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Abstract  

Cognitive load theory is one of the most influential theoretical explanations of cognitive 

processing during learning. Despite its success, attempts to assess cognitive load during 

learning have proven difficult. Therefore, in the current study, students’ self-reported cognitive 

load after the problem- solving process has been combined with measures of physiological data, 

namely, electrodermal activity (EDA) and skin temperature (ST) during the problem-solving 

process. Data was collected from 15 students during a high and low complex task about learning 

and teaching geometry. This study first investigated the differences between subjective and 

physiological data during the problem- solving process of a high and low complex task. 

Additionally, correlations between subjective and physiological data were examined. Finally, 

learning behavior that is retrieved from log-data, was related with EDA. Results reveal that the 

manipulation of task complexity was not reflected by physiological data. Nevertheless, when 

investigating individual differences, EDA seems to be related to mental effort.  

Keywords: cognitive load; physiological data; electrodermal activity; skin 

temperature; complex learning 
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1. Introduction 

As society and work environments become more complex it is increasingly relevant that learning 

environments mirror this complexity of the real world (Jonassen, 2000; Kirschner, Ayres & Chandler, 2011; 

Merrill, 2009; van Merriënboer, Kirschner & Kester, 2003). Nevertheless, a risk of complex learning 

environments is that the cognitive load imposed by the complex learning tasks is often excessive (Larmuseau, 

Elen & Depaepe, 2018; van Merriënboer & Sluijsmans, 2009). This phenomenon can be explained by 

Cognitive Load Theory (CLT) introduced by Sweller (1994). CLT uses current knowledge about the human 

cognitive architecture as a baseline to develop the instructional design for complex learning environments 

(Martin, 2014). CLT distinguishes three types of cognitive load, intrinsic, extraneous and germane load 

(Brunken, Plass & Leutner, 2003; Paas, Tuovinen, Tabbers & Van Gerven, 2010; Sweller, 2010). The level of 

intrinsic load is assumed to be determined by the complexity of the task or learning material and cannot be 

directly altered by the instructional designer. Extraneous load is mainly imposed by instructional procedures 

that are suboptimal, whereas germane load refers to the learners’ working memory resources available to deal 

with the complexity of the task or learning material (Sweller, 2010). Both extraneous and germane load can 

by facilitated by the instructional designer. An instructional designer should find a balance between keeping 

the matter sufficiently challenging but still within the cognitive capacities of the learner. Exceeding learners’ 

cognitive capacities can induce cognitive overload which could hamper learning. Specifically, this means that 

when the content is very complex due to high element interactivity (i.e., the amount of interrelations between 

knowledge, procedures, formulas etc.) which affects intrinsic load, instructional designers should keep 

extraneous load to a minimum (e.g., by providing clear instructions, provide embedded support) and 

subsequently foster germane load (Kirschner, Kester & Corbalan, 2011; Sweller, 2010).  

In order to align the instructional design with students’ cognitive abilities, we should be able to 

measure cognitive load during complex learning. Former studies investigated cognitive load by using 

subjective measurements such as self-reported questionnaires (Boekaerts, 2017; Zheng & Cook, 2012). Those 

self-reported questionnaires have some important disadvantages (e.g., subjective measures, assumption of 

constant workload capacity, see section 2.2 ; DeLeeuw & Mayer, 2008; Raaijmakers, Baars, Schaap, Paas & 

van Gog, 2017; Spanjers, van Gog & van Merriënboer, 2012). As a result, more researchers show interest in 

using objective, real-time measures. Physiological measures provide objective data and can be unobtrusively 

collected while dealing with a task or learning material. Moreover, physiological data might provide an 

indication of changes in cognitive functioning throughout the process of solving a task (Boekaerts, 2017). 

Former studies already indicated that electrodermal activity (EDA) and skin temperature (ST) can be linked to 

different levels of task complexity (Haapalainen, Kim, Forlizzi & Dey, 2010; Nourbakhs, Wang, Chen & 

Calvo, 2012; Shi, Ruiz, Taib, Choi & Chen, 2007).   

Nevertheless, it is unclear whether these physiological measures are related to self-reported intrinsic 

load, extraneous load, germane load and the overall mental effort during complex problem solving (Leppink, 

Paas, Van der Vleuten, Van Gog & Van Merriënboer, 2013). Therefore, in the current study, a high and low 

complex task was developed relating to the learning and teaching of geometry. The complexity of the task was 

manipulated by increasing the element interactivity for the high complex task (Sweller, 2010). In both tasks 

the same amount of support was provided. Data was retrieved using self-reported questionnaires to measure 

students’ experienced intrinsic load, extraneous load, germane load and mental effort. This distinction between 

the different types and mental effort was made because the different types of cognitive load concerns mental 

load induced by task complexity and instructional design, whereas mental effort invested covers the overall 

amount of cognitive processing for a particular task (Paas et al., 2003). The subjective measures were 

combined with physiological data through wrist-worn wearables containing both EDA and ST.   

The purpose of this study was threefold. First, we investigated differences in the experienced cognitive 

load and the physiological data while solving a high and low complex task. Secondly, we examined whether 
individual differences of subjective measurements are related to individual differences of physiological data 

for the high and low complex task. Finally, we described whether peaks (i.e., EDA) and/or drops (i.e., ST) of 
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physiological data are related to specific events (e.g., consultation of support) that took place during the 

problem solving process.  

