. Similarly, machine learning technologies could be used to automate part or all of the 

manual coding required. Here we have demonstrated the steps required to generate the network data 

from video material. Currently, some of these steps were automated and more can be automated in 

future. Thus, scaling the construction of network data should be possible in subsequent studies. 

Finally, a targeted collection of video material could be used. For comparative study, for 

example, it would be possible to first measure background variables and use that information to select 
different kinds of groups for video recording. This would limit the amount of video material and ensure 

high contrast between analysed cases. 

 
 

6. Concluding remarks 

In this study, we introduced a method to build a network data of human and non-human actors 

using video. Using a network analysis review and a new materialist theoretical background, we 
identified three possible approaches to constructing network data. Additionally, a real-world video was 

used to refine the approaches. The three approaches are the information flow network, the material- 

semantic network and the material engagement network. Each network has its benefits and drawbacks 
and ultimately an approach combining two or all three networks might be preferred. However, we have 

shown here that it is possible to build network data from video within the new material perspective. The 

production of these networks allows the use of network analysis methods to investigate aspects of 

collaborative learning where the role of materials has been taken into consideration. This work responds 
to the demand of including materiality in science education research (Milne & Scantlebury, 2019), 

contributes new materialist methods to research in education and expands possible methods for a 

material-dialogic framework. In conclusion, the proposed method allows studies into the material and 
dialogic relationships that emerge when students are engaged in investigations in school. 
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Keypoints 
 

 New materialism and network-based approaches have gained interest in educational research. 

 The aim was to combine these two approaches into new materialist network approaches to study 

students’ investigations. 

 Three possible approaches were identified and  developed with a video  sample from an upper 

secondary school. 

 The approaches are: 1) information flow, 2) material semantic and 3) material engagement. 

 The developed approaches are applicable for future research. 
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