2. Theoretical Framework 

2.1 Cognitive Load Theory 

CLT is concerned with the instructional implication of the interaction between the complexity and 

instructional design of the learning material and human cognitive architecture (Sweller, 2010). Basically, the 

human cognitive architecture consists of an effectively unlimited long-term memory, which interacts with a 

working memory that has limited processing capacity (Kirschner et al., 2011; Sweller, 1994). Long-term 

memory contains cognitive schemata that are used to store and organize knowledge. Learning occurs when 

information is successfully processed in working memory and when new schemas are created or incorporated 

into consisting schemas in the long-term memory. As the processing capacity of the working memory is so 

limited, overcoming individual working memory limitations by instructional manipulations has been the main 

focus of CLT (Sweller, van Merriënboer & Paas, 1998). Cognitive load can be defined as a multidimensional 

construct representing the load that performing a particular task, imposes on the learners’ cognitive system 

(Paas et al., 2010). CLT claims that the cognitive load that learners experience can be intrinsic, extraneous or 

germane (Sweller, 2010). The level of intrinsic load for a particular task is assumed to be determined by the 

inherent difficulty of a certain topic and the level of element interactivity of the learning material in relation a 

student’s prior knowledge. The more elements that interact, the more intrinsic processing is required for 

coordinating and integrating the material and the higher the working memory load (De Leeuw & Mayer, 2008; 

Sweller, 2010). Working memory load is not only imposed by the intrinsic complexity of the material that 

needs to be learned, it can also be imposed by the instructional design. For instance, unclear instructional 

procedures can impose extraneous load. Extraneous processing means that the learner engages in cognitive 

processing that does not support the learning objective (De Leeuw & Mayer, 2008; Glogger-Frey, Gaus & 

Renkl, 2017; van Merriënboer & Sluijsmans, 2008; Sweller, 2010). Instructional design techniques that reduce 

extraneous load (e.g., fading support) should ensure that students devote less attention to irrelevant aspects of 

the task. Subsequently, more cognitive capacity can be allocated to the actual learning objective (Ciernak, 

Scheiter & Gerjets, 2009; Mayer & Moreno, 2010; Sweller, Ayres & Kalyugo, 2011). Meanwhile, intrinsic 

and extraneous load depend on the characteristics of the learning tasks or the instructional design, germane 

load is more concerned with the cognitive characteristics of the learner. More specifically, it refers to the 

working memory resources that are available to engage in knowledge elaboration processes and argumentation 

(Sweller, 2010). Accordingly, in order to optimize learning,  learning tasks should be aligned with the learner’s 

cognitive capabilities (Schmeck, Opfermann, van Gog, Paas & Leutner, 2015; Sweller, 2010). Measuring 
cognitive load during complex learning should provide more insight into how to align instructional design with 

students’ cognitive capabilities.  

2.2 Subjective measurements of cognitive load 

Self-reports for measuring cognitive load are subjective measurements consisting of unidimensional 

and multidimensional scales. Unidimensional subjective rating scales have been used intensively in research 

and have been identified as reliable and valid estimators of cognitive load (Boekaerts, 2017; Chang & Yang, 

2010; Leppink et al., 2013; Paas, 2003). The Paas’s nine-point mental effort rating scale has been most 

frequently used in cognitive load research (Chen et al., 2016; Paas, 1992). Paas’s nine-point mental effort 

rating scale requires learners to rate their mental effort immediately after completing a task (Paas, 1992). 

Mental effort refers to the cognitive capacity that is allocated to accommodate the demands imposed by a task 

(Paas et al., 2003). According to Paas, learners can introspect the amount of mental effort invested during a 

learning task. Subsequently, Paas claims that the learner’s assessment can be used as an index of overall 
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cognitive load (Chen et al., 2016). Nevertheless, this unidimensional scale gives little insight into the influence 

of the complexity of the task and the influence of the instructional design on cognitive load (Boekaerts, 2017; 

De Bruin & van Merriënboer, 2017; Klepsch, Schmitz & Seufert, 2017; Leppink et al., 2013). Accordingly, 

Leppink et al. (2013) and Klepsch et al. (2017), developed a subjective cognitive load scale in which they used 

multiple items for each type of cognitive load in order to get more specific information about intrinsic load, 

extraneous load and germane load. Despite the frequent use of self-reported scales to assess cognitive load, 

some critiques have been raised. Firstly, subjective measurements are based on the assumption that students 

are able to introspect on their cognitive processes and accordingly are able to self-report on their experienced 

cognitive load (Boekaerts, 2017; Schmeck et al., 2015). Secondly, as subjective scales are often administered 

after the learning task, subjective scales do not capture variations in load over time. Taking into account these 

limitations, it might be more interesting to combine subjective measurements with real-time objective 

cognitive load information (Boekaerts, 2017; Chen et al., 2016; Zheng & Cook, 2012). 

2.3 Physiological measures of cognitive load 

The physiological approach for cognitive load measurement is based on the assumption that any 

change in the human cognitive functioning is reflected in the human physiology. Subsequently, in contrast to 

subjective measurements, physiological measures are continuous and measured at a high frequency (e.g., every 

second) and with a high precision (Chen et al., 2016). Given the close relationship between cognitive load and 

neural systems, human neurophysiological signals are seen as promising avenues to measure cognitive load 

(Boekaerts, 2017; Chen et al., 2016). Former research has investigated the relationship between learners’ 

cognitive load and their physiological behaviour. The physiological measures that have been used to 

investigate cognitive load are among others heart rate by electrocardiography (ECG), brain activity by 

electroencephalography (EEG), eye activity (e.g., blink rate, pupillary dilation), EDA, heat flux and ST 

(Antonenko, Paas, Grabner & van Gog, 2010; Haapalainen et al. 2010; Scharinger, Soutschek, Schubert & 

Gerjets, 2015; Smets et al., 2018; Zagermann, Pfeil & Reiterer, 2016). Although a lot of physiological data, 

such as brain and eye activity, has been proven to be highly effective for measuring cognitive load, these types 

of physiological data often requires expensive sophisticated equipment that is highly obtrusive in measuring 

cognitive activities, especially in ecological valid contexts (Chen et al., 2016; Scharinger et al., 2015).    

Possible solutions to collect physiological data in an unobtrusive way is by means of wrist-worn 

wearables. These wearables can easily capture different physiological data such as EDA and ST and are less 

expensive compared to more sophisticated measures of physiological data (Chen et al., 2016). EDA involves 

measuring the electrical conductance of the skin through sensors attached to the wrist. Skin conductivity varies 

with changes in skin moisture level (i.e., sweating) and can reveal changes in the sympathetic nervous system 

(SNS). The slowly changing part of the EDA signal is called the skin conductance level (SCL) and is a measure 

of psychophysiological activation. SCL can vary substantially between and within individuals. A fast change 

in the EDA signal (i.e., a peak) occurs in reaction to a single stimulus and is called galvanic skin response 

(GSR; Braithwaite, Watson, Jones & Rowe, 2013). Research has linked GSR variation to stress and SNS 

arousal. As a person becomes more or less stressed, the GSR increases or decreases respectively (Hoogerheide, 
Renkl, Logan, Paas & van Gog, 2019; Liapis, Katsanos, Sotiropoulos, Xenos & Karousos, 2015, Smets et al., 

2018). Additionally, research has also linked GSR readings to cognitive activity, claiming GSR responses 

increase when more cognitive load is experienced (Ikehara & Crosby, 2005; Nourbakhs et al, 2012; Setz et al., 

2010; Shi et al., 2007, Yousoof & Sapiyan, 2013). The study of Nourbakhs, Wang, Chen and Calvo (2015) 

captured GSR data of 13 and 16 participants from different reading and arithmetic tasks. The arithmetic tasks 

contained four difficulty levels, whereas the reading task contained three difficulty levels. Results of ANOVA 

indicated that both mean GSR and accumulated GSR yielded significantly different results throughout different 

task difficulty levels. Shi et al. (2007) investigated 11 subjects when dealing with four tasks divided in four 

distinct levels of cognitive load. Results revealed insignificant differences across the interactive models for 

mean GSR, but significant differences when using accumulated GSR. Yousoof and Sapiyan (2013) 

investigated whether cognitive load could be detected by mean EDA. In this experiment 7 subjects had to solve 

three different programming tasks that were different in terms of complexity. Yousoof and Sapiyan found no 
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conclusive results for mean GSR, indicating that the variation among the subjects was very different during 

one task.   

In addition to EDA, ST can also reflect changes in SNS. Research claims that acute stress triggers 

peripheral vasoconstriction, causing a rapid, short-term drop in skin temperature. Moreover, stress can also 

cause a more delayed skin warming, providing two opportunities to quantify stress (Herborn et al., 2015; 

Karthikeyan, Murugappan & Yaacob, 2012; Shusterman, Anderson & Barnea, 1997; Smets et al., 2018; 

Vinkers, et al., 2013). Little research has used ST to assess cognitive load. Nevertheless, the study of 

Haapalainen et al. (2010) investigated the cognitive load of 20 subjects through GSR and heat flux data (i.e., 

rate of heat transfer). The subjects had to solve six elementary cognitive tasks that differed in difficulty. 

Afterwards, Haapalainen et al. (2010) evaluated the performance of each of the features in assessing cognitive 

load using personalised machine learning techniques (i.e., Naïve Bayes Classifier). Results indicated that they 

did not obtain satisfactory results for GSR. By contrast, they did find that across all participants heat flux was 
shown to be an indicator of differences in cognitive load. The findings of former studies indicate that EDA 

and ST can indicate differences in cognitive load, but none of these studies related physiological data with 

self-reported cognitive load.  

2.4 Research aims 

To conclude, physiological measures have some important advantages when compared to subjective 

measurements. These measures are more objective (i.e., not dependent on students’ perceptions), 

multidimensional (i.e., different physiological measures are sensitive to different cognitive processes), 

unobtrusive (i.e. no additional requirements), implicit (i.e., collect data while students are working on their 

tasks) and continuous (i.e. provide information of cognitive processes during learning). Nevertheless, it can be 

difficult to interpret physiological data. Therefore, it would be interesting to investigate whether there is a 

relationship between subjective measurements of cognitive load and physiological data. The following 

research questions are formulated: 

• RQ1: Does the manipulation of the level of complexity of a task, based on element interactivity, result 

in differences in perceived cognitive load and mental effort when controlled for prior knowledge? 

• RQ2: Does the manipulation of the level of complexity of a task, based on element interactivity, result 

in differences in physiological data, when controlled for prior knowledge? 

• RQ3: Is there a relationship between individual differences in self-reported data and individual 

differences of physiological data for a high and low complex task?  

RQ4: Is there a relationship between the physiological data of one learner and his/her interactive 

behaviour during the problem solving process?

 

3. Methodology 

3.1 Participants and study design 

Participants were 15 future primary school teachers of which ten were female and five male (age 

between 18-24). All participants were first year bachelor students (i.e., second semester). The study was highly 

ecologically valid as the study was orchestrated by the students’ lecturer of the teaching mathematics course 

unit. Moreover, the intervention was integrated into the students’ study program (i.e., primary school teacher 

training). The intervention consisted of a within-subject design and was conducted online in the Moodle 

learning management system (LMS). The intervention took place in the auditorium of their faculty where 

students could solve the tasks individually on their own computer among their fellow students. This session 

was supervised by their lecturer and a researcher. Students first received an online questionnaire of which the 
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timeframe (+/- five min.) to complete the first questionnaire was used as an adaption period in order to stabilize 

the wearable signals (i.e., baseline measurement). Next, all students had to solve a high complex and a low 

complex task on preparing a lesson in geometry as shown in Figure 1. In order to control for order effects, (a) 

half of the subjects were exposed to the high complex task during the first session and the low complex task 

during the second session, whereas for (b) the other half, the sequence was vice versa. More specifically, eight 

students started with the high complex task and seven students started with the low complex task.  

3.2 High and low complex tasks 

The high and low complex tasks were developed in Moodle LMS. The scope of both tasks was 

designing a lesson preparation on the circumference of a circle for primary school children. This subject matter 
was not yet covered in previous lessons. Both tasks contained six elements where both aspects of pedagogical 

content knowledge; PCK (i.e., inductive teaching strategy, choose teaching materials to support your lesson, 

aligning the topic of the lesson with the Flemish curriculum and integration of differentiation in your lesson in 
the classroom) and content knowledge; CK (i.e., formula of the circumference of the circle) were addressed. 

The complexity of the high complex task was manipulated based on element interactivity (Sweller, 2010). In 

the high complex task students had to coordinate and integrate six elements consisting of CK and PCK in order 

to write a course preparation about the circumference of the circle, whereas the low complex task consisted of 

six questions where each element was addressed separately (see Figure 1). During both problems, the same 

support consisting of procedural and supportive information was provided. An example of procedural 

information can also be found in Figure 1 in the second box. Procedural information is provided just-in-time 

and concise. Supportive information is much more comprehensive and is comparable to the background theory. 

Both procedural and supportive information can be consulted by clicking on the words in italics.    

 

Figure 1. High complex task, question of the low complex task and an example of the procedural information 

3.3 Students’ prior knowledge 
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Information about students’ prior knowledge was gathered in the first semester during their 

examination. Students were tested on their knowledge of PCK (mean = 63.5%, SD = 19.7) and CK (mean = 

72.2%, SD = 27.8). Content was (teaching) mathematics in general and geometry in particular. Examples of 

test-items can be found in Figure 2. All tests were corrected by the instructor of the course unit. We have no 

insight into the prior knowledge of one student who participated in the study, which means that we can include 

an indicator of prior knowledge for 14 students in the analysis. 

 

Figure 2: Example questions of the prior knowledge test 

3.4 Subjective measurements 

For the measurement of cognitive load a validated instrument developed by Leppink et al. (2013) was 

used for the measurement of intrinsic, extraneous and germane load. The questionnaire was translated into the 

specific context of the present study as shown in Table 1. The questionnaire consisted of a 7-point Likert scale 

(i.e., ranging from “totally disagree” to “totally agree”). Reliability was determined through Cronbach’s α in 

order to investigate the overall consistency of the constructs (Schreiber, Nora, Stage, Barlow & King, 2006). 

Confirmatory factor analysis (CFA) was not conducted due to the small sample size, but former research has 

validated the questionnaire and has proven that the questionnaire is reliable (Leppink et al., 2013). 

Additionally, the Paas’s nine-point mental effort rating scale was added to the questionnaire (Paas, 1992). 

 

Table 1 

Survey items and reliability of the constructs 

 High 

complex 

Low  

complex 

 α α 

ICL_1: The topics covered in this task were very complex .69 .83 

ICL_2: The task covered formulas that I perceived as very complex   

ICL_3: The task covered concepts and definitions that I perceived as very complex   

ECL_1:The instructions during the task were very unclear .69 .71 

ECL_2: The instructions were full of unclear language   

ECL_3:The instructions were, in terms of learning, very ineffective   

GCL_1:The task really enhanced my understanding of the topics covered .85 .75 
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GCL_2:The task really enhanced my knowledge and understanding of the topic   

*ICL = intrinsic cognitive load; ECL = extraneous cognitive load: GCL = germane cognitive load 

3.5 Physiological data 

To measure physiological data including EDA and ST, 15 students were monitored with wrist-worn 

wearables as shown in Figure 2. These wearables were able to sense GSR with a high dynamic range (.05-

20µS) at the lower side of the wrist and the output was accurate within a frame of approximately 1 second. ST 

was acquired at the upper side of the wrist at a frequency of 32 Hz and the output was accurate within a frame 

of approximately 1 second at 0.1 °C. Before analysing the physiological data, a number of procedures were 

carried out. Firstly, a Confidence Indicator (CI), with values ranging from 0 to 1, monitors whether the sensor 
is correctly attached to the body. Values of CI lower than .80 were ignored as this indicates low quality of the 

data due to incorrect sensor attachment (+/- .01% per individual). Secondly, visual analysis of the signal was 

conducted for both EDA and ST. Artefacts were removed 20s before and after the artefact and an interpolation 

over the gap was performed. Thirdly, large differences in skin conductance among individuals can occur 

(Yousoof & Sapiyan, 2013). Therefore, to counteract the variation between subjects, the EDA and ST data of 

each individual participant were standardized, bringing the mean of each signal to 0 and its variance to 1. 

Fourthly, time domain features were analysed and mean EDA and ST were calculated as shown in Figure 3.  

𝑴𝒆𝒂𝒏 𝑬𝑫𝑨(𝒔, 𝒕) =
∑ 𝑺𝒕𝒂𝒏𝒅𝒂𝒓𝒅𝒊𝒛𝒆𝒅_𝑬𝑫𝑨(𝒔, 𝒕)𝒕

𝒓
  

𝑴𝒆𝒂𝒏 𝑺𝑻(𝒔, 𝒕) =
∑ 𝑺𝒕𝒂𝒏𝒅𝒂𝒓𝒅𝒊𝒛𝒆𝒅_𝑺𝑻(𝒔, 𝒕)𝒕

𝒓
 

*s = subject/ t = task/ r = time-on-task 

Figure 3. Standardized mean EDA and ST 

3.6 Log-data 

Log-data was retrieved from the Moodle Learning Management System (LMS). The LMS-system 

automatically keeps tracks of user activity (i.e., every min) and session. Log-data was divided into several 

events, namely: (1) start the task; reading instructions, (2) writing an answer, (3) consultation of support and 

(4) submission; reviewing the answer.  

3.7 Analysis 

This study first investigated the differences between a high and low complex task for both the 

subjective measurements and physiological data (i.e., RQ1, RQ2). Therefore, both subjective measurements 

and physiological data were tested on the normality assumption. Results of the Shapiro-Wilk tests reveal that 

both subjective measurements and physiological measurements were normally distributed. As we were 

interested in the mean differences between the high and low complex task of both the self-reported and 

physiological data, controlled for prior knowledge (i.e., both PCK and CK), order effect (see section 3.1), we 

conducted a Linear Mixed Model (LMM) incorporating PCK, CK and order as fixed factors and measurement 

time as a repeated measure (two-level for RQ1 and three-level for RQ3). When conducting LMM, the 

Restricted Maximum Likelihood Method (REML) was applied (Baayen, Davidson & Bates, 2008). Based on 

findings of RQ1 and RQ2, this study investigated the individual differences in the self-reported data of 

cognitive load for a high and low complex task, and how this relates to individual differences in physiological 

data (RQ3). Cohen’s d was calculated when differences were significant in order to have insight into the effect 
sizes (LeCroy & Krysik, 2007). A bivariate correlation analysis was conducted in order to find relationships 

between physiological data and subjective measurements of cognitive load. Fourthly, as the advantage of 
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physiological data is that it is measured continuously, this study investigated whether there are relationships 

between specific events (i.e., consultation of support) based on log-data and peaks (i.e., spontaneous 

fluctuations per s) of EDA and drops of ST (i.e., RQ4). Given the small sample size, the analysis more 

descriptive.  

 

4. Results 

4.1 Research question 1 

Descriptive statistics of the subjective measurements as shown in Table 2 reveal that students reported 

on average higher intrinsic load, extraneous load and mental effort during the high complex task in comparison 

with the low complex task. Results furthermore indicate that students reported higher germane load during the 

low complex task which was expected.  

Table 2 

Descriptive statistics of the subjective measurements of the high and low complex task 

 High complex task Low complex task 

Cognitive load Mean (SD) Mean (SD) 

Intrinsic load 5.62 (.97) 4.78 (.94) 

Extraneous load 5.13 (.84) 5.31(1.13) 

Germane load 3.33 (2.26) 3.60 (1.88) 

*Mental effort 6.47 (.92) 4.93 (1.10) 
7-point Likert scale/*9-point Likert scale 

 

In order to investigate differences in the perceived cognitive load and mental effort (i.e., RQ1), LMM 

was conducted incorporating PCK, CK and ‘order effect’ as fixed factors and time as a two-level repeated 

measurement. Pairwise comparison of the different measurements of intrinsic load, extraneous load, germane 

load and mental effort are indicated in Table 3. Results reveal that intrinsic load differed significantly across 

phases. F(1,13) = 6.43, p = .03. Pairwise comparison reveals that intrinsic load was significantly higher (M = 

.86, p = .03) during the high complex task with Cohen’s d = .88. When investigating the fixed factors, there 

was no significant effect of both PCK, F(1,10) = .05, p = .82 and CK, F(1,10) = .43, p = .53. Moreover, no 

significant order effect was found F(1,10) = 12, p = 74. As expected, results reveal no significant difference 

for extraneous load across phases F(1,13) = 17, p = .69. Pairwise comparison reveals no significant mean 

difference (M = -.05, p = .90) between the high and low complex task for extraneous load. Results of the fixed 
effects reveal no significant effect of PCK F(1,10) = .04, p = .84, CK F(1,10) = .17, p = .69, and order F(1,10) 

= 1.58, p = .24. Results for germane load indicate no significant differences across phases F(1,13) = 1.21, p = 

.29. Pairwise comparison reveals no significant mean difference for germane load (M = -.18, p = .29) between 

the high and low complex task. Results of the fixed effects indicate no significant effects for PCK, F(1,10) = 

.00, p = .96 and CK, F(1,11) = .01, p = .93. Moreover, no order effect was found, F(1,10) = 1.39, p = .2. 

   Finally, results revealed that mental effort was different across phases. Mean 

difference of mental effort between the high and low complex task was significant (M = 1.43, p = 00) in the 

predicted direction with Cohen’s d = 1.52. No significant effects of PCK, F(1,11) = 2.39, p = .15 and CK, 

F(1,11) = 2.84, p = .12. Additionally, no order effect, F(1,10) = .27, p = 62 was found.  
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Table 3 

Pairwise comparison of subjective measurements controlled for prior knowledge (i.e., PCK, CK) and order 

effect 

Research question 2 

Descriptive statistics of the physiological data can be found in Table 4. Mean EDA is lower during the 

high complex task compared to the low complex task. Mean ST is lower during the high complex task.  

Table 4 

Descriptive statistics of the standardized physiological data 

Physiological data Baseline measurement 

Mean (SD) 

High complex task 

Mean (SD) 

Low complex task 

Mean (SD) 

Mean EDA -.58 (.60) .09 (.45) .45 (.86) 

Mean ST 1.25 (.86) .35 (.38) .49 (.87) 

 
In order to investigate the differences of physiological data between the baseline measurement, high 

and low complex task (i.e., RQ2), LMM was conducted incorporating PCK, CK, order effect as fixed factors 

and time as a three-level repeated measurement. Results indicate that differences were found for mean EDA 

across the different phases F(2,26) = 6.56, p = .01. Pairwise comparison of the different measurements of mean 

EDA are indicated in Table 5. Results of pairwise comparison reveals that the mean difference between the 

baseline measurement and high complex task phase is significant in the predicted direction (M = -.60, p  = .05) 

with Cohen’s d = .19. Moreover, the mean difference is significant between the baseline measurement and the 

low complex task (M = -1.05, p = .00) with Cohen’s d = .14. Results reveal that no significant mean difference 

was found between the high and low complex task (M = -.45, p = .14). Moreover, the mean difference was in 

the unexpected direction. When investigating the fixed factors, there was a non-significant main effect of both 

PCK F(1,10) = .18, p = .68 and CK F(1,10) = .81, p = .36. Additionally, there was a significant effect of order 

F(1,10) = 7.62, p = .02, which indicates an order effect.  

 
No significant differences were found for mean ST across the different measurements, F(2,26) =.16, p 

= .85. Pairwise comparison reveals no significant mean differences between baseline measurement and the 
high complex task (M = 1.02, p = .61), baseline measurement and the low complex task (M = .87, p = .66), and 

between the high and low complex task (M = -.15, p = .94). Nonetheless, all mean differences were in the 

expected direction. When investigating the fixed effects, there was a non-significant main effect of both PCK 

F(1,10) = .00, p = .97 and CK F(1,10) = .12, p = .74. Additionally, there was no significant order effect, F(1,10) 

= .45, p = 52.  

 

 

 

 

 

 

 

high-low complex Mean difference BCa p  

Intrinsic load .86 [.13, 1.59]   .03* 

Extraneous load -.05 [-.79, .89] .90 

Germane load -.18 [-.53, .17] .29 

Mental effort 1.43 [.65, 2.20]   .00** 

*significant at the .05 level **significant at the .01 level; BCa = 95% Confidence interval for Difference 
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Table 5 

Pairwise comparison of physiological data controlled for prior knowledge and order   

Physiological data: phase Mean difference BCa p 

Mean electrodermal activity    

Pair 1: Baseline – high complex   -.60  [-1.20, .00]   .05* 

Pair 2: Baseline- low complex -1.05   [-1.65, -.45]     .00** 

Pair 3: High complex- low complex   -.45 [-1.05, .15] .14 

Mean skin temperature    

Pair 1: Baseline – high complex 1.02  [-2.98, 5.01] .61 

Pair 2: Baseline – low complex   .87  [-3.13, 4.87] .66 

Pair 3: High complex- low complex -.15   [-4.14, 3.85] .94 

*significant at the .05 level **significant at the .01 level; BCa = 95% Confidence interval for Difference 
 

4.2 Research question 3 

Results of RQ1 reveal significant differences for perceived intrinsic load and mental effort. RQ3 

investigates the relationship between the individual differences of intrinsic load, mental effort and 

physiological data. Results are displayed in Table 6 and reveal that mental effort is significantly positive 

correlated with mean EDA (r = .58, p = .03) for the high complex task. Nevertheless, no significant positive 

correlation was found between mean EDA and mental effort for the low complex task. No significant results 

were found for ST.  

 

Table 6 

Correlations between standardized physiological data and subjective measurements for the high complex 

task and low complex task. 

 High complex task Low complex task 

 Mean EDA Mean ST Mean EDA Mean ST 

 r p r p r p r p 

Intrinsic load .12 .34 -.04 .44 .16 .29 -.03 .46 

Mental effort .58   .03* .33 .12 .12 .34 -.01 .48 

** correlation is significant at the .01 level; * correlation is significant at the .05 level 

4.2 Research question 4 

In the final RQ4, this study investigates the relationship between physiological data and specific events 

retrieved from log-data and EDA peaks. An example of such relationships is shown in Figure 4. Table 7 gives 

an overview of the amount of relationships between specific events and EDA peaks. In contrast to EDA, no 

conclusive relationships were found between ST (i.e., drops) and specific events. ST for most participants 

increased throughout the intervention as illustrated in Figure 5.  
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Figure 4. Electrodermal activity related to log-data of participant 15 

 

Figure 5: Skin temperature related to log-data of participant 15 

Table 7  

The relationship between specific events and EDA peaks 

Events High complex Low complex 

Start the task (reading instructions) 7 2 

Writing an answer 8 2 

Consultation support 8 3 

Submission (reviewing the answer) 6 14 
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5. Discussion 

5.1 Research question 1 

This study attempted to firstly investigate the difference of subjective measurements of cognitive load 

between a high and low complex task (i.e., RQ1). Results reveal that the students indicate higher perceived 

intrinsic load for the high complex task when compared with the low complex task. This indicates that the 

manipulation of complexity based on element interactivity was successful. Additionally, students indicated 

that the perceived mental effort was higher during the high complex task. Effect sizes of both intrinsic load 

and mental effort were high (>.80) indicating that the manipulation of complexity had an impact (LeCroy & 

Krysik, 2007). This reveals that students invested more mental effort into solving the high complex task in 

order to maintain performance at a constant level (Paas et al., 2003). This is also in line with CLT, since the 

high complex task was high in element interactivity and possibly required a lot of cognitive processing (Van 
Merriënboer & Sweller, 2005). No significant differences were found for extraneous load between both tasks. 

This finding was expected as the instructions for both tasks were of the same level of difficulty. Additionally, 

no significant differences were found for germane load, indicating that both tasks enhanced students’ 

understanding of the content at a similar level. This was in line with our expectations as the content and 

available support of both tasks was the same.  

5.2 Research question 2 

Secondly, this study aimed at investigating whether we can use physiological data to distinguish 

between the two complexity levels of the task. When investigating mean EDA, results reveal that significant 

differences were found between both tasks and the baseline measurement. These findings indicate that both 

tasks result in a higher mean EDA. Nevertheless, effect sizes were very small (< .20), indicating that task 

complexity only had a minimal impact on mean EDA (LeCroy & Krysik, 2007). Moreover, no significant 

differences were found for mean EDA between the high and low complex. These results are in line with the 

findings of the study of Haapalainen et al. (2010), which also revealed no significant differences for EDA 

between six tasks of different levels of difficulty. Moreover, against expectations, descriptive statistics reveal 

that mean EDA was higher during the low complex task, when compared with the high complex task. These 

unexpected findings may be induced by the order effect. This order effect may reduce a clear difference 

between the EDA during the high and low complex task. Moreover, visual analysis reveals that for the majority 

of all participants, skin conductance rises throughout the intervention (i.e., drift). Since, more participants had 

the low complex at the end, this might indicate that results are biased by drift. This indicates the need for the 

current study to also examine EDA peaks as these peaks are not affected by drift (RQ4). When investigating 

mean ST no significant mean differences were found for mean ST across all different phases. Nevertheless, 

descriptive statistics reveal that ST was higher during the baseline measurement period. Moreover, ST was 

higher during the low complex task compared with the high complex task. This could indicate that ST is related 

to task complexity as research indicated that ST declines relative to a trigger event (Ikehara & Crosby, 2005). 

Current findings indicate that mean EDA and mean ST might be indicators of changes of cognitive load, but 

cannot be used to detect differences in task complexity. Nevertheless, there is no clear link between ST and 

cognitive load. Accordingly, correlations between individual differences in the perceived intrinsic load, mental 

effort and physiological data for a high and low complex task are investigated (RQ3).  

5.3 Research question 3 

A third aim of this study was to investigate whether we can relate subjective measures of the perceived 

intrinsic load and mental effort (i.e., based on findings of RQ1) with physiological data (i.e., mean EDA and 

ST) during a high and low complex task. Findings reveal that mental effort positively correlates with mean 

EDA for the high complex intervention. Nevertheless, we did not find a significant correlation between mean 
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EDA and mental effort during the problem-solving process of the low complex task. Results might also be 

influenced by the fact that skin conductance was rising throughout the intervention. In addition, most students 

first solved the high complex task. No significant correlations between mean ST and self-reported data were 

found. This finding could be due to the fact that ST shows a very slow rise and decline in temperature change 

relative to the trigger event. Therefore, it might be difficult to relate ST to self-reports (Ikehara & Crosby, 

2005). Since, there seems to be a relationship between EDA and mental effort and since ST drops can be 

related to specific events, we investigated the relationship between physiological data and learning behaviour 

retrieved from log-data.  

5.4 Research question 4 

In order to investigate the relationship between physiological data and learning behaviour. Log-data 

was investigated and divided into four main events, namely, reading instructions, writing an answer, consulting 

support and reviewing the answer. Results reveal that there seems to be a relationship between specific learning 

behaviour and EDA peaks. Moreover, results reveal that more peaks were registered during the high complex 

task, when compared with the low complex task, which indicates a different result compared to RQ2. When 

investigating the intensity of the peaks, findings reveal that the peaks that are related to the events ‘submission’ 

are more intense. This might explain, besides the occurrence of drift, why mean EDA was higher during the 

low complex task. Possibly, results may have been influenced by the fact that the low complex task was 

presented as a test-format, which might induced more intensive peaks when students submitted their task. 

When investigating relations between peaks and events it seems that during the high complex task, peaks are 

more frequently related to cognitive processes (e.g., reading instructions, consulting support and writing) when 

compared with the low complex task (e.g., submission). For instance, when investigating the event 

‘consultation of support’ more in detail, peaks were related to students (N = 4) watching a video that explains 

the circumference of a circle. This is line with previous research indicating that GSR responses are associated 

with effortful cognitive processing during multimedia learning (Antonietti, Colombo & Di Nuzzo, 2015). 

Additionally, hardly any peaks were found for the low complex task during writing, which is in line with the 

study of Mudrick, Taub, Azevedo, Price & Lester (2017). Mudrick et al. (2017) investigated multimedia 

learning and indicated that the lowest amount of GSR responses were retrieved when answering multiple 

choice questions, suggesting that this might require less cognitive processing. This finding is also in line with 

the study of Hoogerheide et al. (2018) indicating that mean EDA was significantly lower during the problem-

solving process of a practice problem, when compared with teaching a practice problem in an authentic 

learning situation. These exploratory findings indicate that the intensity of EDA signals might be more related 

to the type of learning activities. In line with previous findings of RQ2 and RQ3, no conclusive results were 

found for ST. Nevertheless, on the basis of data visualisation of all students we could see that for the largest 

number of participants (i.e., 8 students), ST is lower during the high complex task, which is in line with findings 

of RQ2.  

5.5 Limitations and further research 

Despite the merits of the study in terms of indicating that individual differences in experienced mental 

effort can indicate individual differences in EDA, there are some important limitations that should be 

mentioned. Firstly, results must be approached carefully as multiple analyses on the same dependent variable 

were conducted which can increase the chance of committing a Type 1 error (Roth, 1999). Secondly, as we 

were investigating physiological data, we were obliged to implement a within-subject design. This is required 

when investigating skin conductance, as skin conductance can vary markedly between individuals (Braithwaite 

et al., 2013). Nevertheless, the within- subject design had some important disadvantages. Since the same 

learning materials were taught within both the high and low complex task, students might have learned from 

the previous task and therefore perceived the high complex task as less difficult. This is turn might have 

influenced skin conductance and skin temperature, and may be a reason why there was no clear difference 

between the high and low complex task. This problem can be addressed in future studies by addressing 
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different topics. Moreover, future studies should offer more different tasks of different levels of complexity, 

and also create more conditions in order to increase the amount of measurements. This could provide a better 

understanding of possible correlations between mental effort and mean EDA. A third important limitation, 

when investigating skin conductance is drift, a continuous increase of the intensity of the signal. It is important 

to distinguish drift from important shifts in real tonic processes (Braithwaite et al., 2013). Nevertheless, this 

distinction between drift and real tonic processes is not always entirely clear. This emphasizes the need of an 

accurate baseline measurement. The baseline measurement in the current study could be optimized by giving 

the participants a moment of relaxation. Given the small sample size we decided not to remove data of 

participants. Instead, in this study we have additionally investigated the peaks of skin conductance (as these 

are no subject of drift) and related them to specific events in the learning environment. Nevertheless, it can be 

advisable to remove data of participants on the basis of drift in larger datasets. Moreover, a larger sample size 

would also allow us to investigate patterns between EDA peaks and specific events in the learning environment 

(e.g., reading instructions) while using quantitative methods. Finally, as the study did not take place in a lab 

setting but in the classroom of the students, a lot of confounding factors unrelated to cognitive load may cause 

clouds in the data such as a lecturer entering the classroom and students leaving the classroom when finished. 

These events are likely to degrade the accuracy of cognitive load measurement by GSR (i.e., EDA). 

Nevertheless, the ecological valid setting also has advantages such as authenticity of the results (Schmuckler, 

2001). Moreover, as the content was part of students’ training program, students were encouraged to 

thoroughly solve the tasks, which is reflected in the task performance. 

6. Conclusion 

This study attempted to firstly investigate the difference of subjective measures of cognitive load and 

physiological data (i.e., mean EDA and ST) between a high and low complex task in an ecologically valid 

setting. Students indicated that they perceived higher intrinsic load during the high complex task and that the 

high complex task required more mental effort. This indicates that task complexity can be manipulated based 

on element interactivity. Nevertheless, complexity was not reflected by differences in physiological data (i.e., 

mean EDA and ST). Accordingly, in a next phase this study investigated correlations between perceived 

intrinsic load, mental effort and physiological data. Results revealed a positive correlation between mean EDA 

and mental effort during the high complex task. Nevertheless, no significant correlations were found for the 

low complex task. Preliminary results of a more descriptive analysis showed that peaks of EDA during the 

high complex task were more frequently related to cognitive processes when compared with the low complex 

task (i.e., submitting the task). The latter finding might explain the significant relationship between mental 

effort and mean EDA. Future research should replicate similar studies while using larger sample sizes to verify 

these findings. Additionally, the relationship between EDA and the type of learning behaviour (i.e., retrieved 

from log-data) should not be overlooked. 

Keypoints 

 Preliminary results indicate that mean EDA is correlated with self-reported mental effort.  

 Results indicate that perceived intrinsic load can be manipulated based on element interactivity, 

which is in line with the Cognitive Load Theory.  

 It is important for future research to investigate correlations between subjective measurements and 

physiological data while using large sample sizes.   

 When investigating EDA, it is important to investigate peaks of skin conductance in combination 

with specific events retrieved from log-data. This might reveal patterns and provide more insight 

into the influence of the learning behaviour on skin conductance.  
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